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Abstract. This paper proposes a hierarchical nonlinear approximation scheme for scalar-valued
multivariate functions, where the main objective is to obtain an accurate approximation with using
only very few function evaluations. To this end, our iterative method combines at any refinement
step the selection of suitable evaluation points with kriging, a standard method for statistical data
analysis. Particular improvements over previous non-hierarchical methods are mainly concerning
the construction of new evaluation points at run time. In this construction process, referred to as
experimental design, a flexible two-stage method is employed, where adaptive domain refinement is
combined with sequential experimental design. The hierarchical method is applied to statistical data
analysis, where the data is generated by a very complex and computationally expensive computer
model, called a simulator. In this application, a fast and accurate statistical approximation, called
an emulator, is required as a cheap surrogate of the expensive simulator. The construction of the
emulator relies on computer experiments using a very small set of carefully selected input configura-
tions for the simulator runs. The hierarchical method proposed in this paper is, for various analysed
models from reservoir forecasting, more efficient than existing standard methods. This is supported
by numerical results, which show that our hierarchical method is, at comparable computational costs,
up to ten times more accurate than traditional non-hierarchical methods, as utilized in commercial
software relying on the response surface methodology (RSM).
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1. Introduction. Approximation of scalar-valued multivariate functions from
scattered data is of primary importance in many applications from computational
science and engineering. To describe the mathematical problem, let f : Ω → R,
for some domain Ω ⊂ R

d, denote an unknown multivariate function, whose scalar
function values in f

∣

∣

X
= (f(x1), . . . , f(xn))T ∈ R

n, taken at a scattered set X =
{x1, . . . ,xn} ⊂ Ω of pairwise distinct points, are given. Scattered data approximation
requires the construction of a suitable function s : R

d → R, which is close to f in a
sense to be described. Usually, the quality of the approximation s is, for a fixed normed
linear space V containing f and s, i.e., f, s ∈ V, measured by the approximation error

ηV(f, s) = ‖f − s‖V .

The construction of an approximation to f is usually accomplished by first speci-
fying a suitable finite-dimensional approximation space S ⊂ V, before a best approxi-
mation s∗ ∈ S to f is computed by minimizing the distance between f and S, so that
s∗ satisfies

min
s∈S

‖f − s‖V = ‖f − s∗‖V .

In the above mentioned approximation problem, the beforehand construction of
a linear approximation space S usually depends on X, and so the resulting approxi-
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mation scheme is linear. In such a setting, the sample points in X and the function
values f

∣

∣

X
are required to be given.

We remark that there are only a few powerful approximation methods available
for solving such linear scattered data approximation problems for multivariate data,
where radial basis function methods are among the most popular tools. For a compre-
hensive treatment of scattered data approximation and radial basis function methods,
we refer to the textbooks [1, 11, 31], where in particular relevant aspects concerning
numerical stability, approximation orders for suitable (native) functions spaces, V,
and the construction of best approximations are explained in large detail.

In this paper we wish to propose a nonlinear approximation scheme for statistical
data fitting, where the nonlinearity is due to the variation of the sample points in X.
The goal of our resulting computational method is to obtain a sufficiently accurate
approximation to f by using as few as possible sample points in X, i.e., n is required
to be very small. Moreover, we assume that the dimension of the input variables
is very large, i.e., d ≫ 1, and the input data are assumed to be uncertain. The
latter essentially requires suitable methods for statistical data fitting, i.e., statistical
approximation schemes which are relying on suitable statistical models.

To this end, we prefer to work with kriging, a well-established statistical method
first introduced by Krige in the 1950’s and then formalized as a fundamental geo-
statistical technique by Matheron [17] in 1963, and later utilized by Sacks, Welch,
Mitchell, and Wynn [25] in computer experiments. We remark that kriging is under
specific conditions equivalent to Bayesian methods (see [6] for details), and also to
radial basis function interpolation (as recently shown in [9, 32]).

By combining kriging with adaptive domain decomposition, the proposed method
of this paper results in a hierarchical nonlinear approximation scheme, where the non-
linearity is due to the adaptive selection of suitable sample points X at the algorithm’s
run time.

The motivation for this work is mainly given by specific applications from exper-
imental design and statistical data fitting in computer experiments. In the general
setting of this wide application field, many scientific phenomena are investigated by
using complex computer models or codes. In oil reservoir forecasting, for instance,
simulators are used to model the evolution of time-dependent physical quantities in
a hydrocarbon reservoir production scenario, where long time scales are common,
see [12].

The simulation codes are often computationally expensive to run, which requires
cheaper predictors, emulators, as surrogates for the too expensive simulators. The
construction of an emulator relies on a sequence of computer experiments, involving
a number of costly simulator runs with various different input configurations, where
the overall aim is to obtain a sufficiently accurate emulator at an as small as possible
number of simulator runs. This requires a careful selection of input configurations for
the simulator runs.

In such and similar application scenarios for computer experiments, the simulator
output is deterministic, i.e., rerunning the code with the same inputs gives identical
observations, but major computational difficulties are often due to high dimensional
and uncertain input data. This requires customized methods for the construction
of a sufficiently accurate emulator, in particular as experimenters are interested in
uncertainty evaluation of the simulation output, fine-tuning of the simulator by us-
ing external data from the physical system, such as in history matching, and the
optimization of adjustable input parameters.
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In the mathematical formulation of this problem, the simulator is viewed as a
multivariate target function f : R

d → R, the emulator is an approximation s : R
d → R

to f , and the selected input configurations, often referred to as design sites are the
sample points in X.

In general, the construction of an efficient emulator involves the following steps.

1. Experimental design, where the goal is to determine configurations of input
parameters for running the simulator to build a sufficiently accurate emulator
with an as small as possible number of simulator runs.

2. Screening, where the aim is to reduce the dimensionality of the problem under
investigation. This is usually done in a preprocessing step by performing a
sensitivity analysis with the available data, in order to discard irrelevant
parameters which were initially included in the model. Therefore, screening
can also be viewed as an a priori model selection problem, where the active
and inactive input parameters are determined.

3. Statistical data analysis, where model parameters are tuned for the selection
of an (optimal) emulator which is used to make accurate predictions on the
response at untried inputs. This is usually done by optimizing a functional
of the response. A common approach for analyzing statistical data is kriging,
as explained in Section 3.

The proposed hierarchical approximation scheme aims at the efficient construc-
tion of an accurate emulator. This is accomplished by an iterative refinement strategy
where the available data collected so far is used to apply at each iteration step an
adaptive two-stage process for the experimental design, followed by a statistical data
analysis to optimize the parameters of the emulator. Following standard concepts [19]
concerning screening, we refrained from including screening in this hierarchical refine-
ment process, although this may be an option in situations, where the dimension d of
the input data is extremely high, so that further eliminations of input variables are
inevitably needed to reduce the required computational costs. A formal description
of the proposed hierarchical approximation scheme is given by Algorithm 1.

Our nonlinear approximation scheme results in a multiresolution representation
of the emulator, from coarse to fine. That is, with increasing accuracy at each itera-
tion, to obtain a sufficiently accurate emulator at the finest level after merely a few
iterations. In this way, the utilized refinement strategy allows control of the gradually
increasing computational costs for building the hierarchical emulator sequence, and
their increasing accuracy.

We remark that the proposed approach in this paper uses ideas from previous
work [5, 6, 8, 14, 25, 27, 28, 30] concerning experimental (sequential) design, sensitivity
analysis and interpolation schemes in non-hierarchical methods.

Our approach aims at two important objectives in experimental design, that is
(1) reducing the uncertainty predicted by the model and (2) improving the model
reliability. The first objective is addressed by entropy minimization, in combination
with a customized adaptive gridding algorithm. The second objective is achieved by
adaptive cross validation, with acquiring further observations from input configura-
tions where the model prediction is bad (local optimal design). Although both kinds of
adaptivity look similar at first sight, these two approaches are fundamentally different
from a mathematical and conceptual point of view.

The outline of the paper is as follows. In Section 2, the basic ideas of the hier-
archical nonlinear approximation scheme are explained, before the kriging method is
discussed in Section 3. In Section 4, the construction of an initial design is explained
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and some selected aspects concerning screening are briefly addressed. Sections 5 and 6
are devoted to details concerning adaptivity in experimental design, which works with
a two-stage process. In Section 5, we explain the global approach of adaptive gridding,
before turning to local optimal design in Section 6. A schematic description of the final
algorithm is given in Section 7. Finally, Section 8 presents numerical results obtained
by applying our method to a given function, being regarded as a simulator, and to two
different reservoir forecasting problems. It is shown that our hierarchical scheme is
for the analyzed reservoir models more efficient than existing methodologies. Indeed,
our approximation method is, at comparable computational costs, up to ten times
more accurate than the quadratic method in reservoir uncertainty analysis software,
such as COUGAR [4], which relies on the response surface methodology (RSM).

2. Hierarchical Nonlinear Approximation. The proposed hierarchical ap-
proximation scheme constructs a sequence s1, s2, . . . , sL of approximations to an
unknown function f : R

d → R from samples of f taken at scattered locations
X = {x1, . . . , xm}. The construction of the approximation relies on a data hierarchy

X1 ⊂ X2 ⊂ · · · ⊂ XL ⊂ X(2.1)

of nested subsets of X, where L denotes the number of levels. Then, the functions sℓ

approximate f at the subsets Xℓ of the level ℓ, 1 ≤ ℓ ≤ L, according to some specific
approximation scheme. Examples for recent approximation schemes are discussed
in [11]. Note that the sequence s1, s2, . . . , sL of approximations to f is from coarse
to fine. Indeed, the coarsest approximation s1 is computed on the basis of the initial
design X1, which includes only very few data. In contrast, the approximations sℓ at
finer levels ℓ contain gradually more information from their corresponding designs Xℓ.

The approach taken in this paper is adaptive, that is the construction of the data
hierarchy in (2.1) is done at run time in the approximation process, rather than in a
preprocessing step. This adaptive approach, dating back to [13], allows control of both
the cumulative computational cost and the accuracy of the current approximation sℓ

at any level ℓ.
Recall that in the setting and language of this paper, the sets Xℓ in (2.1) are con-

structed, one after the other, by an adaptive experimental design strategy. Moreover,
any approximation sℓ is viewed as an emulator of the simulator f . Each emulator is
computed by statistical data fitting at level ℓ, 1 ≤ ℓ ≤ L.

The following algorithm schema outlines our hierarchical approximation method,
described in detail in Sections 3-6.

Algorithm 1. (Hierarchical Nonlinear Approximation)

INPUT: Simulator f : R
d → R.

(1) Construct the sites X1 by initial design and run the simulator f at X1 to
obtain the initial data {f(x) :x ∈ X1}.

(2) Determine the active and inactive input parameters by a screening preprocess.
Discard the inactive input parameters.

(3) Build the initial emulator s1 by using kriging.
(4) FOR ℓ = 2, 3, . . . DO

(4a) Construct the sites Xℓ in (2.1) by a two-stage experimental design: apply
global adaptive gridding, followed by local optimal design.

(4b) Run the simulator f at the new design sites Xℓ \ Xℓ−1 to obtain new
responses {f(x) :x ∈ Xℓ \ Xℓ−1}.
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(4c) Perform a statistical analysis of the available data {f(x) :x ∈ Xℓ} by
using kriging, and so compute the next emulator sℓ of level ℓ.

OUTPUT: Sequence s1, s2, . . . , sL of emulators with increasing accuracy.

Note that the iterative approximation scheme performs a sequential refinement of
the (emulator) model. In the following sections, we explain steps (1)-(3), (4a) and
(4c) of Algorithm 1 in detail. The construction of the initial design X1 in step (1)
is done by using Latin hypercube design (LHC), as discussed in Section 4, where also
screening, as required in step (2), is briefly addressed. The two-stage experimental
design of step (4a) is explained in Sections 5 and 6. The construction of the emulators
sℓ in steps (3) and (4c) relies on kriging, a standard statistical approach, which is
for the reader’s convenience reviewed in the following section.

3. Kriging. The approximation process at each level of Algorithm 1 can be
divided into two main steps: In the first step, a statistical model S(x) for the given
data (obtained from the simulator) is derived. In the second step, a deterministic
predictor for the statistical model – the emulator – is computed. Therefore, the
emulator can be viewed as a statistical approximation, and so the proposed method,
Algorithm 1, provides a suitable tool for statistical data fitting.

The construction of the individual emulators sℓ, ℓ = 1, . . . , L, in Algorithm 1
uses kriging. Kriging, due to Matheron [17], is a statistical method for scattered data
interpolation which can be used for prediction in computer experiments [25, 30]. To
explain kriging, denote, at any fixed level 1 ≤ ℓ ≤ L, the emulator by s ≡ sℓ and let
X ≡ Xℓ be the corresponding design at level ℓ.

In the underlying statistical model of kriging, the deterministic response, say
f(x) : R

d → R, is considered as a realization of a random function. Therefore, the
simulator f is treated as a realization of a stochastic process, whose form is assumed
as

S(x) =

k
∑

j=1

βjhj(x) + Z(x).(3.1)

The regression part in this stochastic model (3.1) is a linear combination of pre-
selected real-valued functions h1, . . . , hk, with coefficients β = (β1, . . . , βk)T ∈ R

k,
where h1 is a constant. Moreover, Z in (3.1) is assumed to be a Gaussian random
process with mean zero and covariance

cov[x,y] = E[Z(x)Z(y)] = σ2R(x,y)(3.2)

between Z(x) and Z(y), where σ2 denotes the process variance, R(x,y) is a specific
correlation function, and the symbol E denotes the usual statistical expectation. The
choice of σ and R is discussed later in this section.

In a Bayesian approach, the random process S(x) is regarded as a prior model and
the response values {f(x) :x ∈ X} are viewed as observations. It remains to determine
a suitable posterior predictor – the emulator – from the given set of observations.

In kriging, for given design X = {x1, . . . ,xm} ⊂ R
d and for given responses

fX = (f(x1), . . . , f(xm))T ∈ R
m, a linear predictor

Ŝ(x) = aT (x)fX

of f(x) ∈ R at an untried x ∈ R
d is assumed (being the required statistical model

for the emulator s(x) ≡ Ŝ(x)), where the entries in the coefficient vector a(x) =
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(a1(x), . . . , am(x))T ∈ R
d are unknown. The best linear unbiased predictor for the

deterministic response f(x) is then obtained by minimizing the mean square error

MSE[Ŝ(x)] = E[aT (x)fX − S(x)]2(3.3)

under variation of a(x) and subject to the unbiasedness constraint

E[aT (x)fX ] = E[S(x)].(3.4)

Recall that fX is regarded as a realization of S(x). Thus, using (3.4), the mean
square error in (3.3) can be rewritten as

σ2
[

aT (x)Ra(x) − 2a(x)T r(x) + 1
]

,

and the linear constraints in (3.4) can be rewritten as

HT a(x) = h(x),

where

h(x) = (h1, h2(x), . . . , hk(x))T ∈ R
k,

H = (hj(xk))1≤k≤m;1≤j≤k ∈ R
m×k,

R = (R(xi,xj))1≤i,j≤m ∈ R
m×m,

r(x) = (R(x1,x), . . . , R(xm,x))T ∈ R
m.

Here, H is the design matrix, R is the correlation matrix between the values of Z at
the design sites X, and r(x) is the correlation vector between Z at the sites X and
an untried input x.

Therefore, minimizing (3.3) subject to (3.4) amounts to solving the linear system

[

R H

HT 0

][

a(x)

b(x)

]

=

[

r(x)

h(x)

]

,(3.5)

where b(x) = (b1(x), . . . , bk(x))T ∈ R
k are the Lagrange multipliers for the linear

constraints of the quadratic optimization problem.
By solving the linear system (3.5), the best linear unbiased prediction Ŝ(x) can

be written as

Ŝ(x) = hT (x)β̂ + rT (x)R−1(fX − Hβ̂),

where

β̂ = (HT R−1H)−1HT R−1fX(3.6)

is the usual generalized least squares estimate of coefficients β ∈ R
k in (3.1).

Note that the kriging method does not only give an estimate of the posterior
mean Ŝ(x) of the stochastic process S(x), but it also provides by

MSE[S(x)] = σ2



1 − [rT (x),hT (x)]

[

R H

HT 0

]−1 [

r(x)

h(x)

]
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an estimate of the posterior variance of the random process [25]. For further details,
see Matheron [17], or the more recent papers [25, 32]. A different formulation based
on a maximum probability interpolant can be found in [9].

Now let us finally turn to the model selection problem, where we need to deter-
mine the unknown functions and parameters in (3.1). The selection of the functions
h2, . . . , hk of the regression part in the stochastic model (3.1) relies on prior knowledge
concerning the model response. For instance, linear or quadratic terms are preferred
in situations where there is strong evidence to suggest weakly nonlinear trends in the
response, or whenever the number of affordable simulations is particularly small.

When using kriging, in combination with hierarchical adaptive design, it is often
sufficient to merely include the constant term h1 in the polynomial regression (3.1) in
order to obtain emulators sℓ, each of whose performance (in terms of their prediction
quality) is at least as good or even superior to that of comparable one-level emulators.
This is supported by our numerical results in Section 8.

As regards the selection of the correlation function, R, this also requires prior
knowledge concerning the stochastic process. To this end, we follow the common
approach in [5, 6, 14, 25, 30], where it is suggested to use a correlation function of the
form

R(x,y) = r(x − y) = exp



−
d

∑

j=1

θj |xj − yj |
p



(3.7)

with θj > 0, 1 ≤ j ≤ d, and 0 < p ≤ 2.
Moreover, by following the recommendations in [30], the unknown coefficients

θ = (θ1, . . . , θd) ∈ R
d and p in (3.7) are determined by maximum likelihood estimation

(MLE). Likewise, the parameter σ for the process variance in (3.2) and β ∈ R
k

are determined by MLE, see [30] for details. In this case, the log-likelihood for the
Gaussian process S(x) is given by

ℓ(β, σ, θ, p) ∼ −1/2
(

m lnσ2 + ln det(R) + (fX − Hβ)T R−1(fX − Hβ)/σ2
)

.(3.8)

In order to reduce the required computational complexity, it is reasonable to
work with the following simplification. Note that with assuming the parameters θj ,
1 ≤ j ≤ d, and p as fixed, the MLE for β ∈ R

k is given by the generalized least squares
estimate β̂ ∈ R

k in (3.6). Moreover, the MLE estimate for the process variance σ2 in
(3.2) is given by

σ̂2 =
1

m
(fX − Hβ̂)T R−1(fX − Hβ̂).

Using these estimates β̂ and σ̂2 in the log-likelihood (3.8), the coefficients θj , 1 ≤ j ≤
d, and p are then determined by maximizing the simpler expression

ℓ(θ, p) ∼ −1/2
(

m lnσ2 + ln det(R)
)

.(3.9)

Maximizing the expression (3.9) requires global optimization, which can be com-
putationally too expensive. However, as pointed out in [26], maximum likelihood
estimation is in practice regarded as sufficiently reliable. But in situations where
several regression terms h1, . . . , hn are included in the model (3.1), a restricted max-
imum likelihood estimation (REML) is recommended [26]. In this case, parameter



8 D. BUSBY, C. L. FARMER AND A. ISKE

estimation by REML is accomplished by maximizing the likelihood for transformed
data

W = CfX ∼ N[CHβ = 0, σ2CR(θ)CT ],

with a transformation matrix C ∈ R
(m−k)×m satisfying CH = 0, and where N(µ, σ2R)

denotes the usual statistical normal distribution with mean µ and covariance σ2R.
Further details on MLE and REML are immaterial for the purposes of this paper, and
so we prefer to refer the interested reader to the textbook [26]. We finally remark that
within our hierarchical approximation, Algorithm 1, the computational costs required
for the performance of MLE and REML are negligible.

4. Initial Design and Screening. This section first explains in Subsection 4.1
the construction of the utilized initial design, before some relevant aspects concerning
screening are briefly addressed in Subsection 4.2.

4.1. Initial Design. To determine the initial design X1 in Algorithm 1, we
prefer to work with Latin hypercube designs (LHC) [18]. This standard technique is
easy to use and has mainly two advantages. Firstly, with using LHC most regions of
the input domain are well-covered by a well-balanced distribution of the design sites.
Secondly, if some of the input variables are found inactive, then the initial design
can uniquely be projected onto the restricted space of the remaining active variables.
Commonly used alternative designs, such as fractional factorial designs (FFD) [8],
as they are used in response surface methodology (RSM) [8, 19], usually lack these
two important properties, even though they are usually better suited for sensitivity
analysis.

LHC designs were first introduced by McKay, Beckman, and Conover [18] in
computer experiments. Later on, their utility in numerical integration of real-valued
functions of many variables has been discussed in several papers by Owen [20]. As
shown in [20], LHC is closely related to quasi-Monte Carlo methods [3].

For the numerical experiments of Section 8, a simplified version of LHC is utilized.
To explain this simplified LHC, assume that the range of any input variable is the
interval I = [−1, 1]. On a preselected number m of input configurations, each of the
m input sites in the initial design X1 = {x1, . . . ,xm} is assumed to have coordinates
from

Im = {−1 + 2i/(m − 1) : 0 ≤ i ≤ m − 1},

where for every input parameter xi, 1 ≤ i ≤ d, the m corresponding components

x
(i)
1 , . . . ,x

(i)
m of the sites in X1 are required to be pairwise distinct. To this end,

according to the construction of LHC, the m components x
(i)
1 , . . . ,x

(i)
m are chosen

from Im in random order, i.e., for each 1 ≤ i ≤ d, the components x
(i)
1 , . . . ,x

(i)
m are a

permutation of the m numbers in Im.
Note that in our formulation of LHD the input coordinates are randomly selected

from a discrete set, Im, rather than from a continuous parameter interval. The reason
for doing so is mainly for the sake of stability. To be more precise, we are aiming at
the construction of well-separated design sites. This serves to stabilize the required
maximization of matrix determinants by MLE in the subsequent local optimal design.
Details on this are explained in Section 6.

Moreover, note that our construction guarantees that the data points in the design
X1 are uniquely projectable to low dimensional point sets, see the second remark at the
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outset of this section. This is particularly useful for dimension reduction, especially in
situations where we expect only a small set of active variables from the tried responses.
In this case, we want to discard the remaining inactive variables. Using LHC, this
can, unlike in FFD, be done unambiguously and without any modelling conflicts by
just removing the components of the inactive variables from the design X1.

As suggested in [30], LHC does also support efficient estimation of the correlation
lengths λj = 1/θj > 0 in (3.7). This will be very important in the subsequent steps of
our method. As further explained in [30], the correlation lengths λj should be used
in the screening process. In fact, a very large correlation length λj indicates that
the response output is not very sensitive to the variation of the input parameter xj ,
1 ≤ j ≤ d.

4.2. Screening. Screening usually works with a linear polynomial model, where
a specific statistical test, called the Student test, is applied. The Student test relies
on least squares estimates for the coefficients in the linear model, in order to evaluate
their contribution to the response variability. These estimates are used in order to
recursively eliminate inactive terms from the model. More details on this standard
statistical technique can be found in [19] or in the COUGAR [4] user manual.

As supported by our numerical experiments, a strict screening criterion should
be preferred to avoid premature discarding of input variables, as they may become
significant at a later stage of the hierarchical approximation algorithm. In our imple-
mentation, this is accomplished by combining several independent screening criteria,
in which case an input variable will only be discarded if it satisfies all screening cri-
teria involved, rather than just one. For a more detailed discussion on the related
sensitivity analysis from a Bayesian perspective, we refer to the recent work of Oakley
and O’Hagan [15].

5. Adaptive Gridding. In comparison to the rather easy task of initial design,
as described in Subsection 4.1, optimal design is a much more challenging task, requir-
ing rather sophisticated optimization techniques. Global sequential optimal designs,
as suggested in previous papers [5, 6, 25], are commonly used iterative methods for
optimal design in computer experiments. In these methods, a sequence of design sites
is constructed for the computational domain Ω, which usually involves very expen-
sive computations to determine an optimal design point in each step of the iteration.
Due to their large computational costs, the applicability of such methods is rather
limited. Moreover, in these global strategies for optimal design, design points often
cluster in some region of Ω, whereas they are sparse in other regions of Ω [25]. In
fact, sequential optimal designs are often not too efficient, due to a too heterogeneous
distribution of the design sites. This section proposes a more efficient approach for hi-
erarchical optimal design, called adaptive gridding, as utilized in the design step (4a)
of Algorithm 1.

Adaptive gridding is a domain decomposition strategy which splits the compu-
tational domain Ω into smaller subdomains, cells, according to a suitable splitting
criterion [13]. In our method, Ω is adaptively partitioned into anisotropic cells of
equal size, where the splitting criterion is according to the correlation of the response
f(x). By using (3.7), this correlation is chosen as a function R(x,y) which is rapidly
decaying at growing distance between the points x and y.

Our approach combines global adaptive gridding with local optimal design. To
this end, the construction of the design sites is done locally, by applying a local
sequential optimal design to the (highly correlated) cells which are output by global
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adaptive gridding. The correlation is measured by the correlation lengths λi = 1/θi

of the corresponding input parameters xi, 1 ≤ i ≤ d.
We shall be more precise on this two-stage procedure in this and in the following

section. But let us first make a few more general remarks concerning computational
aspects. Note that adaptive gridding, in combination with local optimal design, allows
us to distribute the required computations to different processors. Therefore, at any
design level ℓ, several computations for new design sites and corresponding simulations
may be run, one for each cell, at the same time. In relevant applications, such as in oil
reservoir forecasting or climate modelling, where each simulation run may take several
hours or even several days, parallelization is in fact essential in order to reduce the
required computational time.

Now the basic idea of adaptive gridding is to construct a partitioning of Ω into
cells of equal size, where the cell edges have different lengths depending on their
spatial direction. Moreover, each cell edge is aligned with one coordinate axis xi,
corresponding to one specific input parameter. The aim of adaptive gridding is to
perform the splitting, such that the edge lengths are proportional to the correlation
length λi of the corresponding input parameter xi, 1 ≤ i ≤ d.

We further explain adaptive gridding in the following Subsection 5.1, before we
turn to the construction of a customized error indicator in Subsection 5.2, which
allows us to evaluate the prediction quality at each of the individual cells. The latter
will establish an important link between global adaptive gridding and local optimal
design.

5.1. Adaptive Gridding Algorithm. To define adaptive gridding, suppose
that the domain Ω is a hypercuboid in R

d,

Ω = [x
(1)
ℓ , x(1)

r ] × · · · × [x
(d)
ℓ , x(d)

r ] ⊂ R
d,

and so Ω is defined by its lower left corner point xℓ = (x
(1)
ℓ , . . . , x

(d)
ℓ ) ∈ R

d and its

upper right corner point xr = (x
(1)
r , . . . , x

(d)
r ) ∈ R

d.
We intend to decompose Ω into a collection L = {ω}ω∈L of smaller hypercuboidal

subdomains, cells, of equal sizes and with pairwise disjoint interior, so that

Ω =
⋃

ω∈L

ω

yields a partitioning of Ω.
The decomposition of Ω is computed by splitting the d × 2d−1 edges of Ω. Note

that each edge e is aligned with one coordinate axis xi, 1 ≤ i ≤ d. That is, any edge e
in Ω, corresponds to one variable xi, 1 ≤ i ≤ d, and therefore e may be viewed as an
interval Ii on coordinate axis xi. In adaptive gridding, each interval Ii, corresponding
to one edge e (and thus to one variable xi) is uniformly split into ni pairwise disjoint

intervals I
(1)
i , . . . , I

(ni)
i , 1 ≤ i ≤ d, of equal length, so that

Ii =

ni
⋃

j=1

I
(j)
i , with |I

(j)
i | ≡ |Ii|/ni for 1 ≤ j ≤ ni, 1 ≤ i ≤ d.

Now the basic idea of adaptive gridding is to perform the splitting of each interval

Ii, such that the resulting constant length of the ni subintervals |I
(j)
i | ≡ |Ii|/ni,

1 ≤ j ≤ ni, is of the order of the correlation length λi of variable xi, i.e., λi ∼ |Ii|/ni,

or ni ∼ |Ii|/λi for 1 ≤ i ≤ d, so that
∏d

i=1 ni ∼
∏d

i=1 |Ii|/λi is the number of cells.
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In this way, each of the resulting cells ω ∈ L has long edges along coordinate
directions where the variation of the response f is small, whereas short edges of ω
correspond to variables with stronger fluctuation of the response. Therefore, adaptive
gridding captures preferred directions of the response f quite effectively. This in
turn leads to an adaptive distribution of the design points, according to the global
behaviour of f .

The adaptive gridding algorithm outputs a uniform partitioning L = {ω}ω∈L of

Ω into
∏d

i=1 ni smaller cells of equal size, where each cell ω ∈ Ω is a hypercuboid in
R

d. For the illustration, we refer to Figure 8.2 of Subsection 8.1, where examples for
partitionings of a planar domain Ω ⊂ R

2 are shown.
Recall that the adaptive gridding algorithm is performed at each level ℓ ≥ 2

in step (4a) of Algorithm 1. In particular, the correlation lengths λi ≡ λ
(ℓ)
i are

reevaluated at each level ℓ ≥ 2, and so the partitioning L = {ω}ω∈L is updated
accordingly.

5.2. Cell Prediction Errors. Having applied adaptive gridding to obtain a
partitioning L = {ω}ω∈L of the domain Ω into smaller cells ω, further design points
are to be added to the cells ω ∈ L. This is done by following ideas from our previous
work [10], where again adaptivity plays an important role.

To this end, we first assign for the current design Xℓ a prediction error ηω to each
cell ω, by cross validation. More precisely, let Xω = Xℓ ∩ ω denote the set of current
design sites lying in cell ω, so that by

Xℓ =
⋃

ω∈L

Xω

this yields a partitioning of Xℓ.
Note that the set Xω of design sites contained in a cell ω may be empty, in which

case we let ηω = ηmax for the prediction error of cell ω, where ηmax is a (very high)
preselected value. Otherwise, if ω is not empty, we work with a cell prediction error
of the form

ηω = max
xω∈Xω

|f(xω) − sXℓ\xω
(xω)|,(5.1)

where sXℓ\xω
is the kriging emulator (see Section 3), whose construction uses all

design sites from Xℓ except xω. This way, the cell prediction error (5.1) reflects the
local approximation behaviour, i.e., the quality of the emulator’s local prediction at
the cell ω.

Indeed, if ηω is small, then the response f is usually smooth on ω and the emulator
makes good predictions, whereas for large ηω the response is usually subject to strong
variation in ω (e.g. for nonlinear behaviour of f), in which case further design points
should be added to ω in order to improve the prediction of the emulator.

The cell prediction error is used in combination with a preselected target accuracy,
η∗ ≤ ηmax, where further points are to be added to every cell ω satisfying ηω ≥ η∗.
We call any cell ω, where (by ηω ≥ η∗) the emulator’s prediction is rather poor, a bad
cell, otherwise (if ηω < η∗) the cell ω is called a good cell. Moreover, an empty cell
is said to be a bad cell, unless the prediction error ηω of every non-empty cell ω lies
below the global threshold η∗. In this case, there are no bad cells in the partitioning
L = {ω}ω∈L.

Now the insertion of new design points is done by applying a local optimal design
(as explained in Section 6) to each bad cell ω, where we add – primarily for the sake
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of computational efficiency – only one point per (bad) cell ω. Note that the chosen
refinement strategy allows one to combine the construction of new design sites with
parallel computing, and so to further reduce the computational time required for the
experimental design.

The utilized refinement strategy makes up an important link between global adap-
tive splitting and local optimal design through this two-stage construction of new
design sites. Indeed, our construction reduces the likelihood that some unexplored
areas of the computational domain Ω are classified as good at a too early refinement
level by a too optimistic prediction indicator.

Finally let us remark that the target η∗ should ideally reflect the desired accuracy
threshold of the computer experiment. However, one should note that η∗ can only be
a rough estimate of the emulator’s global prediction error. Nevertheless, as supported
by our numerical experiments, the accuracy η∗ can in fact be regarded as a suitable
estimate for the emulator accuracy. Moreover, the estimate turns out to be useful for
subsequent optimization and postprocessing calibration.

In practice, however, the stopping criterion is usually dominated by the maxi-
mum number of affordable simulations rather than by the desired problem accuracy.
Therefore, any beforehand selection of the target accuracy η∗ should not only depend
on the required problem accuracy, but also on the available computational power and
hardware capacity. Note that by the iterative construction in our hierarchical approx-
imation scheme, the pay-off in terms of number of simulations versus accuracy can be
monitored quite effectively during the performance of Algorithm 1.

6. Local Optimal Design. This section explains how the local optimal design
is performed. Recall that this step concerns construction of new design sites, to be
added to the current set X ≡ Xℓ in step (4a) of Algorithm 1.

The local design is performed on a cell ω, which is constructed by adaptive grid-
ding, as explained in the previous Section 5. The local optimal design is, for any
cell ω, done by using an entropy minimization principle. In this approach, dating
back to Lindley [16], a design is determined by minimizing the posterior Shannon’s
entropy [23].

As later shown by Shewry and Wynn [24], this approach is equivalent to max-
imizing the prior entropy. For the special case of a Gaussian prior, this in turn is
equivalent to maximizing the determinant of the covariance matrix σ2R. For a more
detailed discussion on this, we refer to [6, 24]. As a result, regarding β as fixed and
considering the variance σ2 as stationary, this amounts to maximizing the determinant
det(RX) of the correlation matrix

RX = (R(xi,xj))1≤i,j≤m ∈ R
m×m

under variation of design sites X = {x1, . . . ,xm}, see [6].

Therefore, we wish to insert one point x = x∗ into ω, which maximizes the
determinant det(RX∪x) of the resulting correlation matrix RX∪x among all points in
ω. To determine x∗ ∈ ω, the search for a maximum of det(RX∪x) on ω is done by
varying the position of the point x = xω in the cell ω, while keeping the design sites
in X fixed. The required numerical optimization relies on the algorithm L-BFGS-B, a
constrained version of the quasi-Newton method, due to Byrd, Lu, Nocedal & Zhu [2].
In this local optimization algorithm, we apply the L-BFGS-B algorithm with different
choices for the initial point x0 ∈ ω, namely with the centre of ω and with a small
number n ≪ 2d of randomly chosen points from the 2d corners of ω. We then take a
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point x∗ ∈ ω, where the maximum of the determinant det(RX∪x) among these n + 1
points is attained.

In our local optimal design, the points in X are, for each cell ω ∈ L, given by
the union of the points in Xω and a small set of neighbours around ω. Therefore, the
size of the matrix RX is small. In our numerical experiments, we considered using a
number of nω nearest neighbours of the centre cω, where nω is between 15 and 20. In
order to determine these nearest neighbours for cω ∈ ω, we considered working with
the Mahalanobis distance

d(x,y) =

√

√

√

√

n
∑

j=1

(

xj − yj

λj

)2

, for x = (x1, . . . , xd), y = (y1, . . . , yd),

for measuring the distance between two points. This is in order to take different
statistical variations for the different input parameters better into account.

Note that this procedure can recursively be applied to any cell ω, just in case one
wants to add more than one new design point into ω. This then complies with the
ideas of (local) sequential optimal design.

7. Formulation of the Hierarchical Approximation Algorithm. Now that
each step of Algorithm 1 has been explained in detail we provide a more precise
schematic description in the following algorithm.

Algorithm 2. (Hierarchical Nonlinear Approximation)

INPUT: Simulator f : R
d → R.

(1) Perform initial Latin hypercube design (LHC) to obtain X1.
(2) Determine coefficients θj , p in (3.7) by maximum likelihood estimation.
(3) Run the simulator f at the initial design X1, and so obtain the initial data

fX1
= {f(x) :x ∈ X1}.

(4) Apply screening by using our criterion θj ∼ 0, for all 1 ≤ j ≤ d. Deter-
mine the inactive input variables and reduce the input space by removing the
inactive variables.

(5) Compute the initial emulator s1 from X1 and fX1
by using kriging.

(6) FOR ℓ = 2, 3, . . . DO
(6a) Recalculate the coefficients θj , p in (3.7) by MLE.
(6b) Refine the current cells ω by using global adaptive gridding.
(6c) Compute the cell prediction error ηω for each current cell ω, and then

determine all bad cells satisfying ηω ≥ η∗.
(6d) For each bad cell ω, add one point to ω by applying local optimal design

to ω, and so obtain new design sites Dℓ = Xℓ \ Xℓ−1.
(6e) Run the simulator f at the new sites Dℓ, and so obtain the new responses

fDℓ
= {f(x) :x ∈ Dℓ}.

(6f) Compute the next emulator sℓ from Xℓ and fXℓ
by using kriging.

OUTPUT: Sequence s1, s2, . . . , sL of emulators with increasing accuracy.

8. Numerical Results. We have implemented the proposed hierarchical ap-
proximation scheme, Algorithm 2, for arbitrary space dimension d by using the pro-
gramming language R [21]. This section investigates the performance of our algorithm.
To this end, we work with three different model problems, one involving an analytical
function (Subsection 8.1), and two model problems from reservoir forecasting (Sub-
section 8.2), called PUNQS and the IC Fault model. In the two examples concerning
reservoir forecasting, the method is compared with the standard response surface
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methodology (RSM), see [8, 19], which is utilized in reservoir uncertainty analysis
software, such as COUGAR [4].

In each numerical comparison, the required number of simulations is fixed, and
the quality of the resulting emulators is compared by their prediction accuracy. Note
that the required number of simulations reflects the required computational costs,
since each simulator run takes much more time than the computational time required
for building the emulator, no matter which method is employed.

8.1. Analytical Test Example. In this first test case, consider the trivariate
function

f(x, y, z) = 7
sin(

√

x2 + y2) + ǫ
√

x2 + y2
+ 3|x − y|1/2 + 0.01z,

where ǫ = 10−7, which is regarded as the “simulator”. Note that f is linear in
variable z, but nonlinear in x and y. In fact, the two variables x and y are identified
as active variables, whereas z is classified as inactive. This conclusion was reached in
the preprocessing screening, where it was found that λ3 ≫ max(λ1, λ2). This allows
us to view f ≡ fz(x, y), for fixed z, as a bivariate surface, where z ≡ 0 after screening.
The graph of the “true response surface” f is shown in Figure 8.1 (top left).
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Fig. 8.1. Hierarchical approximation. Graphs of the simulator f and emulators s1, s2, s3.

The correlation lengths λ1 and λ2 belonging to the remaining two active variables,
x and y, are shown, along with the parameter p in (3.7), in Table 8.1 for three levels
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ℓ = 1, 2, 3. For the construction of the initial design X1, we apply a Latin hypercube
design (LHC) to generate 18 points, and so the size of the initial point set X1 is
|X1| = 18.

Table 8.1

Analytic test example. Correlation parameters at three levels, ℓ = 1, 2, 3, and prediction ac-
curacy of emulator sequence s1, s2, s3. Note the definitions of η1, η2, and η∞ in equations (8.1),
(8.2), and (8.3); n1 and n2 are the grid dimensions.

ℓ |Xℓ| λ1 λ2 p n1 n2 η1 η2 η∞

1 18 13.5 4.9 1.4 2 4 1.3 1.8 7.6
2 25 11.4 10.3 2.0 4 4 0.8 1.1 5.0
3 33 14.4 11.0 2.0 4 5 0.5 1.1 4.8

Then, the surface f : Ω → R is approximated on the computational domain
Ω = [−8, 8]× [−8, 8] by an emulator, whose construction is done by using our hierar-
chical approximation scheme. In this method, we apply kriging without including a
regression part in the stochastic model (3.1).

Figure 8.1 shows the graphs of the three resulting emulators, s1, s2, s3, from coarse
to fine, and Figure 8.2 shows the corresponding sequence X1,X2,X3 of three design
sets.
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Fig. 8.2. Hierarchical approximation. Adaptive grids and designs X1, X2, X3.

Note from the visual appearance of the surface graphs in Figure 8.1 that the
prediction quality of emulators s1, s2, s3 is gradually improved. This is confirmed by
our numerical results, which are shown in Table 8.1. Table 8.1 displays for each level
ℓ = 1, 2, 3 the number of points |Xℓ| in the design set Xℓ, the resulting mean absolute
error

η1 = ‖f − sℓ‖1/|G| =
1

|G|

∑

x∈G

|f(x) − sℓ(x)|,(8.1)

mean square error,

η2 =
(

‖f − sℓ‖
2
2/|G|

)1/2
=

√

1

|G|

∑

x∈G

|f(x) − sℓ(x)|2,(8.2)

and maximum error,

η∞ = ‖f − sℓ‖∞ = max
x∈G

|f(x) − sℓ(x)|,(8.3)



16 D. BUSBY, C. L. FARMER AND A. ISKE

where G denotes a fine uniform grid contained in Ω.

Note that by our adaptive design, that is by the efficient distribution of the sites
in X1,X2,X3, the features of f are captured remarkably well, especially in regions
where f has large derivatives.

8.2. Test Cases from Reservoir Forecasting.

8.2.1. The PUNQS Reservoir Test Case. In this second example, we ana-
lyze the case of a reservoir simulator containing seven uncertain scalar input variables
and one scalar output. The example is generated by using the PUNQS [8] reservoir
model in combination with Schlumberger’s multi-phase flow simulator ECLIPSE [22].
The input variables and their range of variation were suggested by reservoir engineers.
In this model problem, the utilized input variables are corresponding to the aquifer
strength, the residual gas oil saturation, the residual water oil saturation, the vertical
and the horizontal permeability multipliers of the low and of the high quality sands.
We have analyzed several outputs of the ECLIPSE simulator. The numerical results,
presented in this subsection, were obtained by regarding the seven input variables, and
the output oil production rate at 13 years of a given production well (called PRO-15
in the model [8]).

A Latin hypercube design (LHC) is used to generate the initial design X1 compris-
ing 50 different configurations, i.e., |X1| = 50. In the screening preprocess, the input
parameter x4 is classified as inactive. In fact, the corresponding correlation length
λ4 ≫ 1000, as predicted by maximum likelihood estimation, is much larger than the
initial correlation lengths of the other six input variables. Therefore, x4 is discarded,
the correlation lengths of the other six variables are for each level ℓ = 1, . . . , 5 shown
in Table 8.2.

Table 8.2

PUNQS Model. Correlation parameters at different levels.

ℓ |Xℓ| λ1 λ2 λ3 λ4 λ5 λ6 λ7 p

1 50 3.6 5.2 3.5 - 2.0 7.3 3.9 1.6
2 93 4.8 3.2 0.3 - 2.0 7.3 3.9 1.6
3 134 182 0.7 1.3 - 1000 2.3 0.2 1.3
4 200 147 0.8 1.0 - 1000 2.0 0.5 1.3
5 258 141 0.8 0.8 - 1000 2.1 0.4 1.2

Recall that by the Latin hypercube design (LHC), the projection of the initial
7-dimensional design to the active 6-dimensional design is injective, and so it does not
produce coincident data points.

The construction of the emulators sℓ is done by using our hierarchical approxi-
mation scheme, Algorithm 2. In this method, we apply kriging with using a quadratic
regression part in the stochastic model (3.1) at each level ℓ, where the regression terms
x1, x2, x3, x5, x6, x1x5, x

2
1 were found to be dominant by the utilized statistical data

analysis.

In order to analyze the accuracy of the emulators sℓ, we compare the emulators’
function values sℓ(x) with the response output f(x) of the simulator at 200 randomly
selected configurations of input parameters x, which are not contained in the design
sites Xℓ. We let η∗ = 3 for the target accuracy. Our numerical results are shown in
Table 8.3.
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Table 8.3

PUNQS Model. Results obtained from our hierarchical approximation and comparison with
kriging using LHC (LHC) and with RSM (RSM). Note the definitions of η1, η2, and η∞ in
equations (8.1), (8.2), and (8.3).

ℓ |Xℓ| η1 η2 η∞

1 50 4.62 5.60 14.80
2 93 3.86 4.90 15.70
3 134 3.58 4.70 15.10
4 200 3.18 4.30 13.30
5 258 2.88 4.20 13.80

LHC 258 2.90 4.70 16.30
RSM 79 3.93 4.84 13.10
RSM 258 3.93 4.80 12.90

The numerical results in Table 8.3 document significant gain in performance be-
tween consecutive levels, in terms of the emulators’ accuracy, see the different errors
in Table 8.3. At final level ℓ = 5, the target accuracy, η∗ = 3, is approximated suffi-
ciently well, as the mean absolute error drops from η1 = 4.62 (at initial level ℓ = 1)
to η1 = 2.88 (at ℓ = 5), and so we obtain η1 ≤ η∗ at final level ℓ = 5.

In order to further evaluate the performance of our hierarchical design, we have
performed another test run based on a one-level Latin hypercube design with 258
points, matching the number of points |X5| = 258 in the hierarchical design at the
final level ℓ = 5. The numerical results are shown in the sixth row (LHC) of Table 8.3.
Note that our hierarchical approximation method is superior to this plain LHC in
terms of the emulator accuracy. Indeed, while the mean absolute error η1 of the
emulator s5 and that of the one-level LHC emulator, say sLHC, are about equal, the
emulator s5 reduces the root mean square error η2 of sLHC by about 10 %, and the
maximum error η∞ of sLHC is reduced by even about 20 %.

We can explain the significant gain concerning the reduction of the maximum
error η∞ as follows. Due to the hierarchical design, the design sites are adaptively
inserted, such that at each refinement step new points are inserted in regions (by
local optimal design) where the current maximum error is likely to be highest. This
interactive prediction cannot be achieved by a plain one-level LHC, where all design
sites are selected beforehand in a preprocessing step.

We have also compared our hierarchical approximation method with a polyno-
mial regression model, as usually used in the standard response surface methodology
(RSM) [8, 19]. Two experiments were made; the first uses 79 simulations selected from
a central composite face centered design, the second uses 258 design sites generated
from a one-level LHC.

In the first experiment the regression terms were selected by using the step by
step fit used in COUGAR [4] based on sensitivity analysis arguments similar to the
ones described in Section 4 for the screening process. The results, displayed in the
penultimate row of Table 8.3, are about comparable to the ones obtained by our
emulator s2, at a slightly smaller maximum error though. The difference in maximum
error is mainly due to small overshoots of the kriging emulator in local areas of the
domain, where the simulator f is subject to strong variation. The emulator sRSM

manages to somewhat reduce these undesired local overshoots.

However, in the second experiment, displayed in the last row (RSM) of Table 8.3,
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our emulator s5 is clearly superior to the comparable one-level method RSM. Indeed,
the emulator s5 of our hierarchical method reduces the mean absolute error η1 ob-
tained by RSM (i.e., by emulator sRSM), by more than 25 %, and the root mean
square error η2 of sRSM is reduced by about 15 %. The resulting maximum error η∞
of s5, however, is again slightly larger than that of the emulator sRSM.

Our numerical results also show that the emulator sRSM does not significantly
improve its accuracy at the insertion of more design points, see the last two rows
in Table 8.3. In contrast, our hierarchical emulator gradually reduces the prediction
errors η1 and η2 at increasing refinement level.

We finally remark that the variation of the response surface of the PUNQS model
is rather small. More complicated test case scenarios from relevant applications are
dealing with discontinuous response surfaces of strong variation. One example is the
challenging IC Fault model treated in the following subsection.

8.2.2. The IC Fault Model. In this final example, we apply our hierarchical
approximation method to a more difficult test case from Imperial College, called the
IC Fault model, which has previously been used for parameter identification by his-
tory matching. The IC Fault model incorporates a rather complicated discontinuous
response surface. Therefore, the IC Fault model is regarded as a very challenging test
example, where standard methods for history matching often fail [29]. For a detailed
description on the IC Fault Model, see [29].

Let us first discuss only some of the relevant features of the IC Fault model. The
simplified reservoir of the IC Fault model has three uncertain input parameters, cor-
responding to the fault throw, the good and the poor sand permeability multipliers.
The analyzed output from the response surface is in this test case the oil production
rate at 10 years. The three input parameters are referred to as x1, x2 and x3. Accord-
ing to [29], the input configurations are uniformly distributed in the computational
domain Ω = [0, 50] × [100, 200] × [0, 50].

Having rescaled each of the variables’ range to the interval [−1, 1], the reser-
voir simulator ECLIPSE is run on a Latin hypercube design consisting of |X1| = 22
different configurations for the initial design X1. We then apply our hierarchical ap-
proximation method to the IC Fault model, using Algorithm 2, where we let η∗ = 0.5
for the target accuracy. This results in a hierarchical approximation with six design
levels, that is L = 6.

The construction of the emulators sℓ is done by using our hierarchical approxi-
mation scheme, Algorithm 2. In this method, we apply kriging with using a quadratic
regression part in the stochastic model (3.1) at each level ℓ, where the regression terms
x2, x3, x

2
3 were found to be dominant by the utilized statistical data analysis.

In order to evaluate the prediction accuracy of emulator sℓ at each design level
ℓ, 1 ≤ ℓ ≤ 6, the simulator was run at an additional set X comprising 200 points,
where the points in X are generated by another Latin hypercube design (LHC),
being different from the one used to generate the initial design X1 in our hierarchical
approximation method.

We have recorded the mean absolute error η1, the root mean square error η2,
as well as the maximum error η∞ for our emulator sℓ at each level. The numerical
results are shown in Table 8.4. Note that the mean absolute error η1 is at the final
level ℓ = 6 very close to the target accuracy η∗ = 0.5, after only 146 simulations.

For the purpose of comparison, we consider two alternative (one-level) methods to
compare their numerical results with those of our emulator. The first emulator, sRSM,
is obtained by response surface methodology (RSM) in combination with a fractional
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Table 8.4

IC Fault Model. Results obtained from our hierarchical approximation method; comparison with
RSM using FFD (RSM), and kriging using LHC (KRG). Note the definitions of η1, η2, and η∞
in equations (8.1), (8.2), and (8.3).

ℓ |Xℓ| η1 η2 η∞

1 22 3.6 5.4 28.7
2 49 1.4 3.2 25.2
3 72 1.1 1.8 12.5
4 102 0.8 1.5 11.3
5 124 0.7 1.3 8.6
6 146 0.6 1.0 5.4

RSM 22 8.7 10.0 25.8
RSM 146 7.2 8.4 22.9
KRG 146 1.0 1.5 11.7

factorial design (FFD). For the emulator sRSM a quadratic regression polynomial was
used. The second emulator, sKRG, is obtained by using kriging in combination with
a Latin hypercube design (LHC). Table 8.4 shows the numerical results obtained by
using these two emulators, sRSM and sKRG.

Note that the final emulator s6 of our hierarchical approximation method (see
Table 8.4) is superior to both the kriging emulator sKRG (see Table 8.4, last row) and
the emulator sRSM (see Table 8.4, second last row). Indeed, the mean absolute error
η1 and the maximum error η∞ obtained by s6 is about half of the corresponding error
obtained by sKRG, whereas the root mean square error η2 of sKRG is reduced by a
third. Note that a comparable prediction accuracy of sKRG is obtained by s3 after
only three steps of our hierarchical approximation method, with using only |X3| = 72
simulator runs rather than |X6| = 146 runs.

As for the comparison between our emulator and that of RSM, sRSM, the perfor-
mance of our hierarchical emulator is much better than that of sRSM. Indeed, note
that the accuracy of our final emulator s6 is for the mean absolute error η1 more
than ten times smaller than that of the emulator sRSM, when using |X6| = 146 design
points, whereas its root mean square error η2 is about eight times smaller than that
of sRSM, and the maximum error η∞ of s6 is only about one quarter of the maximum
error of sRSM.

Note that the accuracy of our initial emulator, s1, is superior to the accuracy
of the emulator sRSM, when using only |X1| = 22 design points. Indeed, while the
maximum error η∞ of s1 is comparable to that of sRSM, the mean absolute error η1 of
s1 is less than half of the corresponding mean absolute error of sRSM. Moreover, the
root mean square error η2 of s1 is about half the corresponding mean square error of
sRSM, see Table 8.4, first row, and Table 8.4, third last row. That s1 outperforms sRSM

is not too surprising, since s1 is the best linear unbiased predictor for the deterministic
response fX1

, see the discussion in Section 3.

Finally, Table 8.5 shows the correlation lengths λi, 1 ≤ i ≤ 3, of the correlation
parameters for the three different input parameters, at the six different design levels.
Note that input parameter x3 has, in comparison with x1 and x2, a rather short
correlation length λ3. This behaviour is well-treated by the adaption strategy (i.e.,
global adaptive gridding in combination with local optimal design) of our hierarchical
approximation method, which prefers to insert further design points (at run time of
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Algorithm 2) in the direction of coordinate axis x3. This enhanced flexibility gives
our hierarchical approximation method another advantage over commonly used non-
hierarchical methods which are not designed to determine potentially dominant input
parameters.

Table 8.5

IC Fault Model. Correlation parameters at different levels.

ℓ |Xℓ| λ1 λ2 λ3 p

1 22 16.40 1.70 0.40 2.00
2 49 24.00 42.20 0.13 1.80
3 72 22.90 89.90 0.40 1.20
4 102 34.00 98.80 0.12 1.40
5 124 16.10 37.40 0.10 1.50
6 146 10.40 37.70 0.30 1.00

9. Conclusion and Future Work. We have proposed a hierarchical nonlinear
approximation scheme for scalar-valued multivariate functions. The main objective
of the utilized iterative refinement is to obtain a sufficiently accurate approximation
at very few function evaluations. The hierarchical approximation method has been
applied to relevant applications from experimental design and statistical data analy-
sis in computer experiments. Our hierarchical method combines different important
requirements for efficient designs in computer experiments, such as screening, entropy
minimization, statistical data fitting, and parallelization. This results in a flexible
and efficient iterative method, whose main components are adaptive gridding, local
optimal design, and kriging, in combination with maximum likelihood estimation.
As supported by numerical examples, including two real-world model problems from
reservoir forecasting, the performance of our hierarchical approximation method is
in terms of the resulting emulators’ prediction accuracy superior to that of tradi-
tional non-hierarchical methods, such as the widely used response surface methodol-
ogy (RSM). Further important aspects of this research are uncertainty reduction and
calibration, which we will treat in a forthcoming paper.
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