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Abstract leads to undesirable artefacts along sharp edges. Wavelets

require too many non-vanishing coefficients to represent

This Paper proposes a novel concept for digital image Corr%'harp edges accurately, because they introduce artifgsial o
pression. The resulting compression scheme relies on ad%ﬂfations in their modelling

tive thinning algorithms, which are recent multiresolatio

T . . This paper proposes an alternative concept for digital
methods from scattered data approximation. Adaptive th'ri]ﬁ*nage compression, which is particularly well-suited for

glrr;gcﬁlr?]%:ﬁzgjvﬁ;e riic(i,:\r;izg Iﬁ)r?ér:rrii?;?vg:st?gr?rc?veesr’e\llgzzlﬁﬁe modelling of sharp edges and related features in digital
P P jmages. To this end, piecewise linear functions over adap-

mental Delaunay triangulations. This paper shows the uti’.— ; : )
. . - . SR ive triangular meshes are used. This leads to a reduction of
ity of adaptive thinning algorithms in digital image com-

ression. To this end, specific adaptive pixel removal Crl_ow-pass filtering effects, which are often due to overquan-
tperia are.desi ned fo’r rr?ultiresoluti%n mF())deIIin of di i_&ization of the high-pass coefficients. The modelling ilie
9 9 9"0n recursive point removal schemes, termaddptive thin-

tal images. This is combined with a previous customlzeﬁing algorithms and a customized coding scheme for scat-

coding scheme for scattered data. The good performanf:eered pixels

of our_compression sch_eme Is finally shown in compart- The outline of the paper is as follows. The application
son with the well-established wavelet-based compressm? adaptive thinning algorithms to digital image modelling

0
method SPIHT. is explained in Section 2. Then, in Section 3, the above-

mentioned coding scheme is briefly discussed. Finally, se-
1. INTRODUCTION lected numerical examples are shown in Section 4, where

the performance of our compression scheme is compared

Over the past few years, digital image compression has B, the wavelet-based compression method SPIHT.
come a major challenge in information technology. For

the efficient transmission of digital image data it is cru-
cial to reduce the amount of information by using a sparse 2. ADAPTIVE THINNING IN IMAGE
representation of the image. To this end, effective coding MODELLING
schemes are used in order to maintain a good approxima-
tion quality at low bitrates. For a comprehensive introduck order to keep this paper widely self-contained, this sec-
tion to various relevant aspects of digital image compregion firstintroduces basic concepts and ingredients of adap
sion, we recommend the textbook [8]. tive thinning algorithms, before their application to dadi
The performance of any image compression scheme dgiage modelling is discussed.
pends on its ability to capture characteristic featuresef t In many classical image compression methods, such as
image, such as sharp edges and fine textures, while redder the aforementioned DCT and DWT, the modelling is
ing the number of parameters used for its modelling. Mostarried out by decomposing the image over a non-adaptive
of the well-established compression schemes are using thethogonal basis of functions. The corresponding coeffi-
bivariate Discrete Wavelet Transform (DWT), see the sussients of the basis functions are then quantized, according
vey [2] on wavelet-based image coding. At high compredo a specific quantization step, which usually depends on a
sion rates, wavelet-based methods provide much better it@rget compression rate. The performance of the resulting
age quality in comparison with the JPEG standard, whicbompression scheme depends on the approximation quality
relies on the Discrete Cosine Transform (DCT). The goowhich results from the non-vanishing coefficients. We re-
results obtained from DWT are due to sophisticated tectmark that such approaches do not allow any adaptivity in
niques which essentially take advantage of the statistictile choice of the representation functions. The high quan-
structure of the image data. tization steps required for very high compression rated lea
For instance, the well-established method SPIHT [6fo undesirable low-pass filter artefacts, also called riggi
(Set Partitioning Into Hierarchical Trees) uses judiciolus ~ artefacts. Visually, they correspond to oscillations aebu
sters of non-significant coefficients (collectedzierotreey sharp edges. Examples of such artefacts are shown in Fi-
in order to efficiently encode the most significant coeffigure 1, where the well-known test ima@oel dhi | | is
cients. The new compression standard JPEG2000 (see [8]3ed.
based on EBCOT [7], uses contextual encoding, which mod- An alternative modelling concept represents the image
els the Markovian structures in the pyramidal wavelet dedy piecewise linear functions over triangular meshes. The
composition of the image. At very low bit rates, how-resulting approaches based on hierarchiesegéilar (i.e.
ever, the oscillatory behaviour of wavelet bases typicallpon-adaptive) triangular meshes, however, lead to lovg-pas



Figure 2: Delaunay Triangulation of a point set.

the target functionf is approximated by the unique con-

Figure 1:Gol dhi I | . Coding by using SPIHT at a very tinuous function’(f,Y’), whose restriction on any triangle
high compression rate of 0.125 bpp (bits per pixel) leads # the Delaunay triangulatioy- is a linear function and
ringing artefacts. which satisfies the interpolation conditions

L(f,Y)(y) = f(y), forallyeY.
artefacts, such as in the case of wavelets. In contirast,
regular adaptive triangulations offer much more flexibil-In the subsequent of this text, we say tligtf,Y") is the
ity, and they support the appropriate concept of adaptivitgiecewise linear interpolant gf over Dy .
for representing natural features of the image. In view of Now the aim of adaptive thinning is to remove at each
the required compression, however, this enhanced flexib#tep a point:, = X, \ X,,—1 such thatL(f, X,_) is close
ity may lead to high coding costs required for coding théo the original functiory. In order to design a suitable point
node coordinates, and the topology coding (connectivitt,emoval criterion, we employ a specific notpm || used to

between nodes) of the corresponding mesh. evaluate the approximation error
In order to entirely avoid the required costs for the con-
nectivity coding, adaptive thinning algorithms work with n(Y)=n, f)=I[L(f,Y) - fll.
Delaunay triangulations. Recall that a Delaunay triangula ) o ] o )
tion of a discrete planar point s&f c R? is a triangula- The main application addressed in [4] is digital terrain

tion, such that the circumcircle of each of its trianglesslogModelling. The criterion used to remove a point from a set
not contain any point froni in its interior. An example S basedin[4]on thé>-norm, measuring the maximal de-
of such a triangulation is shown in Figure 2. For furtheiiation between the original function and the reconstmicte
details concerning triangulation methods, we refer to th&inction. In this case, we have
textbook [5].
Now we associate, with any finite sat of points its oY) = IL(f,Y) = fllee = max[L(f,Y)(z) — f(@)].
uniqueDelaunay triangulatio® x (in the case of co-circu-
lar points in X there may be ambiguities which we ex- ~ Our purpose in this article is to apply adaptive thinning
clude in the following discussion for the sake of simpli-to digital images. In this case, the initial set of poits
city). Thus, at the decoder, the set of poiftan directly is given by the set of pixels in the original image. More-
be used in order to uniquely reconstruct the triangulatiof\ver, the function values of are the luminance values at
Dx. the pixels. In view of digital image compression by adap-
The adaptive thinning algorithm, first developed in [4] tive thinning, a suitable removal criterion should be redat
is concerned with the approximation of a bivariate functiofio themean square erro(MSE). Indeed, as supported by
f from a finite set of scattered data po|rj(s C R2 and numerical examples, this heIpS to improve the qua“ty of the

sample value$ f ()}, x. To this end, a data hierarchy reduced images, according to the human visual perception.
In this case, we prefer to work with the discreté-

X=XyDXy.1D...DX, (1) errory(Y), with respect to the set given by

of nested subsets of = {zi,...,7x} C R? is con-
structed. This is done by recursively removing points from
X. Atany removal step, one point is removed from the cur-
rent subseX,, C X in (1), so thatX,, is of size|X;,| = p,  rather than with the above error measyte. In order to
n<p<N. design a suitable removal criterion for adaptive thinning,
The multiresolution method, associated with adaptivgse |et thesignificanceof any pointy € Y be given by
thinning, works with decremental Delaunay triangulations
over the subsets in (1). To this end, for any subset X, oly) =n*(Y \y) —n*(Y).

(V) = [L(£,Y) = £lI3 = D IL(£,Y)(x) - f(2)?,

reX



Moreover, a poiny* € Y is said to beemovablegrom  basis functionp,, y € X, is the unique piecewise linear
Y, if and only if y* is least significant among all points in function overDx satisfying

Y by satisfying { 1 fore=yeX

o(y") = mino(y). eule) = 0 forz e X, \ y.

yeYy
In order to further reduce the resulting computational Due to the properties of the least squares approximation
costs, we restrict our computations for computing the sigscheme, this yieldsptimalluminance value$f*(y))yecx,,
nificance of any poiny € Y toits local cellC(y) in Dy. atthe pixels inX,,, so that the corresponding best approxi-
Recall that the cel’(y) of the vertexy is given by the tri- mation
angles inDy which containy as a vertex. This leads us to L*(f, X,) = Z () ey,
the simpler significance YyEX,

attains the least squares error by satisfying
o(y) = n?;(y)(Y \y) — n?](y)(y)’

L*f,Xn —fzzmin g_fza
wherenc(,) (V) denotes thel.?-error over the cellC(y), I£C ) I2 9€Vx, | I

€ where||- ||2 is the discretd.?-norm with respect td,,. For
2 — 2 a comprehensive treatment of least squares approximation
(Y= Y L Y)(@) — f@)) P 9 PP
W 2€CmNX methods, we recommend the textbook [1].

The use of the criterion based on th&-norm, in com-

Having constructed a subs&t, of » most significant bination with least squares approximation, yields a signif
pixels n < N, by adaptive thinning, we are in a positionicant improvement of the image quality, as shown in Fig-
to compute a reconstruction of the original image, such age 4 for the testimagBar bar a of size 256-by-256.
for Lena in Figure 3(a), at the decoder as follows. The
n most significant pixels, shown in Figure (B) (where
n = 2205) are used in order to create the corresponding
Delaunay triangulatioD x, , shown in Figure 3c). This
in turn yields, by evaluating the piecewise linear integmbl
L(f, X,), the reconstructed image (Figuréd).
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Figure 3:Lena. (a) Original image of size 128-by-128;
(b) subsetX,, of n = 2205 most significant pixels(c) the
Delaunay triangulatio® x ; (d) reconstructed image. (b)

We remark that the reconstruction quality of the so ob-
tained image, such as in Figure(®), can be further im- Figure 4:Bar bar a. Reconstruction fromx = 7336 most
proved. This is done as follows. We consider usiegst significant pixelga) with L>°-norm and without LSA{b)
squares approximatio(LSA) with respect to the approx- with L2-norm and with LSA.
imation spacé’x, = span(yy)ycx,, Where the cardinal



3. CODING SCHEME using thePeak Signal to Noise Rat{®SNR),

2
This section briefly explains the coding of the most sig- PSNR = 10 x log;, (;/?SE) ,
nificant pixels, which is also subject of the previous pa-
per [3]. First note that any coding scheme requires a no@iven in dB, where MSE denotes tiMean Square Error
ambiguouslecoding rulevhich enables the receiver to uni- 1 o 2. o3
quely reconstruct the image. As already discussed in the MSE = N x M Z [1G, 5) = 12, 7)I"
]

previous section, this can be accomplished by using any set
X, of n most significant pixels output by adaptive thinning.  In our first example, we decided to use a test image
The subsefX,, can be considered as a set of tridimencalledPepper s, shown in Figure §a), whose size is 256-

sional points(2\", z{*, z;), 1 < i < n, wherez!") and by-256 pixels. Note that this image contains very few tex-

2?) are the integer coordinates of the paintand where Eured areasa_Outr rrzﬁthpd proyldFe_s a ZS;“R k\}/alue 0‘(S3P1|-|_1|_|3_ dB
RSN VRN ) N e (1) (2 . corresponding to the image in Figuré®)), whereas

s = e = QU (w o g)) Is a quantized i1 "2 better PSNR value of 31.65 dB (Figuréh.

value, where the luminance$'(x, *, ;™) are output by A second example is shown in Figure 7. The size of the

Igast squares approximation. We use a uniform quantiz?e-st image, calle@r ui t s (shown in Figure 7a)), is also
tion stepg, so thatQ(z) = [z/¢]. As shown in Section 2, 556 1h 556 pixels. In this test case, our method provides

the use of Delaunay triangulations avoids the coding of pgNR value of 32.13 dB (Figure(®)), whereas SPIHT
any connectivity information. Only the tridimensional lo'yields a PSNR value of 32.77 dB (Figurdd).

cations of the points in the subsg}, are required at the de- Both examples show that our algorithm achieves, in

coder. Furthermore, the ordering of the nodes is not needgfrast to SPIHT, accurate localization of sharp edgas, an

for the reconstruction. so it avoids spurious ringing artefacts. Although our metho
is slightly inferior to SPIHT in terms of its PSNR, we be-

QuQc iy g lieve that it is quite competitive. This is supported by the
Q.| ol good visual quality of the image reconstructions by our
compression method (see Figuré® and Figure 1b)).
Q_sw Q:E
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We code the pixel points by performing a recursive split-
ting of the domair) = [0..N] x [0..M] x [0..P], whereN 6. REFERENCES
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Figure 6:Pepper s. (a) Original image;(b) compressed Figure 7:Frui ts. (a)Original imagej(b) compressed at
at 0.44 bpp by our methodg) at 0.44 bpp by SPIHT. 0.57 bpp by our methodg) at 0.57 bpp by SPIHT.



