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ABSTRACT
During the last few years, recent applications of differential ge-
ometry and algebraic topology have provided powerful tools for
the analysis of point cloud datasetsX = {xi}mi=1 ⊂ Rn. In par-
ticular, recent methods for nonlinear dimensionality reduction
were inspired by fundamental concepts in differential geome-
try. In parallel developments, applied topology has delivered
new methods for computing homological information of a point
cloud data X . In this context, an important task is to under-
stand the interaction of these novel tools with well-established
signal analysis methods such as wavelets, Fourier transforms,
etc. In this paper, we present illustrative examples describing
topological effects when applying convolution filters to signals
xi in a dataset X . We use persistent homology as a main tool
for measuring topological properties.

Keywords— Wavelets, STFT, modulation maps, persistent
homology, nonlinear dimensionality reduction.

1. INTRODUCTION

In the last few years we have seen an important and fast de-
velopment of new application tools for data analysis using con-
cepts from algebraic topology and differential geometry. An
important motivation for these developments is the increasing
availability of inexpensive computer power allowing abstract
concepts, traditionally from pure mathematics, to be used in
modern application fields. Additionally, the increasing com-
plexity of new engineering problems demands novel analysis
tools and provides challenging tasks to the theoretical environ-
ment. Recent methods for nonlinear dimensionality reduction
were inspired by fundamental concepts in differential geometry
(e.g. isomap, local tangent space alignment, Riemannian normal
coordinates, etc. [1, 5]) In parallel developments, applied alge-
braic topology has delivered robust algorithms for computing
topological properties of a point cloud dataset X = {xi}mi=1. In
this context, a natural question is to understand the interaction
of these novel tools with well-established signal analysis meth-
ods such as wavelet functions, short term Fourier transforms
(STFT), etc.

In this paper, we illustrate some of these interactions with toy
examples describing the interplay between filter operations in
signal processing and topological features of a point cloud data.
In this context, the notion of modulation maps plays a key role

by constructing a set of signals as a point cloud data represent-
ing a low-dimensional object embedded in a high-dimensional
Euclidean space.

The outline of this paper is as follows. In Section 2, we
sketch our framework and some basic ideas for combining di-
mensionality reduction methods and signal transformations.
Here, we also explain the concept of modulation maps, and
we illustrate one of its key properties: the construction of a
new type of challenging datasets X = {xi}mi=1 for modern
dimensionality reduction methods. In Section 3, we briefly re-
call elementary concepts of simplicial and persistent homology
as the main tool for measuring topological features of a point
cloud data X = {xi}mi=1. Finally, in Section 4 we describe a
toy example of a point cloud data Xf representing a signal f ,
and the interaction between filtering transformations on f , and
homology measurements of Xf .

2. DIMENSIONALITY REDUCTION AND SIGNAL
TRANSFORMS

In dimensionality reduction, we study a point cloud data defined
as a finite family of vectors X = {xi}mi=1 ⊂ Rn located in an
n-dimensional Euclidean space. The fundamental assumption
is that X is sampled fromM, a (low-dimensional) space (man-
ifold or topological space, e.g., CW-complex, simplicial com-
plex) embedded in Rn. We have therefore, X ⊂M ⊂ Rn with
p := dim(M)� n. An additional key concept is the consider-
ation of a ideal model representingM, and denoted by Ω, em-
bedded in a low-dimensional space Rd (with d � n), together
with a homeomorphism (or ideally an isometry)A : Rd ⊃ Ω→
M⊂ Rn. The space Ω represents an ideal representation ofM
that could be used for analysis procedures in a low-dimensional
environment. For instance, in the case of M being the well-
know Swiss roll dataset, the space Ω is a rectangle. However, in
practice, we can only try to approximate Ω with a dimensional-
ity reduction map P : Rn ⊃ M → Ω′ ⊂ Rd, where Ω′ is an
homeomorphic copy of Ω.

Now we discuss the interactions of dimensionality reduc-
tion tools with signal transformations. A basic characteristic
of short term Fourier analysis is the high dimensionality of the
Euclidean space where the time-frequency data is embedded.
In this context, for many applications a preprocessing step us-
ing dimensionality reduction methods can potentially improve



the quality of the data analysis. More precisely, we consider
a bandlimited signal f ∈ L2(R) and a segmentation of its do-
main in such a way that small consecutive signal patches are
analyzed, as routinely performed in STFT or wavelet analysis.
For instance, the set of signal patches Xf can be defined as a
dataset of vectors in Rn, derived by drawing n samples from a
signal f :

Xf = {xi}mi=1 ⊂ Rn, xi = (f(tk(i−1)+j))n−1
j=0 ∈ Rn,

for k ∈ N a fixed hop-size. Here, the regular sampling grid
{t`}km−k+n−1

`=0 ⊂ R is constructed when considering the
Nyquist-Shannon theorem for f . This situation can natura-
lly be related to the dimensionality reduction framework by
considering Xf to be a subset of M, a (low-dimensional)
space, embedded in the high-dimensional Euclidean space Rn.
Therefore, we have Xf ⊂ M ⊂ Rn with p := dim(M) � n.
We recall that there is a well-known framework for studying
properties of sets Xf in the context of nonlinear time series
and dynamical systems (see e.g. [4]). But in our situation, we
are additionally considering a close interaction with signal pro-
cessing transforms T , together with specialized dimensionality
reduction techniques P .

The construction of time-frequency data can be described as
the application of a map T : M ⊃ Xf → T (Xf ) ⊂ MT ,
where MT := T (M), and T (xi) is the signal transformation
of xi (Fourier transform, wavelet, etc.). The following diagram
shows the basic situation:

Rd ⊃ Ω M⊃ Xf ⊂ Rn

Rd ⊃ Ω′ MT ⊃ T (Xf ) ⊂ Rn

A

T

P

Modulation Maps

We are interested in function analysis strategies that combine
signal transformations (wavelet, Fourier etc.) with modern tools
of applied topology and dimensionality reduction. In this con-
text, we propose the notion of modulation maps, which sum-
marizes the standard modulation concept in signal processing,
using a geometrical and topological language. The fundamental
objective of a modulation map is to construct spacesM using
generating functions {φk} and a parametrization space Ω:

Definition (Modulation Maps [2,3]). Let {φk}dk=1 ⊂ H be a set
of vectors in an Euclidean spaceH, and {sk : Ω→ CH(H)}dk=1

a family of smooth maps from a space Ω to CH(H) (the contin-
uous functions from H into H). We say that M ⊂ H is a
{φk}dk=1-modulated space if

M =

{
d∑
k=1

sk(α)φk, α ∈ Ω

}
.

In this case, the map A : Ω → M, α 7→
∑d
k=1 sk(α)φk, is

denoted modulation map.

An explicit example of this concept is given by a frequency
modulation map, which considers φ(t) = sin(t) and a modula-
tion with the coordinates of points in Ω:

Example. Consider the map A : Ω→ Rn for a space Ω ⊂ R3,
with {ti}ni=1 ⊂ [0, 1] and

Aα(ti) =
2∑
j=0

sin((αjc + γαj)ti), α = (α0, α1, α2) ∈ Ω.

We construct each Aα as a signal with n-samples, such
that their Fourier representation has three prominent frequency
bands centered at the values {αjc}2j=0 (see Figure 1). We con-
struct the parameter space such that Ω ⊂ [−1, 1]3, and we
denote the value γ as the bandwidth parameter. When select-
ing a finite sampling Y = {yi}mi=1 ⊂ Ω, we obtain a dataset
X = {xi}mi=1 = A(Y ), with xi = Ayi

. A key property of the
point cloud dataX = A(Y ) is that they provide challenging ex-
amples for dimensionality reduction methods. More precisely,
consider these datasets X = A(Y ) to be described in terms
of the bandwidth parameter γ. We remark that it is possible
to prove that for some ranges of γ, A is an homeomorphism
(diffeomorphism) into its image (see [2]). Additionally, it can
be experimentally verified that for small values of γ, standard
dimensionality reduction methods are able to correctly approx-
imate Ω using X . But when increasing the parameter γ, the
datasets X = A(Y ) turn out to be challenging structures for
many dimensionality reduction methods.

As an illustration, consider a function f such that each ele-
ment of Xf = {xi}mi=1 is of the type xi = Ayi

, for a modula-
tion map A with parameter space Ω. For instance, in Figures 1,
2 and 3, we use the torus Ω = T2, and we compare the resulting
dimensionality reduction projections P (Xf ) for P being PCA
and isomap.

function f PCA projection in R3

P (Xf ), P = PCA

frequency bands isomap projection in R3

P (Xf ), P = isomap

Fig. 1. Small γ: PCA and isomap recover Ω = T2.

The example in Figure 1 illustrates how for a small band-
width parameter γ, both PCA and isomap are able to recover
Ω. But when increasing the bandwidth parameter γ, PCA is no
longer able to recover the space Ω (Figure 2). Subsequently,
isomap also breaks down when using even higher values of γ
(Figure 3).



function f PCA projection in R3

P (Xf ), P = PCA

frequency bands isomap projection in R3

P (Xf ), P = isomap

Fig. 2. Middle γ: PCA fails, but isomap recovers Ω = T2.

function f PCA projection in R3

P (Xf ), P = PCA

frequency bands isomap projection in R3

P (Xf ), P = isomap

Fig. 3. Large γ: Both PCA and isomap fail to recover Ω = T2.

3. SIMPLICIAL AND PERSISTENT HOMOLOGY

We now briefly explain basic concepts on persistent homology
as an important tool for conceptually analyze our previous ex-
periments. We first recall basic information on simplicial ho-
mology as a basic homology theory used for constructing al-
gebraic data from topological spaces. A basic component in
this context is a (finite) abstract simplicial complex which is a
nonempty family of subsetsK of a vertex set V = {vi}mi=1 such
that if v ∈ V then {v} ∈ K, and if α ∈ K,β ⊆ α, then β ∈ K.
The elements of K are denominated faces, and their dimension
is defined as their cardinality minus one. Faces of dimension
zero and one are called vertices and edges, respectively. A sim-
plicial map between simplicial complexes is a function respect-
ing their structural content by mapping faces in one structure
to faces in the other. These concepts represent combinatorial
structures capturing the topological properties of many geomet-
rical constructions. Given an abstract simplicial complex K,
an explicit topology is defined by considering a geometric re-
alization or polyhedron, denoted by |K|, which is constructed
by mapping faces to generalized versions of triangles or tetra-
hedrons in Euclidean spaces.

A basic analysis tool of a simplicial complex K, is the con-
struction of algebraic structures for computing topological in-
variants, which are properties of |K| that do not change under
homeomorphisms. From an algorithmic point of view, we com-
pute topological invariants of K by translating its combinato-
rial structure in the language of linear algebra. For this task,
a basic scenario is to consider the following three steps. First,
we construct the module of k-chains Ck, defined as the formal
combinations of k-dimensional faces with coefficients in a ring.
We then consider linear maps between the group of k-chains by
constructing the boundary operators ∂k, defined as the linear
transformation which maps a face σ = [p0, · · · pn] ∈ Cn into
Cn−1 by ∂nσ =

∑n
k=0(−1)k[p0, · · · , pk−1, pk+1, · · · pn]. As

a third step, we construct the homology groups defined as the
quotient Hk := ker(∂k)/im(∂k+1). Finally, the k-dimensional
holes are defined as the rank of the homology groups, βk =
rank(Hk) (these are the Betti numbers). For instance, in the
case of a sphere, we have zero one-dimensional holes, and one
two-dimensional hole. In the case of a torus, there are two one-
dimensional holes, and one two-dimensional hole.

Persistent Homology

A major problem when using the previous framework for study-
ing a dataset X = {xi}mi=1 is the fact that we do not have
a simplicial complex structure at hand. Persistent homology
(see [1]) provides a strategy for constructing topological in-
formation of a point cloud data. The fundamental idea is to
construct a family of simplicial complexes by considering the
spaces Xε = ∪mi=1B(xi, ε), where a ball B(xi, ε) of radius
ε > 0 is centered around each point of the dataset X . Vari-
ous well-known structures (e.g. Vietoris Rips complexes) are
available for studying homological information of Xε.

There are two crucial remarks for implementing these ideas
in an efficient computational framework. On the one hand, de-
spite the fact that we are considering a continuous parameter
ε > 0, it can be verified that for a given dataset X , there are
actually only a finite number of non-homeomorphic simplicial
complexes K1 ⊂ K2 ⊂ · · · ⊂ Kr derived from {Xε, ε > 0}.
On the other hand, another crucial property is that there are
efficient computational procedures for calculating homological
information of the complete family K1 ⊂ K2 ⊂ · · · ⊂ Kr

(see [1] for details).
The output of the persistent homology algorithm are dia-

grams representing the evolution, with respect to the parame-
ter ε > 0, of the topological features of X . For instance, in
Figure 4, the two lower right plots are two persistent diagrams,
where the red dots represent 1- and 2-dimensional holes, respec-
tively. The dots located far from the diagonal represent stable
features, while dots close to the diagonal are unstable and noise-
like components. The dataset P (Xf ) of Figure 4 contains, in
the second persistent diagram, a single dot, far away of the diag-
onal: this corresponds to a stable single two-dimensional hole.
The first diagram contains dots only close the diagonal, and thus
P (Xf ) has no one-dimensional holes. Therefore, the set from
which P (Xf ) is sampled, is homeomorphic to a sphere.



4. FILTERING AND PERSISTENT HOMOLOGY

We now present an illustrative example of a filtering procedure
and its interaction with topological measurements of a dataset
Xf . We consider f = (1 − α)g + αh, α ∈ [0, 1] to be a sum
of two functions g and h, where the datasets Xg and Xh are
sampled from spaces homeomorphic to a sphere S2 and a torus
T2, respectively.

function f = (1− α)g + αh

α = 0.00
point cloud data P (Xf )

frequency bands 1st homology level 2nd homology level

Fig. 4. f = g, and Xf ⊂M withM homeomorphic to S2.

We construct Xg and Xh, as described in our examples on
modulation maps in Section 2. For instance, in Figure 4, each
element x of the point cloud data Xf is a signal whose main
frequency content is located in three frequency bands depicted
in the lower left diagram of Figure 4. We additionally design
each element x ∈ Xg and y ∈ Xh, such that their frequency
content do not overlap. For example, in Figure 5, the lower
diagram shows the six different frequency bands for the signal
x + y: the first three bands corresponding to a typical element
x ∈ Xg , and the other bands correspond to elements y ∈ Xh.

function f = (1− α)g + αh

α = 0.50
point cloud data P (Xf )

frequency bands 1st homology level 2nd homology level

Fig. 5. f = (g + h)/2, and Xf as an intermediate structure.

For these examples, the variations of the parameter α corre-
sponds to a filtering process, where we selectively remove (or
add) the component g (or h) from the signal f . The topological
effects can be seen by studying the persistent homology dia-
grams of Xf . For each Figure 4, 5, and 6, we have diagrams
representing the first and second homology level. With this in-
formation we have an estimation for the number of one- and
two-dimensional holes in Xf .

function f = (1− α)g + αh

α = 1.00
point cloud data P (Xf )

frequency bands 1st homology level 2nd homology level

Fig. 6. f = h, and Xf ⊂M withM homeomorphic to T2.

In the case of Figure 4, the persistent diagram for Xf shows
a clear stable two-dimensional hole, and only noise-like one-
dimensional holes. As previously mentioned, this corresponds
to a spherical structure for Xf . Figure 6 shows two closely
related, one-dimensional holes, and additionally two two-
dimensional holes, which (approximately) corresponds to a
torus structure. The persistent homology diagrams for the in-
termediate structure X(g+h)/2 are depicted in Figure 5, where
several two-dimensional holes are present.
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