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Summary. This contribution concerns the construction of meshless Lagrangian
particle methods for the numerical simulation of multiscale phenomena in linear
transport problems, where mass conservative discretization methods are essentially
required. The proposed discretization scheme works with a finite set of unstructured
nodes, each corresponding to one flow particle. In this method, corresponding par-
ticle average values are maintained during the simulation. The discrete nodes are
subject to adaptive modifications, leading to semi-Lagrangian particle simulations,
whose adaption rules rely on the insertion (refinement) and removal (coarsening) of
the nodes at each time step. The resulting meshless particle method is mass con-
servative by construction. The required algebraic rules for the downstream particle
advection and the local redistribution of the particle masses are developed. More-
over, the implementation of boundary conditions is addressed. The efficacy of the
proposed conservative and meshless adaptive particle method is finally shown by
using one numerical simulation concerning the slotted cylinder, a popular standard
test case for passive advection.

1 Introduction

Many physical phenomena in time-dependent evolution processes are modelled
by hyperbolic conservation laws, where relevant applications, e.g. from fluid
flow simulation, essentially require conservative discretization schemes. The
finite volume method (FVM) is a standard conservative method to construct
numerical approximations for solutions of hyperbolic conservation problems.
The FVM relies on a suitable partitioning of the computational domain into
small cells, the control volumes, where each control volume of the partitioning
bears a cell average value. To enforce mass conservation, fluxes are described
at the cell interfaces, resulting in a explicit one-step Eulerian discretization
scheme. For a comprehensive treatment of finite volume methods, see [10].

Therefore, the classical FVM is mesh-based by the domain partitioning,
although its construction relies merely on (mesh-independent) geometrical
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coefficients: cell volumes, cell surfaces, and cell normal vectors [8]. This ob-
servation has recently motivated the construction of a meshless finite volume
particle method (FVPM) [6].

Another approach for solving linear hyperbolic equations is given by the
method of characteristics. This Lagrangian method relies on downstream ad-
vection of particles along their streamlines, see [4, 11]. In contrast to Eulerian
schemes, Lagrangian particle methods are better suited to construct mesh-
less methods, leading to highly flexible discretizations, which are particularly
useful for problems with complicated domain geometries, moving boundaries,
and large-scale deformations of the solution.

On the down side, Lagrangian methods are usually not conservative, al-
though considerable effort has been made recently in order to construct con-
servative Lagrangian advection methods, see [9, 12, 13, 14]. In our previous
paper [7], a conservative and adaptive semi-Lagrangian method for passive
advection has finally been proposed. Yet it seems to be difficult to combine
the basic concepts of conservative schemes with those of meshless methods.

This contribution combines three desirable requirements for the construc-
tion of effective Lagrangian particle methods in linear hyperbolic conservation
problems:

• mass conservation;
• adaptivity;
• mesh-independence.

To this end, algebraic rules for mass conservation are developed. The al-
gebraic rules, given by local mass balance equations, are concerning the mass
transfer for the advection step, the particle adaption (i.e., adaptive insertion
and removal of particles), and the implementation of boundary conditions.
The proposed method can be viewed as a generalization of our previous pa-
per [7], which is conservative and adaptive but not meshless.

The outline of this work is as follows. In the following Section 2, the gov-
erning equations for passive advection are briefly reviewed, before some basic
ingredients of finite volume particle methods are introduced in Section 3.
Then, in Section 4, the mass conservative and meshless advection of particle
averages is discussed. Section 5 is concerning the adaption of the particles. The
implementation of boundary conditions is then explained in Section 6. The
efficacy of the proposed conservative and meshless adaptive particle advection
is finally illustrated in Section 7 by one numerical simulation concerning the
slotted cylinder, a popular standard test case for passive advection.

2 Passive Advection and Mass Conservation

The numerical simulation of linear transport processes, passive advection, is
governed by scalar time-dependent hyperbolic conservation laws of the form
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∂u

∂t
+ ∇ · (au) = 0, (1)

where for a compact time interval I = [0, T ] ⊂ R, T > 0, and the computa-
tional domain Ω = R

2, the velocity field

a = a(t,x), t ∈ I, x ∈ Ω,

is assumed to be given. The scalar solution u : I ×Ω → R of (1) is the density
(or concentration) of a physical quantity, which is subject to a conservation
law. We consider solving (1) numerically under given initial condition

u(0,x) = u0(x), for x ∈ Ω. (2)

Later in Section 6, boundary conditions are added to the Cauchy problem (1),
(2), where the computational domain Ω ⊂ R

2 is assumed to be bounded.
In many relevant applications, mass conservation,

d

dt

∫

Ω

u(t,x) dx = 0, (3)

is an important requirement. The aim of this work is to construct mass con-
servative particle advection methods satisfying (3).

3 Finite Volume Particle Methods

This section discusses selected features of finite volume particle methods,
where we combine basic ingredients from the classical Eulerian FVM with re-
cent concepts from particle methods. To this end, let us first briefly recall some
basic details of the (mesh-based) FVM, before we turn to a mesh-independent
(re)formulation to design meshless particle advection schemes.

3.1 Mesh-Based Formulation

According to the classical FVM discretization, the computational domain Ω is
first decomposed into a partition V = {V }V ∈V ⊂ Ω of finitely many pairwise
disjoint cells V , control volumes, so that

Ω =
⋃

V ∈V

V.

In order to establish mass conservation, corresponding cell average values

ūV (t) =
1

|V |

∫

V

u(t,x) dx, for V ∈ V,

of the numerical solution u ≡ u(t,x) are maintained during the simulation.
Here, for any V ∈ V, |V | denotes the volume of the cell V ⊂ Ω, and so
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mV (t) = |V | · ūV (t), for V ∈ V,

is the total mass contained in the cell V at time t. Therefore,

M(t) =

∫

Ω

u(t,x) dx =
∑

V ∈V

∫

V

u(t,x) dx =
∑

V ∈V

mV (t)

yields the total mass over the domain Ω at time t.
Note that a finite volume discretization of the above form cannot be mesh-

less. Indeed, as soon as the computational domain Ω is partitioned into finite
control volumes, this essentially requires a mesh.

3.2 Meshless Formulation

Now let us work with a more general (generic) formulation of the FVM to
obtain a particle advection method, which does not necessarily rely on a mesh,
but which is mass conservative by construction. This needs a few conceptual
preparations and some reformulations of the FVM, to be explained in the
remainder of this subsection.

Meshless finite volume particle methods work with a finite set V =
{v}v∈V ⊂ Ω of nodes, each of which corresponds at a time t to one flow
particle. The basic idea of the meshless method, proposed in this work, is to
assign, to any node v ∈ V, a volume |v| and a particle average value

ūv(t) ≈ u(t,v), for v ∈ V,

so that
mv(t) = |v| · ūv(t), for v ∈ V,

is the total mass which is, at time t, attached to the node v.
The choice of this particular construction is motivated by the mean value

theorem, which states that for an “influence area” V ∈ Ω surrounding node
v ∈ V we have the identity

ūv(t) ≈ ūV (t) = u(t, ξ), for some ξ ∈ V,

which establishes a one-to-one correspondence between the control volumes
V = {V }V ∈V of the previous subsection and the node set V = {v}v∈V of this
subsection.

This way, the meshless concept replaces the cell average values ūV (t) and
the cell volumes |V | of the mesh-based FVM by particle average values ūv(t)
and particle volumes |v|. In this modified concept, the volume |v| is for any
v ∈ V regarded as a geometric quantity that should depend on the local
geometry of the nodes V around v, rather than on any connectivities between
the nodes. Moreover, |v| should reflect the density of the nodes V in a local
neighbourhood of v, and the sum of the node volumes is required to make up
the total volume |Ω| of the domain Ω, i.e.,
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|Ω| =
∑

v∈V

|v|.

Therefore, for any node v ∈ V, its corresponding volume |v| can be viewed
as the weight of v in V.

Initially, for a suitable node set V = {v}v∈V ⊂ Ω, the particle average
values are given by the initial condition (2), so that we let

ūv(0) = u0(v), for all v ∈ V. (4)

This in turn yields the total mass

M ≡ M(0) =
∑

v∈V

|v| · ūv(0) =
∑

v∈V

mv(0)

at initial time t = 0.
The aim of the subsequent construction is to solve the Cauchy problem

(1),(2) numerically, such that the total mass M ≡ M(0) is constant during
the simulation. To be more precise, at any time step t → t+τ , with given time
step size τ > 0, we wish to establish algebraic rules for the required identity
M(t) = M(t + τ), i.e.,

M(t) =
∑

v∈V

mv(t) =
∑

v∈V

mv(t + τ) = M(t + τ), for t, t + τ ∈ I, (5)

so that M ≡ M(t) holds for all t ∈ I and all V ≡ V(t). Later in Section 6,
where the implementation of boundary conditions is addressed, we replace the
algebraic conditions accordingly, by considering incoming and outgoing flow
across the boundary ∂Ω of a bounded domain Ω ⊂ R

2.

4 Mass Conservation by Construction

This section explains the key ingredients for mass conservation in meshless
particle advection methods. To this end, we wish to compute, at any time
step t → t + τ and for a current node set V ≡ V(t), updated mass values
{mv(t + τ) :v ∈ V} from the current masses {mv(t) :v ∈ V}, which are
assumed to be known, where the initial masses {mv(0) :v ∈ V} are given
by (4). According to our mass conservative construction (to be explained
below), the updates on the masses are done, such that the identity (5) holds.

To this end, we follow our previous paper [7], where a mesh-based conser-
vative advection method is proposed. The Lagrangian approach in [7] works
with downstream mass advection from a finite set U of upstream cells onto a
current set V of (downstream) control cells. To be more precise, any upstream
cell U ∈ U contains, at time t, those particles, which by traversing along their
streamlines arrive at time t+τ in the corresponding control cell V ∈ V. By this
duality relation, there is a one-to-one correspondence between the upstream
cells and the control cells.
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4.1 Upstream Nodes

In what follows, we wish to establish a similar duality relation between cur-
rent nodes in V and upstream nodes, to be collected in a point set U. But
this requires a few comments concerning the streamlines of the particle flow
in the context of Lagrangian advection schemes. For any node v ∈ V, its cor-
responding upstream node is given by u = x(t), where x denotes the unique
solution of the ordinary differential equation (ODE)

ẋ =
dx

dt
= a(t,x), (6)

with initial condition x(t + τ) = v.
Therefore, the upstream node u ≡ u(v) of v can be viewed as the unique

location of a flow particle at time t, which by traversing along its trajectory
arrives at node v at time t + τ , see Figure 1. In case of passive advection,
governed by the linear transport equation (1), the shape of the particles’ flow
trajectories, termed streamlines, are entirely and uniquely determined by the
given velocity field a = a(t,x). Moreover, the solution u of (1) is constant
along these streamlines, and so the streamlines are the characteristic curves
of the hyperbolic equation (1).

v

u

Fig. 1. Upstream node u of v ∈ V.

Adopting some standard notation from dynamical systems [3], we express
the upstream node u of v as

u = Φt,t+τv, (7)

where Φt,t+τ : Ω → Ω denotes the continuous evolution of the (backward)
flow of (6). An equivalent formulation for (7) is given by v = Φt+τ,tu, since
Φt+τ,t is the inverse of Φt,t+τ .
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Likewise, for the sake of notational simplicity, it is convenient to express
any approximation to upstream node u as

Ψ t,t+τv ≈ u, for v ∈ V,

where Ψ t,t+τ : Ω → Ω is the discrete evolution of the (backward) flow, and
where the operator Ψ t,t+τ is given by any suitable numerical method for solv-
ing the above ODE (6). Note that the implementation of Ψ t,t+τ , and thus the
numerical approximation to u, does not need a mesh.

For details concerning the implementation of Ψ t,t+τ we refer to our pre-
vious paper [7], where the duality relation for the pair (U,V) is expressed
as

U = Ψ t,t+τV, for V ∈ V. (8)

Moreover, in the mesh-based setting of [7], global mass conservation is ob-
tained by establishing local mass conservation through the balance equation

∫

U

uh(t,x) dx =

∫

V

uh(t + τ,x) dx, for every V ∈ V,

where uh denotes a piecewise linear approximation to the solution u of (1),(2).
In the meshless particle advection scheme proposed in this work, a corre-

sponding identity for local mass conservation is accommodated by the mass
balance equation

mu(t) = mv(t + τ), for every v ∈ V, (9)

where mu(t) denotes the portion of mass which is, at time step t → t + τ ,
advected from u onto v. Note that (9) is equivalent to

ū(t + τ,v) =
|u|

|v|
ū(t,u), for every v ∈ V,

where |u| is the volume of u w.r.t. U. But neither the mass mu(t) nor the
particle average value ū(t,u) is known at time t, unless u is a current node
in V.

4.2 Conservative Mass Transfer

For the sake of mass conservation, we determine the masses {mu(t) :u ∈ U}
from the current masses {mv(t) :v ∈ V}, such that the local mass balance
equations (9) are satisfied. This then yields the desired global mass conserva-
tion (5) by construction.

To establish suitable algebraic conditions for local mass conservation (9),
we transfer for any node v ∈ V its entire mass mv(t) to upstream nodes
{u}u∈U lying in the local neighbourhood of v. This is accomplished as follows.
Let γv→u ∈ [0, 1] denote the fraction of mass which is being transferred from
v ∈ V to any u ∈ U, so that
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mv→u(t) = γv→u · mv(t), for v ∈ V,u ∈ U,

is the portion of mass being transferred from v to u. Hence, if we let γv→u = 0,
then no mass is transferred from v to u. This is the case for upstream nodes
u ∈ U which are not lying in the local neighbourhood of v. In contrast, we
select a positive value γv→u > 0, whenever u ∈ U lies in the local neighbour-
hood of v.

Therefore, for any u ∈ U, the total mass mu, which is transferred from
the nodes in V to u, is given by the weighted sum

mu(t) =
∑

v∈V

mv→u(t) =
∑

v∈V

γv→u · mv(t). (10)

Now for the sake of mass conservation, we essentially require the property

∑

u∈U

γv→u = 1, for all v ∈ V, (11)

i.e., the non-negative multipliers γv→u are required to form a partition of
unity.

Note that the condition in (11) states that the total mass mv of any v ∈ V
is completely transferred to the nodes in U. But this immediately establishes
the desired identity (5) by the following simple calculations, where we use (9)
(10), and (11).

M(t + τ) =
∑

v∈V

mv(t + τ)

=
∑

u∈U

mu(t)

=
∑

u∈U

∑

v∈V

γv→u · mv(t)

=
∑

v∈V

mv(t)
∑

u∈U

γv→u

=
∑

v∈V

mv(t)

= M(t).

4.3 Barycentric Coordinates and Voronoi Coefficients

Yet it remains to determine the coefficients γv→u satisfying (11), whose con-
struction should depend on the node sets V and U, and so by the duality (8)
also on the solution u of (1),(2).

One possible option for the construction of the coefficients γv→u is to
work with generalized barycentric coordinates [5]. In this case, non-negative
coordinates γv→u ∈ [0, 1] are computed subject to conditions
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v =
∑

u∈U

γv→u · u with
∑

u∈U

γv→u = 1, for v ∈ V. (12)

Note that the linear system for the coordinates γv→u in (12) is overdeter-
mined, whenever U contains more than three points. In this case, the solution
of (12) is not unique. For different options and characterizations of generalized
barycentric coordinates, we refer to [5].

In the proposed particle advection method, however, we prefer to work
with Voronoi coefficients, yielding another possibility for computing the non-
negative multipliers γv→u subject to constraints (11). As supported by our
numerical experiments, this leads to a very flexible mass conservative dis-
cretization with superior accuracy, which moreover works particularly well
in combination with particle adaption and the implementation of boundary
conditions.

In this method, we regard for any node v ∈ V, the Voronoi tile

VorV(v) = {x ∈ Ω : ‖x − v‖ ≤ ‖x − w‖ for all w ∈ V} ,

of v, and we let |v| = |VorV(v)| for the volume of v. Accordingly, for any
u ∈ U, we let |u| = |VorU(u)| for the particle volume of u, where

VorU(u) = {x ∈ Ω : ‖x − u‖ ≤ ‖x − w‖ for all w ∈ U} .

Then we let

γv→u =
|VorV(v) ∩ VorU(u)|

|v|
, for all u ∈ U,v ∈ V.

It is easy to see that for any v ∈ V the non-negative Voronoi coefficients γv→u

form a partition of unity, so that (11) holds.
Now the proposed utilization of Voronoi coefficients deserves a rather philo-

sophical comment concerning meshless versus mesh-based methods. Note that
the Voronoi coefficients are based on a very natural geometric concept which
mainly relies on the distribution of the nodes in U and V, rather than being
dominated by the topology of a mesh. Although the proposed construction is
strictly speaking – through the required Voronoi diagrams of U and V – not
entirely mesh-independent, it does not introduce any restriction to the spa-
tial distribution of the moving particles in V. This is particularly important
for the construction of flexible adaption rules (as discussed in the following
section), where the (unconnected) moving particles are subject to dynamic
modifications during the simulation. Finally, it seems to be common practice
in meshless methods to work with background Voronoi diagrams (or similar
geometric data structures), e.g. to handle geometric queries (such as nearest
neighbour search etc.), efficiently.

4.4 Mass Conservative Particle Advection

We close this section by providing the following algorithm, which returns, at
any time step t → t + τ , on given masses {mv(t) :v ∈ V}, updated mass
values {mv(t + τ) :v ∈ V} satisfying (5).
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Algorithm 1 (Mass Conservative Particle Advection).

INPUT: Time step τ , node set V ⊂ Ω, mass values {mv(t) :v ∈ V}.

(1) Compute upstream nodes U = {u :u = Ψ t,t+τv} from node set V.
(2) Compute coordinates {γv→u ∈ [0, 1] :v ∈ V,u ∈ U}, satisfying (11);

FOR each v ∈ V DO

(3a) Compute total mass mu(t) of u = Ψ t,t+τv via (10);
(3b) Let mv(t + τ) = mu(t).

OUTPUT: Mass values {mv(t + τ) :v ∈ V}, satisfying (5).

5 Mass Conservative Adaption Rules

In order to balance the two conflicting requirements of good approximation
quality and small computational costs, we need to combine the proposed parti-
cle advection scheme with a suitable strategy for particle adaption. Adaptivity
requires customized rules for the modification of the node set V after each
time step t → t + τ of Algorithm 1. Indeed, for the sake of reducing the com-
putational complexity we wish to reduce the size of the node set V, whereas
for the sake of good approximation quality we prefer to increase the density
(and thus the size) of the node set V in Ω.

This section combines the robust and effective adaption strategy of our
previous work [1, 2, 7] with the basic requirements of mass conservation. To
this end, we explain how the conservative distribution of mass is accomplished
during the adaptive modification of the node set V. But we do not intend to
explain all details of the utilized node adaption scheme. For the purposes
of this work, it is sufficient to say that the node adaption is done by the
removal of current nodes from V, coarsening, and by the insertion of new
nodes to V, refinement. The decision on the node removal and insertion rely
on a customized a posteriori error indicator. For details on this, we refer to
the previous work [1].

In the remainder of this section, it is explained how these two operations,
coarsening and refinement, are accomplished, such that the total mass is con-
served.

5.1 Coarsening (Node Removal)

A node v∗ ∈ V is coarsened by its removal from the current node set V,
i.e., in this case we let V = V \ v∗. Moreover, the portion of mass mv∗ ,
which is currently attached to v∗ is distributed to remaining nodes in the
neighbourhood of v∗. In order to further explain this, let V∗ ⊂ V \v∗ denote
a set of neighbouring nodes to v∗.



Conservative and Meshless Particle Advection 11

For the purpose of mass (re)distribution, we first compute coefficients
γv∗→v ∈ [0, 1] satisfying ∑

v∈V∗

γv∗→v = 1.

Next, we update for any node v ∈ V \ v∗ its current mass by letting

m∗
v

=

{
mv + γv∗→v · mv∗ , for v ∈ V∗,

mv, for v ∈ V \ (V∗ ∪ v∗),

so that the mass mv, attached to v, is updated by m∗
v
.

This leads to a mass conservative removal of the node v∗ from V by

M =
∑

v∈V

mv

=
∑

v∈V\v∗

mv + mv∗

=
∑

v∈V\v∗

mv +
∑

v∈V∗

γv∗→v · mv∗

=
∑

v∈V\(V∗∪v∗)

mv +
∑

v∈V∗

(mv + γv∗→v · mv∗)

=
∑

v∈V\v∗

m∗
v
.

5.2 Refinement (Node Insertion)

A node v∗ ∈ V is refined by the insertion of new nodes V̂ in the neighbourhood
of v∗, so that V is updated accordingly by letting V = V ∪ V̂.

This modification requires (re)distributing the current masses of neigh-

bouring nodes V∗ around v∗ to the new nodes in V̂. This is done by working
with coefficients γv→v̂ ∈ (0, 1) satisfying

0 <
∑

v̂∈V̂

γv→v̂ < 1, for v ∈ V∗,

where each γv→v̂ yields the fraction of mass being distributed from v ∈ V∗ to
v̂ ∈ V̂, so that by 0 < m∗

v
≤ mv, for v ∈ V∗, the updated mass m∗

v
of v ∈ V∗

is positive. For notational convenience, we let γv→v̂ = 0 for all v ∈ V \ V∗.
Hence, for any v ∈ V, its current mass mv is updated by letting

m∗
v

=



1 −
∑

v̂∈V̂

γv→v̂



 · mv, for all v ∈ V.

Moreover, the mass m∗
v̂

of any new node v̂ ∈ V̂ (to be inserted) is given by
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m∗
v̂

=
∑

v∈V∗

γv→v̂ · mv =
∑

v∈V

γv→v̂ · mv for v̂ ∈ V̂.

This leads to a mass conservative insertion of the new nodes V∗ by

M =
∑

v∈V

mv

=
∑

v∈V




∑

v̂∈V̂

γv→v̂ · mv +



1 −
∑

v̂∈V̂

γv→v̂



 · mv





=
∑

v∈V

∑

v̂∈V̂

γv→v̂ · mv +
∑

v∈V



1 −
∑

v̂∈V̂

γv→v̂



 · mv

=
∑

v̂∈V̂

∑

v∈V

γv→v̂ · mv +
∑

v∈V

m∗
v

=
∑

v̂∈V̂

m∗
v̂

+
∑

v∈V

m∗
v

=
∑

v∈V∪V̂

m∗
v
.

6 Implementation of Boundary Conditions

Now let us finally turn to the implementation of boundary conditions. In
the above discussion until now, we have considered the special case where the
computational domain Ω is the whole plane, i.e., Ω = R

2, so that (U∪V) ⊂ Ω
at any time t. However, in specific applications of interest, Ω is bounded, and,
moreover, boundary conditions are of relevance. Therefore, suppose from now
that Ω is bounded.

Recall that our proposed scheme works with a set V = {v}v∈V of fi-
nite nodes, and corresponding upstream nodes U = {u}u∈U, satisfying
u = Ψ t,t+τv for all v ∈ V.

6.1 Incoming Flow

The following discussion is relevant, when an upstream node u ∈ U lies outside
the domain Ω, i.e., u ∈ U \ Ω, see Figure 2 for illustration. In this case, a
fraction of mass, γ∂Ω→u ∈ [0, 1], is advected from u to v = Ψ t+τ,tu ∈ Ω
across the boundary ∂Ω, where the coefficients γ∂Ω→u are required to form a
partion of unity, i.e.,
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v

u

∂ Ω

Ω

Fig. 2. Incoming flow from upstream node u ∈ U\Ω, to corresponding downstream
node v = Ψ

t+τ,tu ∈ Ω across the domain boundary ∂Ω.

∑

u∈U\Ω

γ∂Ω→u = 1.

In order to implement boundary conditions concerning the incoming flow,
we assign a boundary value γ∂Ω→u ·m∂Ω to each u ∈ U\Ω, giving the portion
of mass which is advected from u into Ω across the boundary ∂Ω. Hence,

Min =
∑

u∈U\Ω

γ∂Ω→u · m∂Ω ≡ m∂Ω

is the total amount of incoming mass across the boundary ∂Ω.
Moreover, for any u ∈ U \ Ω, portions of mass from current nodes v ∈ V

may also be distributed to u. In this case, we obtain

mu = γ∂Ω→u · m∂Ω +
∑

v∈V

γv→u · mv, for u ∈ U \ Ω,

for the total mass which is assigned to the upstream node u.

6.2 Outgoing Flow

Let us regard the situation, where for v ∈ V all its coordinates γv→u vanish,
i.e., γv→u = 0 for all u ∈ U. In this case, no mass is distributed from v to any
point in U. The amount of mass mv, attached to v, is then being advected
from v ∈ Ω to the exterior of Ω across the domain boundary ∂Ω.

In consequence, the total outgoing mass is given by

Mout =
∑

v∈Vout

mv,
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where we let

Vout = {v ∈ V : γv→u = 0 for all u ∈ U} ⊂ V

for the set of nodes whose masses are advected across ∂Ω to the exterior of Ω.

7 The Slotted Cylinder — A Test for Passive Advection

In this section, the performance of our advection scheme is evaluated by us-
ing one numerical experiment. In this experiment, taken from [7, Section 5],
we consider the rotating slotted cylinder, a popular test case suggested by
Zalesak [15].

Here, Ω = [−0.5, 0.5]2 ⊂ R
2 and the initial condition is given by

u(0,x) =

{
1, for x ∈ D,
0, otherwise,

(13)

where D ⊂ Ω is the slotted disc of radius r = 0.15, centered at (0, 0.25) with
slot width 0.06 and length 0.22, see Figure 3 (a).
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Fig. 3. The slotted cylinder. (a) Initial condition and (b) velocity field.

In the original test case of Zalesak, the slotted cylinder is rotated by a
steady flow field a(x) ∼ (x2,−x1), where x = (x1, x2). We decided to replace
the velocity field in [15] by the somewhat more complicated velocity field

a(x) = (x2,−x1)

{
1
2 sin(2ϕ(x) − π

2 ) + 3
2 , for x2 < 0,

1, for x2 ≥ 0,
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whose azimuth angle is given by

ϕ(x) =

{
arctan(−x2/x1), for x1 > 0,

arctan(x1/x2) + π
2 , for x1 ≤ 0.

This velocity field rotates the slotted cylinder clockwise with constant
angular velocity in the first and second quadrant, whereas the cylinder is
accelerated in the fourth quadrant, and decelerated in the third quadrant, see
Figure 5. The maximum angular velocity ω = 2 is attained in the lower half
of the coordinate system, namely at the points on the vertical line

{x = (x1, x2) : x1 = 0, x2 < 0}.

The slotted cylinder is stretched when passing through the acceleration part
of the velocity field in the fourth quadrant, whereas it is squashed in the
deceleration part of the third quadrant in order to recover its original shape
of the initial condition at each full revolution.

Initially, a set V ⊂ Ω of 1500 randomly distributed nodes is chosen. The
initial condition (13) is used in order to assign a particle average value ūv(0)
in (4) to each node v ∈ V at time t = t0. The nodes in V are automatically
adapted to the discontinuities of the initial condition u0, see Figure 4 (b).
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Fig. 4. The slotted cylinder. (a) 3D view, (b) node distribution, of the initial
condition (left column), and after six revolutions (right column), (c),(d).
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Fig. 5. The slotted cylinder. 3D view on ūv(t) during first revolution at four times.
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Fig. 6. The slotted cylinder. Node distribution during first revolution at four times.
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At each revolution of the slotted cylinder, the particle average values ūv

are decreasing, as soon as the cylinder enters the acceleration part of the
velocity field, see Figure 5. This behaviour is due to the mass conservation of
the scheme. In contrast to this, in the deceleration part, the particle average
values ūv are increasing. Moreover, in this region, the initial shape of slotted
cylinder is gradually recovered, see Figure 5 (b)-(d).

Our simulation of this model problem comprises six full revolutions of the
slotted cylinder. Figure 4 (a) shows the 3D view of the particle averages ūv,
and Figure 4 (b) shows the node distribution for the initial condition (13).
In comparison, Figure 4 (c)-(d) shows to the corresponding numerical re-
sult after six full revolutions. Observe that the shape of the cylinder is ac-
curately maintained during the simulation, and numerical diffusion is widely
suppressed. For more details concerning the model problem and the discussion
of the numerical results, we refer to [7].
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particle methods is greatly appreciated.

References
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7. A. Iske and M. Käser (2004) Conservative semi-Lagrangian advection on adap-

tive unstructured meshes. Numerical Methods for Partial Differential Equa-

tions 20, 388–411.
8. M. Junk: Do finite volume methods need a mesh? In: Meshfree Methods for

Partial Differential Equations, M. Griebel, M.A. Schweitzer (eds.), Springer,
2003, 223–238.

9. J.P.R. Laprise and A. Plante (1995) A class of semi-Lagrangian integrated-
mass (SLIM) numerical transport algorithms. Monthly Weather Review 123,
553–565.



18 A. Iske

10. R.L. LeVeque (2002) Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, Cambridge, UK.

11. K.W. Morton (1996) Numerical Solution of Convection-Diffusion Problems.
Chapman & Hall, London.

12. T.N. Phillips and A. J. Williams (2001) Conservative semi-Lagrangian finite
volume schemes. Numer. Meth. Part. Diff. Eq. 17, 403–425.

13. A. Priestley (1993) A quasi-conservative version of the semi-Lagrangian advec-
tion scheme. Monthly Weather Review 121, 621–629.

14. J.S. Scroggs and F.H.M. Semazzi (1995) A conservative semi-Lagrangian
method for multidimensional fluid dynamics applications. Numer. Meth. Part.
Diff. Eq. 11, 445–452.

15. S. T. Zalesak (1979) Fully multidimensional flux-corrected transport algorithms
for fluids. J. Comput. Phys. 31, 335–362.


