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Abstract

This paper proposes a novel concept for digital image com-
pression. The resulting compression scheme relies on adap-
tive thinning algorithms, which are recent multiresolution
methods from scattered data approximation. Adaptive thin-
ning algorithms are recursive point removal schemes, which
are combined with piecewise linear interpolation over decre-
mental Delaunay triangulations. This paper shows the util-
ity of adaptive thinning algorithms in digital image com-
pression. To this end, specific adaptive pixel removal cri-
teria are designed for multiresolution modelling of digi-
tal images. This is combined with a previous customized
coding scheme for scattered data. The good performance
of our compression scheme is finally shown in compari-
son with the well-established wavelet-based compression
method SPIHT.

1. INTRODUCTION

Over the past few years, digital image compression has be-
come a major challenge in information technology. For
the efficient transmission of digital image data it is cru-
cial to reduce the amount of information by using a sparse
representation of the image. To this end, effective coding
schemes are used in order to maintain a good approxima-
tion quality at low bitrates. For a comprehensive introduc-
tion to various relevant aspects of digital image compres-
sion, we recommend the textbook [8].

The performance of any image compression scheme de-
pends on its ability to capture characteristic features of the
image, such as sharp edges and fine textures, while reduc-
ing the number of parameters used for its modelling. Most
of the well-established compression schemes are using the
bivariate Discrete Wavelet Transform (DWT), see the sur-
vey [2] on wavelet-based image coding. At high compres-
sion rates, wavelet-based methods provide much better im-
age quality in comparison with the JPEG standard, which
relies on the Discrete Cosine Transform (DCT). The good
results obtained from DWT are due to sophisticated tech-
niques which essentially take advantage of the statistical
structure of the image data.

For instance, the well-established method SPIHT [6]
(Set Partitioning Into Hierarchical Trees) uses judiciousclu-
sters of non-significant coefficients (collected inzerotrees)
in order to efficiently encode the most significant coeffi-
cients. The new compression standard JPEG2000 (see [8]),
based on EBCOT [7], uses contextual encoding, which mod-
els the Markovian structures in the pyramidal wavelet de-
composition of the image. At very low bit rates, how-
ever, the oscillatory behaviour of wavelet bases typically

leads to undesirable artefacts along sharp edges. Wavelets
require too many non-vanishing coefficients to represent
sharp edges accurately, because they introduce artificial os-
cillations in their modelling.

This paper proposes an alternative concept for digital
image compression, which is particularly well-suited for
the modelling of sharp edges and related features in digital
images. To this end, piecewise linear functions over adap-
tive triangular meshes are used. This leads to a reduction of
low-pass filtering effects, which are often due to overquan-
tization of the high-pass coefficients. The modelling relies
on recursive point removal schemes, termedadaptive thin-
ning algorithms, and a customized coding scheme for scat-
tered pixels.

The outline of the paper is as follows. The application
of adaptive thinning algorithms to digital image modelling
is explained in Section 2. Then, in Section 3, the above-
mentioned coding scheme is briefly discussed. Finally, se-
lected numerical examples are shown in Section 4, where
the performance of our compression scheme is compared
with the wavelet-based compression method SPIHT.

2. ADAPTIVE THINNING IN IMAGE
MODELLING

In order to keep this paper widely self-contained, this sec-
tion first introduces basic concepts and ingredients of adap-
tive thinning algorithms, before their application to digital
image modelling is discussed.

In many classical image compression methods, such as
for the aforementioned DCT and DWT, the modelling is
carried out by decomposing the image over a non-adaptive
orthogonal basis of functions. The corresponding coeffi-
cients of the basis functions are then quantized, according
to a specific quantization step, which usually depends on a
target compression rate. The performance of the resulting
compression scheme depends on the approximation quality
which results from the non-vanishing coefficients. We re-
mark that such approaches do not allow any adaptivity in
the choice of the representation functions. The high quan-
tization steps required for very high compression rates lead
to undesirable low-pass filter artefacts, also called ringing
artefacts. Visually, they correspond to oscillations around
sharp edges. Examples of such artefacts are shown in Fi-
gure 1, where the well-known test imageGoldhill is
used.

An alternative modelling concept represents the image
by piecewise linear functions over triangular meshes. The
resulting approaches based on hierarchies ofregular (i.e.
non-adaptive) triangular meshes, however, lead to low-pass



Figure 1:Goldhill. Coding by using SPIHT at a very
high compression rate of 0.125 bpp (bits per pixel) leads to
ringing artefacts.

artefacts, such as in the case of wavelets. In contrast,ir-
regular adaptive triangulations offer much more flexibil-
ity, and they support the appropriate concept of adaptivity
for representing natural features of the image. In view of
the required compression, however, this enhanced flexibil-
ity may lead to high coding costs required for coding the
node coordinates, and the topology coding (connectivity
between nodes) of the corresponding mesh.

In order to entirely avoid the required costs for the con-
nectivity coding, adaptive thinning algorithms work with
Delaunay triangulations. Recall that a Delaunay triangula-
tion of a discrete planar point setX ⊂ R

2 is a triangula-
tion, such that the circumcircle of each of its triangles does
not contain any point fromX in its interior. An example
of such a triangulation is shown in Figure 2. For further
details concerning triangulation methods, we refer to the
textbook [5].

Now we associate, with any finite setX of points its
uniqueDelaunay triangulationDX (in the case of co-circu-
lar points inX there may be ambiguities which we ex-
clude in the following discussion for the sake of simpli-
city). Thus, at the decoder, the set of pointsX can directly
be used in order to uniquely reconstruct the triangulation
DX .

The adaptive thinning algorithm, first developed in [4],
is concerned with the approximation of a bivariate function
f from a finite set of scattered data pointsX ⊂ R

2 and
sample values{f(x)}x∈X . To this end, a data hierarchy

X = XN ⊃ XN−1 ⊃ . . . ⊃ Xn (1)

of nested subsets ofX = {x1, . . . , xN} ⊂ R
2 is con-

structed. This is done by recursively removing points from
X. At any removal step, one point is removed from the cur-
rent subsetXp ⊂ X in (1), so thatXp is of size|Xp| = p,
n ≤ p ≤ N .

The multiresolution method, associated with adaptive
thinning, works with decremental Delaunay triangulations
over the subsets in (1). To this end, for any subsetY ⊂ X,

Figure 2: Delaunay Triangulation of a point set.

the target functionf is approximated by the unique con-
tinuous functionL(f, Y ), whose restriction on any triangle
in the Delaunay triangulationDY is a linear function and
which satisfies the interpolation conditions

L(f, Y )(y) = f(y), for all y ∈ Y .

In the subsequent of this text, we say thatL(f, Y ) is the
piecewise linear interpolant off overDY .

Now the aim of adaptive thinning is to remove at each
step a pointxp = Xp \Xp−1 such thatL(f,Xp−1) is close
to the original functionf . In order to design a suitable point
removal criterion, we employ a specific norm‖ · ‖ used to
evaluate the approximation error

η(Y ) ≡ η(Y, f) = ‖L(f, Y ) − f‖.

The main application addressed in [4] is digital terrain
modelling. The criterion used to remove a point from a set
is based in [4] on theL∞-norm, measuring the maximal de-
viation between the original function and the reconstructed
function. In this case, we have

η∞(Y ) = ‖L(f, Y ) − f‖∞ = max
x∈X

|L(f, Y )(x) − f(x)|.

Our purpose in this article is to apply adaptive thinning
to digital images. In this case, the initial set of pointsX
is given by the set of pixels in the original image. More-
over, the function values off are the luminance values at
the pixels. In view of digital image compression by adap-
tive thinning, a suitable removal criterion should be related
to themean square error(MSE). Indeed, as supported by
numerical examples, this helps to improve the quality of the
reduced images, according to the human visual perception.

In this case, we prefer to work with the discreteL2-
errorη(Y ), with respect to the setX given by

η2(Y ) = ‖L(f, Y ) − f‖2
2 =

∑

x∈X

|L(f, Y )(x) − f(x)|2,

rather than with the above error measureη∞. In order to
design a suitable removal criterion for adaptive thinning,
we let thesignificanceof any pointy ∈ Y be given by

σ(y) = η2(Y \ y) − η2(Y ).



Moreover, a pointy∗ ∈ Y is said to beremovablefrom
Y , if and only if y∗ is least significant among all points in
Y by satisfying

σ(y∗) = min
y∈Y

σ(y).

In order to further reduce the resulting computational
costs, we restrict our computations for computing the sig-
nificance of any pointy ∈ Y to its local cellC(y) in DY .
Recall that the cellC(y) of the vertexy is given by the tri-
angles inDY which containy as a vertex. This leads us to
the simpler significance

σ(y) = η2
C(y)(Y \ y) − η2

C(y)(Y ),

whereηC(y)(Y ) denotes theL2-error over the cellC(y),
i.e.,

η2
C(y)(Y ) =

∑

x∈C(y)∩X

|L(f, Y )(x) − f(x)|2.

Having constructed a subsetXn of n most significant
pixels, n ¿ N , by adaptive thinning, we are in a position
to compute a reconstruction of the original image, such as
for Lena in Figure 3(a), at the decoder as follows. The
n most significant pixels, shown in Figure 3(b) (where
n = 2205) are used in order to create the corresponding
Delaunay triangulationDXn

, shown in Figure 3(c). This
in turn yields, by evaluating the piecewise linear interpolant
L(f,Xn), the reconstructed image (Figure 3(d)).

(a) (b)

(c) (d)

Figure 3:Lena. (a) Original image of size 128-by-128;
(b) subsetXn of n = 2205 most significant pixels;(c) the
Delaunay triangulationDXn

; (d) reconstructed image.

We remark that the reconstruction quality of the so ob-
tained image, such as in Figure 3(d), can be further im-
proved. This is done as follows. We consider usingleast
squares approximation(LSA) with respect to the approx-
imation spaceVXn

= span(ϕy)y∈Xn
, where the cardinal

basis functionϕy, y ∈ Xn, is the unique piecewise linear
function overDXn

satisfying

ϕy(x) =

{

1 for x = y ∈ Xn,

0 for x ∈ Xn \ y.

Due to the properties of the least squares approximation
scheme, this yieldsoptimalluminance values(f∗(y))y∈Xn

at the pixels inXn, so that the corresponding best approxi-
mation

L∗(f,Xn) =
∑

y∈Xn

f∗(y)ϕy,

attains the least squares error by satisfying

‖L∗(f,Xn) − f‖2
2 = min

g∈VXn

‖g − f‖2
2,

where‖·‖2 is the discreteL2-norm with respect toXn. For
a comprehensive treatment of least squares approximation
methods, we recommend the textbook [1].

The use of the criterion based on theL2-norm, in com-
bination with least squares approximation, yields a signif-
icant improvement of the image quality, as shown in Fig-
ure 4 for the test imageBarbara of size 256-by-256.

(a)

(b)

Figure 4:Barbara. Reconstruction fromn = 7336 most
significant pixels(a) with L∞-norm and without LSA;(b)
with L2-norm and with LSA.



3. CODING SCHEME

This section briefly explains the coding of the most sig-
nificant pixels, which is also subject of the previous pa-
per [3]. First note that any coding scheme requires a non-
ambiguousdecoding rulewhich enables the receiver to uni-
quely reconstruct the image. As already discussed in the
previous section, this can be accomplished by using any set
Xn of n most significant pixels output by adaptive thinning.

The subsetXn can be considered as a set of tridimen-
sional points(x(1)

i , x
(2)
i , zi), 1 ≤ i ≤ n, wherex

(1)
i and

x
(2)
i are the integer coordinates of the pointxi and where

zi = f̂∗(x
(1)
i , x

(2)
i ) = Q(f∗(x

(1)
i , x

(2)
i )) is a quantized

value, where the luminancesf∗(x
(1)
i , x

(2)
i ) are output by

least squares approximation. We use a uniform quantiza-
tion stepq, so thatQ(z) = dz/qe. As shown in Section 2,
the use of Delaunay triangulations avoids the coding of
any connectivity information. Only the tridimensional lo-
cations of the points in the subsetXn are required at the de-
coder. Furthermore, the ordering of the nodes is not needed
for the reconstruction.
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Figure 5: First three splits of the cubic domainΩ.

We code the pixel points by performing a recursive split-
ting of the domainΩ = [0..N ]× [0..M ]× [0..P ], whereN
andM are the dimensions of the image andP is the num-
ber of possible values for̂fi

∗

(typically,P = 28 − 1 = 255
for unquantized data, butP = 255/q when the quantiza-
tion step isq).

At each step, we split a non-empty domainω, initially
ω = Ω, into two subdomainsω1 andω2 of equal size. If
mω denotes the number of most-significant pixels in the
domainω, then we havemω = mω1

+mω2
. Thus only one

of the two numbers, saymω1
, is added to the bitstream.

At the decoder, the numbermω2
will be deduced frommω

andmω1
. Each number is coded by the minimal number

of required bits. For instance, since0 ≤ mω1
≤ mω, the

numbermω1
is coded bydlog2(mω +1)e bits. The splitting

of the subdomains is performed recursively until the points
are exactly localized. For the purpose of illustration, the
first three splits of the cubic domainΩ are shown in Fig-
ure 5. For further details on this particular coding scheme,
we refer to [3].

4. NUMERICAL RESULTS

We have implemented the compression scheme proposed
in this paper. In this section, numerical examples are used
in order to evaluate the performance of our method. To
this end, we compare our compression scheme with the
wavelet-based compression scheme SPIHT [6]. We eval-
uate the reconstruction quality of the decoded imageÎ by

using thePeak Signal to Noise Ratio(PSNR),

PSNR = 10 × log10

(

2552

MSE

)

,

given in dB, where MSE denotes theMean Square Error

MSE =
1

N × M

∑

i,j

|I(i, j) − Î(i, j)|2.

In our first example, we decided to use a test image
calledPeppers, shown in Figure 6(a), whose size is 256-
by-256 pixels. Note that this image contains very few tex-
tured areas. Our method provides a PSNR value of 31.13 dB
(corresponding to the image in Figure 6(b)), whereas SPIHT
yields a better PSNR value of 31.65 dB (Figure 6(c)).

A second example is shown in Figure 7. The size of the
test image, calledFruits (shown in Figure 7(a)), is also
256-by-256 pixels. In this test case, our method provides
a PSNR value of 32.13 dB (Figure 7(b)), whereas SPIHT
yields a PSNR value of 32.77 dB (Figure 7(c)).

Both examples show that our algorithm achieves, in
contrast to SPIHT, accurate localization of sharp edges, and
so it avoids spurious ringing artefacts. Although our method
is slightly inferior to SPIHT in terms of its PSNR, we be-
lieve that it is quite competitive. This is supported by the
good visual quality of the image reconstructions by our
compression method (see Figure 6(b) and Figure 7(b)).
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Figure 6:Peppers. (a) Original image;(b) compressed
at 0.44 bpp by our method;(c) at 0.44 bpp by SPIHT.

(a)

(b)

(c)

Figure 7:Fruits. (a) Original image;(b) compressed at
0.57 bpp by our method;(c) at 0.57 bpp by SPIHT.


