
Conservative Semi-Lagrangian Advection

on Adaptive Unstructured Meshes

Armin Iske and Martin Käser

Abstract. A conservative semi-Lagrangian method is designed in order
to solve linear advection equations in two space variables. The advection
scheme works with finite volumes on an unstructured mesh, which is given by
a Voronoi diagram. Moreover, the mesh is subject to adaptive modifications
during the simulation, which serves to effectively combine good approxima-
tion quality with small computational costs. The required adaption rules
for the refinement and the coarsening of the mesh rely on a customized
error indicator. The implementation of boundary conditions is addressed.
Numerical results finally confirm the good performance of the proposed con-
servative and adaptive advection scheme.

1 Introduction

Many physical phenomena in transport processes are modelled by time-
dependent hyperbolic conservation laws. Finite volume schemes provide
well-established conservative methods for solving the governing advection
equations. Moreover, high-order finite volume schemes were developed in
order to treat high gradients and discontinuities of the solution.

The analysis of available standard methods for hyperbolic equations is
typically dominated by time step restrictions, mainly for the sake of their
stability. In contrast to Eulerian schemes, Lagrangian particle methods
require often less restrictive conditions on the time step. On the other
hand, however, Lagrangian methods are usually not conservative. A more
comprehensive discussion on these and related aspects concerning Eulerian
versus Lagrangian schemes for hyperbolic conservation laws is offered in the
textbooks [6, 10, 11].

Considerable effort has been made recently in order to construct conser-
vative semi-Lagrangian methods [9, 13, 15, 17]. But the resulting advection
schemes are not adaptive. In fact, these papers’ methods work with a rectan-
gular grid, respectively, which is fixed throughout the simulation. However,
in order to balance the method’s approximation quality and its computa-
tional costs effectively, adaptivity is an essential requirement, especially when
modelling multiscale phenomena.

1

In this paper, we propose a second order semi-Lagrangian finite volume
method for passive advection, which is both conservative and adaptive. To
this end, our method works with control volumes of an unstructured adap-
tive mesh, which is given by the Voronoi diagram of current nodes. The
node set is corresponding to a set of moving particles. Moreover, the node
set is subject to adaptive modifications during the simulation, and so is the
Voronoi diagram to be updated accordingly. This requires customized adap-
tion rules for the dynamic refinement and coarsening of the node set. The
adaption rules rely on available local error estimates at the current nodes.
Details on this are deferred to Section 5.

We remark that the proposed method can be viewed as an extension of
the previous conservative but non-adaptive advection schemes by Scroggs &
Semazzi [17] and by Phillips & Williams [13]. But adaptivity is one crucial
feature of our method. Indeed, the effective node adaption serves to enhance
our method’s accuracy, and it allows us to cope with complicated geometries
and discontinuities of the solution. This is confirmed by the numerical results
in the test case scenarios of Section 6, where the good performance of the
proposed advection scheme is illustrated.

The outline of this paper is as follows. A precise formulation of the
mathematical problem and a preliminary discussion on the method’s basic
features are provided in the following Section 2. Relevant ingredients of the
semi-Lagrangian finite volume method are then discussed in Section 3, where
in particular a brief recap of Voronoi diagrams is provided. The construction
of the method’s mass conservation is explained in Section 4, where also the
implementation of boundary conditions is discussed. Numerical results are
provided in Section 6, and a final conclusion is drawn in Section 7.

2 Preliminary Discussion

In this paper, we regard passive advection equations, given by a scalar time-
dependent hyperbolic conservation law of the form

∂u

∂t
+ ∇ · (au) = 0, (1)

where for a compact time interval I = [0, T] ⊂ R, T > 0, and the computa-
tional domain Ω = R

2, the velocity field

a = a(t, x), t ∈ I, x ∈ Ω,

is assumed to be given. In this case, the scalar solution u : I × Ω → R of
(1) usually corresponds to a physical quantity, such as density or concen-

2

tration. Especially when modelling physical phenomena in relevant applica-
tions, such as chemical tracer transportation, mass conservation, i.e.,

d

dt

∫

R2

u(t, x) dx = 0,

is always an important requirement.
In this paper, we consider solving (1) numerically, on the given initial

condition
u(0, x) = u0(x), for x ∈ Ω. (2)

To this end, we work with a conservative semi-Lagrangian adaptive advec-
tion scheme, whose construction is a subject of the discussion in this paper.
For the moment of the following discussion, we wish to avoid boundary con-
ditions. To this end, we assume that the computational domain is the whole
plane, i.e., Ω = R

2. But later in Subsection 4.3, where the implementation
of boundary conditions is explained, we drop this assumption.

The following construction of our method combines the particle-based
semi-Lagrangian approach of the previous papers [1, 2, 3] with a finite vol-
ume scheme on adaptive unstructured meshes. We remark that the particle-
based scheme of [1] is applied in [2] on a real-world test case scenario con-
cerning chemical tracer transportation over the Arctic stratosphere. An
extension of the scheme in [1] to nonlinear transport equations has recently
been suggested in [3]. However, none of the meshfree particle schemes in
[1, 2, 3] is conservative, which is a severe drawback in several relevant ap-
plications, such as the above mentioned tracer advection simulation.

Before we expand all relevant ingredients of our method in detail, let
us briefly explain the basic ideas for the construction of the conservative
scheme of this paper. Similar to [1, 2, 3], the discretization works with a
finite set Ξ ⊂ Ω of nodes, each of which corresponds to one flow particle at
a time t ∈ I. Any current node set Ξ defines a unique Voronoi diagram VΞ,
which yields a partitioning of the computational domain Ω = R

2 into #Ξ
finite control volumes, Voronoi cells, so that each cell in VΞ contains exactly
one node from Ξ.

Given the cell average values over the current Voronoi cells at time t,
initially given by using a suitable node set Ξ along with the initial condition
(2), the advection step t → t + τ in our scheme is accomplished as follows.
For each current Voronoi cell V ∈ VΞ, a corresponding upstream cell U ⊂ Ω
is constructed. The upstream cell U contains at time t the proportion of
mass which is advected into the cell V during the time step t → t + τ . This
duality relation between U and V is used in order to establish (local) mass

3

conservation by
∫

U

uh(t, x) dx =

∫

V

uh(t + τ, x) dx, (3)

where uh ≈ u is an approximation to the solution u of the Cauchy problem
(1), (2). Details on the construction of the upstream cells are discussed in
Section 3.

Moreover, be it sufficient for the moment to remark that, in our second
order advection scheme, uh in (3) is a piecewise linear function over the cur-
rent Voronoi diagram VΞ. Details on the construction of uh are explained in
Subsections 4.1 and 4.2, whereas the implementation of boundary conditions
is explained in Subsection 4.3. Finally, the adaption rules for the nodes in
Ξ are discussed in Section 5.

3 Semi-Lagrangian Advection on Voronoi Cells

In this section, the construction of the above mentioned upstream cells is
discussed. To this end, let us first recall some relevant ingredients from com-
putational geometry, in particular Voronoi diagrams (see the textbook [14]
for more details on Voronoi diagrams). For a fixed finite node set Ξ ⊂ R

2,
the Voronoi diagram VΞ = {Vξ}ξ∈Ξ of Ξ is a planar graph, which yields a
partitioning

R
2 =

⋃

ξ∈Ξ

Vξ

of the plane into Voronoi cells of the form

Vξ =

{

x ∈ R
2 : min

ζ∈Ξ
‖x − ζ‖ = ‖x − ξ‖

}

⊂ R
2.

Figure 1 shows the Voronoi diagram VΞ of a planar node set Ξ. For any
ξ ∈ Ξ, its corresponding Voronoi cell Vξ is a convex polytope containing all
points in the plane whose nearest point in Ξ is ξ. The vertices of Vξ are said
to be the Voronoi vertices of Vξ. The nodes in Ξ whose Voronoi cells are
adjacent to the Voronoi cell Vξ are said to be the Voronoi neighbours of ξ.

3.1 Computation of Upstream Vertices

The construction of any upstream cell U relies on the construction of its
upstream vertices. In order to explain the construction of the upstream
vertices, let V ≡ Vξ be the Voronoi cell of any node ξ ∈ Ξ. Moreover, let

4

� �
� �

�
�

Figure 1: Voronoi diagram VΞ of a node set Ξ.

v1, . . . ,vn denote the n Voronoi vertices of V , labelled in a counter-clockwise
ordering. For the purpose of constructing the upstream cell U corresponding
to V , we first approximate the upstream positions of the Voronoi vertices
v1, . . . ,vn of V . This is accomplished as follows.

Let u− be the exact upstream position of any vertex v of V satisfying
u(t,u−) = u(t + τ,v). The upstream position u− of v can be viewed as the
location of a flow particle at time t, which by traversing along its trajectory
arrives at the vertex v at time t + τ , see Figure 2. In case of passive advec-
tion, the shape of the particles’ flow trajectories are entirely and uniquely
determined by the given velocity field a = a(t, x).

Note that the exact upstream position u− of v is usually unknown.
In order to compute an approximation u to the upstream point u−, this
amounts to numerically solving the ordinary differential equation (ODE)

ẋ =
dx

dt
= a(t, x), (4)

with initial condition x(t+ τ) = v, so that the solution x of the initial value
problem satisfies x(t) = u−.

Adopting some standard notation from dynamical systems [4], we express
the upstream position u− of the vertex v as

u− = Φt,t+τv, (5)

5

u

� �
� �
� �
� �

v

u

−

Vξ

Figure 2: The backward trajectory from the Voronoi vertex v ∈ Vξ to its
upstream point u−, and its linear approximation, leading to u.

where Φt,t+τ : Ω → Ω denotes the continuous evolution of the (backward)
flow of (4). An equivalent formulation for (5) is given by v = Φt+τ,tu−,
since Φt+τ,t is the inverse of Φt,t+τ .

Likewise, for the sake of notational simplicity in the following of this
text, it is convenient to express the approximation u of u− as

u = Ψt,t+τv, (6)

where Ψt,t+τ : Ω → Ω is the discrete evolution of the flow. Note that the
operator Ψt,t+τ is usually given by any suitable numerical method for solving
the above ODE (4). This, however, is only a generic definition for Ψt,t+τ .

In order to be more concrete on the upstream point approximation, we
remark that our implementation works with the fixpoint iteration

β(k+1) = τ · a

(

t +
τ

2
,v −

β(k)

2

)

, k = 0, 1, 2, . . . , (7)

where we let β(0) = 0. This yields after merely a few iterations a sufficiently
accurate linear approximation β of the backward trajectory at v. In this
case, the desired approximation to the upstream point u− is given by

u = v − β,

6

see Figure 2. We remark that the iteration (7) has already been recom-
mended in the seminal paper on semi-Lagrangian methods by Robert [16],
see also [11, equation (7.66a)].

3.2 Construction of Upstream Cells

Recall the generic notation of the discrete evolution Ψt,t+τ in (6). Note
that for any Voronoi vertex vj , 1 ≤ j ≤ n, of a cell V ∈ VΞ we obtain an
approximation to its corresponding upstream point by

uj = Ψt,t+τvj , 1 ≤ j ≤ n.

By connecting the sequence u1,u2, . . . ,un,u1 of consecutive upstream point
approximations we obtain a closed polygon, denoted by U . This defines
the upstream cell of the (bounded) Voronoi cell V . Again, for the sake of
notational simplicity, it is convenient to use the notation

U = Ψt,t+τV, for V ∈ VΞ. (8)

Figure 3 shows an example for an upstream cell U ≡ Uξ, corresponding to
a Voronoi cell V ≡ Vξ, ξ ∈ Ξ.

In order to be able to facilitate the following computations, we require
that every upstream cell U is convex and nondegenerate (details on this
are explained in Subsection 4.2). We achieve this by introducing a time
step restriction on τ , similar to the one suggested in [13, 17]. To be more
precise, we first select one initial value τ0 > 0, which is gradually reduced by
letting τk+1 = τk/2, k ≥ 0, whenever at least one non-convex or degenerate
upstream cell occurs. In our numerical experiments, where we let τ0 = 0.1,
this iteration requires only at most four steps. Note that by using this time
step restriction, the duality relation (8) is well-defined.

We remark that our condition on the time step τ is, when compared with
Eulerian schemes, much less restrictive. Indeed, the stability of explicit Eu-
lerian methods is typically dominated by rather restrictive CFL conditions,
which in turn leads to very small time steps, especially when working with
adaptive meshes containing very small finest control volumes [10].

Now according to the construction of the upstream cells, and in view
of mass conservation, any upstream cell U is supposed to contain the pro-
portion of mass, which is to be advected into its corresponding Voronoi cell
V = Ψt+τ,tU at the (current) time step t → t + τ . This requirement is
accommodated by (3).

7

� �
� �

�
�

Vξ

ξU

Figure 3: Voronoi cell Vξ of the node ξ ∈ Ξ, and its upstream cell Uξ.

Yet it remains to determine the total mass

mU ≡ mU (t) =

∫

U

uh(t, x) dx

contained in any single upstream cell U , at time t, from the given mass
distribution in the current Voronoi diagram VΞ. To this end, we compute
the intersections of U with its overlapping Voronoi cells in VΞ. Further
details on this are discussed in the following section.

4 Mass Conservation by Construction

Given the current Voronoi diagram VΞ, at time t, let UΞ = {Uξ}ξ∈Ξ denote
the corresponding set of current upstream cells, each of which is given by
the duality relation (8). Note that the collection UΞ of upstream cells yields
(besides the Voronoi diagram VΞ) yet another partitioning of the plane, so
that we have

R
2 =

⋃

ξ∈Ξ

Uξ.

We make use of the duality (8) between the Voronoi cells and the upstream
cells in order to design an advection scheme which is mass conservative by
construction.

8

4.1 Reconstruction from Cell Average Values

The modelling taken in this approach works with piecewise linear functions
over the Voronoi diagram VΞ, so that we obtain a second order finite volume
scheme. In order to be more precise on this, the current approximation uh

to the solution u of the Cauchy problem (1), (2) is, at any time t, an element
of the linear function space

S1(VΞ) = {uh : Ω → R : uh|V ∩Ω linear; for all V ∈ VΞ}

containing all piecewise linear functions on VΞ ∩ Ω.
Starting point for computing the numerical solution uh(t, ·) ∈ S1(VΞ), at

a time t, are known cell average values

ūV (t) ≈
1

|V |

∫

V

u(t, x) dx, for all V ∈ VΞ,

over the current Voronoi diagram VΞ, where |V | denotes the volume of V
in R

2. Initially, for a suitable set Ξ of nodes, we let ūVξ
(0) = u0(ξ) for all

ξ ∈ Ξ, by using the initial condition (2).
Given {ūV (t)}V ∈VΞ

, we wish to determine uh(t, ·) ∈ S1(VΞ) from the cell
averages, such that

ūV (t) =
1

|V |

∫

V

uh(t, x) dx, for all V ∈ VΞ, (9)

holds. This is accomplished as follows.
For any Voronoi cell Vξ ∈ VΞ, we first determine the best approximation

u∗ ∈ P1 satisfying

min
u∈P1

∑

ν∈N

|ūν − u(ν)|2 =
∑

ν∈N

|ūν − u∗(ν)|2.

Here, P1 is the space of all linear bivariate polynomials, and N denotes the
set of Voronoi neighbours of ξ. Hence, the function u∗ is the least squares
fit of the cell average values ūν , ν ∈ N , in the neighbourhood of Vξ.

Next, we determine a constant c such that the function uh = u∗+c ∈ P1

satisfies (9). This is achieved by letting

c =
1

|V |
·

(

mV −

∫

V

u∗ dx

)

, (10)

where mV = |V | · ūV (t) is the total mass in the cell V . In other words, the
constant c in (10) adjusts the linear least square fit u∗ in order to guarantee
mass conservation (9) locally.

9

Additionally, we constrain the slopes of the linear approximation uh by
requiring the two conditions

minx∈V uh(x) ≥ minν∈N ūν

maxx∈V uh(x) ≤ maxν∈N ūν ,
(11)

which can be viewed as a slope limiter. Slope limiters are typically employed
in TVD (Total Variation Diminishing) schemes in order to avoid spurious
oscillations of the solution. In order to match the restrictions (11), this
needs merely a local correction of uh, so that the resulting modification of
uh continues to satisfy (9). To this end, we follow along the lines of the
construction in [19].

4.2 Conservative Advection of Cell Average Values

Having computed uh(t, ·) from the current cell averages {ūV (t)}V ∈VΞ
, we are

in a position to compute, for any upstream cell U , its total mass

mU =

∫

U

uh(t, x) dx

which is advected into the corresponding Voronoi cell V = Ψt+τ,tU . To this
end, we first decompose U into smaller tiles by computing the intersections
between U and its overlapping Voronoi cells in VΞ (see Figure 4).

In order to be able to facilitate the computation of these intersections,
the upstream cell U is supposed to be convex, which explains the time step
restriction suggested in the previous Section 3.2. With assuming convexity
for U , this namely allows us to use the efficient intersection algorithm pro-
posed in [12]. The algorithm in [12] requires merely O(p + q) operations for
the intersection of two convex polygons with p and q vertices, respectively.
In contrast, computing the intersection of two non-convex polygons would
cost O(p · q) operations. For further details on this, see [12].

Now the intersections between U and the cells in the Voronoi diagram
VΞ yield by

U =
⋃

V ∈VΞ

(U ∩ V)

a partitioning of U into merely a small number of tiles, which requires only
local computations. Indeed, this tiling for U is given by all non-empty in-
tersections between U and Voronoi cells in VΞ. Figure 4 shows one example,
where one upstream cell U is decomposed into four tiles, U1, U2, U3, U4, so
that U = U1 ∪ U2 ∪ U3 ∪ U4.

10

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

U1

U2

U3

U4

��		

V

Figure 4: The decomposition of an upstream cell U into four tiles, U1, U2, U3

and U4.

The current approximation uh(t, ·) ∈ S1(VΞ) to the solution u in (1) is
now used in order to determine the total mass mU in U . This is done as
follows. Note that the restriction of uh(t, ·) to any Voronoi cell V ∈ VΞ is
a linear function by definition. So, in particular the restriction of uh(t, ·)
to any non-empty tile U ∩ V is linear. This allows us to compute, for any
V ∈ VΞ, at time t, the current mass

mU∩V =

∫

U∩V

uh(t, x) dx, for V ∈ VΞ, (12)

of the linear function uh over the tile U ∩V exactly. If U ∩V is empty, then
we have mU∩V = 0. This in turn yields the total mass

mU =
∑

V ∈VΞ

mU∩V (13)

in the upstream cell U at time t. In the advection step t → t + τ , the total
mass mU is advected from the upstream cell U into the Voronoi cell V . We
establish this local mass conservation by replacing the current cell average
values ūV (t) in (9) by the updates

ūV (t + τ) =
1

|V |
mU , for all V ∈ VΞ. (14)

11

Altogether, we obtain a conservative semi-Lagrangian advection scheme,
each of whose time steps t → t + τ is given by the following algorithm.

Algorithm 1 (Conservative Semi-Lagrangian Advection).

INPUT: Time step size τ > 0, node set Ξ ⊂ Ω, Voronoi diagram VΞ, and
cell average values ūV (t) for all V ∈ VΞ.

• Compute piecewise linear uh(t, ·) ∈ S1(VΞ) satisfying (9) and (11).

• FOR each V ∈ VΞ DO

– Compute upstream cell U = Ψt,t+τV ;

– Compute the total mass mU over the upstream cell via (12), (13);

– Update cell average values ūV (t + τ) using (14);

OUTPUT: Updated cell average values ūV (t + τ) for all V ∈ VΞ.

4.3 Implementation of Boundary Conditions

Now let us finally turn to the implementation of boundary conditions. In
the above discussion until now, we have considered the special case where
the computational domain Ω is the whole plane, i.e., Ω = R

2. However,
in specific applications of interest, Ω is bounded, and, moreover, boundary
conditions are of relevance. Therefore, suppose from now that Ω is bounded.

Recall that our proposed scheme works with a partitioning of the plane
by using Voronoi cells, given by the Voronoi diagram VΞ of the current node
set Ξ. In the situation of a bounded domain Ω ⊂ R

2, we work with restricted
Voronoi cells of the form Ṽ = V ∩ Ω, which yields a decomposition of Ω by

Ω =
⋃

V ∈VΞ

Ṽ .

Note that Ṽ = V for V ⊂ Ω, so that this restriction is only relevant for
Voronoi cells which intersect the boundary ∂Ω of the domain Ω, in which
case Ṽ 6= V (see Figure 5 for illustration).

Now the collection {Ũξ}ξ∈Ξ of all upstream cells, Ũξ = Ψt,t+τ Ṽξ, yields
by their union

Ω− =
⋃

ξ∈Ξ

Ũξ

12

U3

U1

U2

U4
� �� �� �

��
�

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

V

Figure 5: The upstream cell U of the Voronoi cell V intersects the boundary
∂Ω of the domain Ω. A boundary value mU2

is assigned to the tile U2.

an upstream domain Ω− ⊂ R
2. This gives rise to define the two sets

Ωin = Ω− \ Ω and Ωout = Ω \ Ω−.

The set Ωin corresponds to a region outside of Ω through which mass
is advected into Ω across its boundary ∂Ω, whereas Ωout contains the mass
which is advected from Ω to the exterior of Ω across ∂Ω.

More precisely, we can explain this as follows. Note that an upstream
cell U may partly or entirely lie outside the domain Ω. Figure 5 shows an
upstream cell U , which intersects the boundary ∂Ω. This leads to a tiling of
U as before, but where at least one tile lies entirely outside of the domain Ω.
In the situation of Figure 5, this is the tile U2. Now in order to implement
boundary conditions concerning the incoming flow, we assign a boundary
value to each such tile of Ωin, such as U2 ∈ Ωin. This boundary value, say
mU2

, determines the mass which is advected through the tile U2 into the
domain Ω.

As regards outgoing flow, we remark that the upstream domain Ω− may
not cover the entire domain Ω, in which case the set Ωout is non-empty. The
mass contained in Ωout is advected into regions outside of the domain Ω.

13

5 Adaption Rules

One important feature of our advection schemes is its adaptivity. Adaptiv-
ity requires the modification of the node set Ξ after each time step t → t+ τ
of the above Algorithm 1. This is in order to be able to balance the two
conflicting requirements of good approximation quality and small computa-
tional costs. In fact, for the sake of reducing the computational complexity
we wish to reduce the size of the node set Ξ, whereas for the sake of good
approximation quality we prefer to increase the density (and thus the size)
of the node set Ξ in Ω.

We have combined the conservative advection scheme of this paper with
the ideas of the adaption strategy in [1, 2, 3], in order to obtain an adaptive
and conservative semi-Lagrangian advection method. In order to keep this
paper widely self-contained, we wish to discuss the basic ideas of the node
adaption strategy of the previous work [2] in this section.

5.1 Error Indication

An effective strategy for the adaptive modification of the node set Ξ requires
well-motivated refinement and coarsening rules as well as a customized error
indicator. We understand the error indicator η : Ξ → [0,∞) as a function
of the current node set Ξ (at time t) which serves to assign a significance
value η(ξ) to each ξ ∈ Ξ. The value η(ξ) is required to reflect the local
approximation quality of ūVξ

(t) around ξ ∈ Ξ. The significances η(ξ), ξ ∈ Ξ,
are then used in order to flag single nodes ξ ∈ Ξ as “to be refined” or “to
be coarsened” according to the following criteria.

Definition 1 Let η∗ = maxξ∈Ξ η(ξ), and let θcrs, θref be two tolerance values
satisfying 0 < θcrs < θref < 1. We say that a node ξ ∈ Ξ is to be refined,
iff η(ξ) > θref ·η

∗. We say that ξ ∈ Ξ is to be coarsened, iff η(ξ) < θcrs ·η
∗.

In our numerical experiment, we let θcrs = 0.05 and θref = 0.2 for the
relative tolerances. Note that a node ξ cannot be refined and be coarsened
at the same time; in fact, it may neither be refined nor be coarsened.

Now let us turn to the definition of the error indicator η. We follow along
the lines of [7], where a local scheme for the detection of discontinuities of a
surface from scattered data was developed. Therefore, we let

η(ξ) = |ūVξ
(t) − s(ξ)|, (15)

where for a set N ⊂ Ξ \ {ξ} of neighbouring nodes of ξ, the thin plate
spline interpolant s ≡ sN in (15), satisfying the interpolation conditions

14

s(ν) = ūVν (t) for all ν ∈ N , is of the form

s =
∑

ν∈N

cν‖ · −ν‖2 log(‖ · −ν‖) + p.

Here, p is a linear polynomial in two variables and ‖ · ‖ denotes the Eu-
clidean norm. For more details concerning thin plate spline interpolation,
due to Duchon [5], and related interpolation methods, we refer to the recent
tutorial [8].

Hence, the thin plate spline interpolant s in (15) matches current cell
average values of ūVν (t) in the neighbourhood of the Voronoi cell Vξ, but not
at Vξ itself, i.e., we have ūVξ

(t) 6= s(ξ) in general. Now the error indication
η(ξ) for the node ξ is small whenever the reproduction quality of ū by s
around ξ is good. In contrast, a high value of η(ξ) typically indicates that
ū is subject to strong variation locally around ξ. Indeed, this observation
relies on available local error estimates for thin plate spline interpolation (see
the corresponding discussion on this in [1, 2, 3]). We remark that the error
indicator allows us to locate discontinuities of the solution u quite effectively.
This is supported by the numerical results in the following Section 6.

5.2 Coarsening and Refinement

In order to balance the approximation quality of the model against the
required computational complexity we insert new nodes into regions where
the value of η is high (refinement), whereas we remove nodes from Ξ in
regions where the value of η is small (coarsening).

To avoid additional computational overhead and complicated data struc-
tures, effective adaption rules are required to be as simple as possible. In
particular, these rules ought to be given by local operations on the current
node set Ξ and thus on its Voronoi diagram VΞ. The following coarsening
rule is in fact very simple and, in combination with the refinement, it turned
out to be very effective as well.

Coarsening. A node ξ ∈ Ξ is coarsened by its removal from the current
node set Ξ. I.e., in this case we let Ξ = Ξ\ ξ, and the Voronoi diagram VΞ is
updated accordingly in order to obtain the modified Voronoi diagram VΞ\ξ.

Refinement. A node ξ ∈ Ξ is refined by the insertion of the n Voronoi
vertices v1, . . . ,vn of its corresponding Voronoi cell Vξ. I.e., in this case we
let Ξ = Ξ ∪ {v1, . . . ,vn}, and the current Voronoi diagram VΞ is updated
accordingly.

15

6 Numerical Results

In this section, the performance of our advection scheme is evaluated by
using two numerical experiments. In the first experiment, the accuracy and
convergence is analyzed. This is done by considering the test case suggested
by Phillips & Williams in [13], which allows us to compare our numerical
results with those in [13] directly. In the second experiment, we apply our
advection scheme to the slotted cylinder, a well-known test case suggested
by Zalesak [21]. This illustrates the efficacy of the chosen adaption strategy,
and, moreover, it confirms that our method is conservative. The numerical
experiments were prepared on a personal computer, model IBM 236623G

(Genuintel Pentium(R) 4 1600MHz processor, 256MB physical memory).
The algorithms were implemented by using MATLAB, Version 6.5, Release 13.

6.1 Experiment 1

According to the numerical experiment suggested in [13], we consider solving
the hyperbolic equation (1) on the computational domain Ω = [1, 2]2 ⊂ R

2.
We let a(x) = (x1,−x2), x = (x1, x2), for the velocity field, as displayed in
Figure 6 (a).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

(a) (b)

Figure 6: (a) Velocity field and (b) steady state solution u on Ω.

The initial condition suggested in [13] is given by

u(0, x) = 0, for x ∈ (1, 2] × [1, 2).

16

For the boundary conditions at the two inflow boundaries, we let

u(t, x) = 1 + x2
2, for x1 = 1, x2 ∈ [1, 2], t ≥ 0,

u(t, x) = 1 + 4x2
1, for x2 = 2, x1 ∈ [1, 2], t ≥ 0.

(16)

This condition (16) determines the boundary values of the incoming flow.
We remark that in this model problem, the solution of (1) converges to

the steady state solution

u(x) = 1 + (x1x2)
2, x ∈ Ω, (17)

as displayed in Figure 6 (b). In order to compare our results with those of
Phillips & Williams [13], we proceed as follows.

We first create a nested sequence of four different node sets Ξh ⊂ Ω, such
that each corresponding Voronoi diagram VΞh

yields a regular mesh with
mesh size h. The sequence of these four meshes is displayed in Figure 7. In
order to make a fair comparison with the results in [13], we keep the node
set Ξh fixed throughout each simulation. Moreover, we also let τ = 0.01
fixed, which leads to convex and nondegenerate upstream cells during the
simulation.

According to [13], the simulation terminates, as soon as the stopping
criterion

‖ūV (t + τ) − ūV (t)‖∞
τ

≤ 10−5, for all V ∈ VΞh
, (18)

is satisfied. In this case, the numerical solution has reached the steady state
approximatively.

In order to measure accuracy and convergence order, let ũh ≈ u denote
this final approximation to the steady state u in (17), on a mesh of width h.
The accuracy of ũh is measured by using the relative error

Ep(h) =
‖u − ũh‖p

‖ũh‖p

,

where we let p = 1, 2 or p = ∞ for the corresponding norm. Furthermore,
the expression

kp =
log

(

Ep(h) / Ep(h/2)
)

log(2)
,

yields an estimate for the convergence order, where Ep(h) and Ep(h/2) are
the errors (w.r.t. the selected norm p = 1, 2,∞) observed on two subsequent
meshes (see Figure 7).

17

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

(a) (b)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

(c) (d)

Figure 7: A sequence of four regular Voronoi diagrams VΞh
with mesh widths

(a) h = 0.25, (b) h = 0.125, (c) h = 0.0625, (d) h = 0.03125.

18

h E1(h) k1 E2(h) k2 E∞(h) k∞
0.25 3.962 · 10−2 - 4.653 · 10−2 - 7.230 · 10−2 -
0.125 9.598 · 10−3 2.05 1.178 · 10−2 1.98 2.441 · 10−2 1.57
0.0625 1.872 · 10−3 2.36 2.228 · 10−3 2.37 6.471 · 10−3 1.91
0.03125 2.789 · 10−4 2.74 3.391 · 10−4 2.75 1.452 · 10−3 2.16

Table 1: Convergence results for regular Voronoi diagrams VΞh
(Figure 7).

Table 1 shows the dependence of the error Ep(h) on the mesh width
h for the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, together with the corresponding
convergence orders kp. The results agree very well with those of Phillips &
Williams in [13]. In fact, our scheme reaches the expected order of 2 in all
three norms.

In [13] four different schemes, denoted as A, B, C, and D, are introduced.
In comparison with the schemes A, C, and D, our method is more accurate.
We can explain this as follows. Firstly, in contrast to the schemes A and C
in [13], our scheme is based on a centered reconstruction stencil, i.e., on each
cell Vξ we use all Voronoi neighbours of the node ξ in order to reconstruct
the piecewise linear uh. Secondly, our slope limiter in (11) is less restrictive
than the one used in scheme D of [13].

But the scheme B in [13] yields more accurate results in terms of approx-
imation errors and convergence orders. This is because centered differences
without any slope limiter are used in the scheme B of [13]. The absense of
the slope limiter, however, often leads to an oscillatory solution uh, which
is considered to be a severe drawback in many relevant applications.

h E1(h) k1 E2(h) k2 E∞(h) k∞
0.25 1.999 · 10−2 - 2.749 · 10−2 - 4.734 · 10−2 -
0.125 7.308 · 10−3 1.45 9.569 · 10−3 1.52 1.706 · 10−2 1.47
0.0625 2.065 · 10−3 1.82 2.483 · 10−3 1.95 5.362 · 10−3 1.67
0.03125 5.491 · 10−4 1.91 6.432 · 10−4 1.95 1.469 · 10−3 1.87

Table 2: Convergence results for irregular Voronoi diagrams VΞh
(Figure 8).

In the following of this experiment, we now investigate the influence of
mesh irregularity on the accuracy of our scheme. To this end, we work with
a sequence of four irregular meshes VΞh

(displayed in Figure 8) comprising
the same number #Ξh of cells as in the regular case (see Table 3). In this

19

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

(a) (b)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
1

x
2

(c) (d)

Figure 8: A sequence of four irregular Voronoi diagrams VΞh
with mesh

widths (a) h = 0.25, (b) h = 0.125, (c) h = 0.0625, (d) h = 0.03125.

20

irregular case, h is considered as a measure of an average mesh width.
Table 2 shows the approximation errors and convergence orders which

were obtained by using the same model problem as discussed above, but
with using the mesh sequence in Figure 8 instead of the one in Figure 7.
Observe that the errors Ep(h) are of the same magnitude as in the regular
case, but the convergence orders kp are slightly lower.

We remark that a higher number of time steps, and thus more CPU
seconds, are necessary for the irregular meshes in order to reach the steady
state ũh satisfying the stopping criterion (18). This is shown in Table 3.
Note also from Table 3 that the advection scheme converges with a fewer
number of time steps (for both cases, regular and irregular), as the mesh
width h is reduced. This confirms the utility of semi-Lagrangian schemes.
In contrast, Eulerian schemes typically require smaller time steps when the
mesh is refined, which in turn leads to an increasing number of necessary
time steps.

regular mesh irregular mesh

h #Ξh time steps CPU seconds time steps CPU seconds

0.25 16 189 1.442 202 1.926
0.125 64 129 4.356 157 6.520
0.0625 256 108 12.016 125 17.245
0.03125 1024 95 30.424 99 39.314

Table 3: Time steps and CPU seconds required to reach the steady state ũh.

In conclusion, this numerical experiment shows that our semi-Lagrangian
scheme reaches second order accuracy on both structured and unstructured
Voronoi diagrams. This provides more flexibility, especially in view of more
complicated geometries. In the following experiment, we investigate the
conservation properties of our advection scheme. Moreover, we combine the
enhanced flexibility of unstructured meshes with local mesh adaption.

6.2 Experiment 2

In this experiment we consider the rotating slotted cylinder, a popular test
case suggested by Zalesak [21]. Here, Ω = [−0.5, 0.5]2 ⊂ R

2 and the initial
condition is given by

u(0, x) =

{

1 for x ∈ D,
0 otherwise,

(19)

21

where D ⊂ Ω is the slotted disc of radius r = 0.15, centered at (0, 0.25) with
slot width 0.06 and length 0.22, see Figure 9 (a).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(a) (b)

Figure 9: The slotted cylinder. (a) Initial condition and (b) velocity field.

In the original test case of Zalesak, the slotted cylinder is rotated by
a steady flow field a(x) ∼ (x2,−x1), where x = (x1, x2). We decided to
replace this velocity field by

a(x) = (x2,−x1)

{

1
2 sin(2ϕ(x) − π

2) + 3
2 for x2 < 0,

1 for x2 ≥ 0,
(20)

whose azimuth angle is given by

ϕ(x) =

{

arctan(−x2/x1) for x1 > 0,

arctan(x1/x2) + π
2 for x1 ≤ 0.

This velocity field rotates the slotted cylinder clockwise with constant an-
gular velocity in the first and second quadrant, whereas the cylinder is ac-
celerated in the fourth quadrant, and decelerated in the third quadrant, see
Figure 9 (b). The maximum angular velocity ω = 2 is attained in the lower
half of the coordinate system, namely at the points on the vertical line

{x = (x1, x2) : x1 = 0, x2 < 0}.

The slotted cylinder is stretched when passing through the acceleration part
of the velocity field in the fourth quadrant, whereas it is squashed in the

22

deceleration part of the third quadrant in order to recover its original shape
of the initial condition at each full revolution.

Initially, a set Ξ ⊂ Ω of 1500 randomly distributed nodes is chosen. The
initial condition (19) is used in order to assign a cell average value ūV (0) in
(9) to each Voronoi cell V ∈ VΞ of the initial Voronoi diagram VΞ. The initial
nodes are automatically adapted to the discontinuities of the initial condition
u0, by using the adaption strategy discussed in the previous Section 5, see
Figures 10 (b),(c).

At each revolution of the slotted cylinder, the cell average values ūV

are decreasing, as soon as the cylinder enters the acceleration part of the
velocity field, see Figure 11. This behaviour is due to the mass conservation
of the scheme. In contrast to this, in the deceleration part, the cell average
values ūV are increasing. Moreover, in this region, the initial shape of slotted
cylinder is gradually recovered, see the Figures 11, 12, and 13.

Our simulation of this model problem comprises six full revolutions of
the slotted cylinder. During the simulation, we have recorded the number
of current nodes, the variation of the time step size τ , and the ratio of the
first mass moment

RFM(t) =

∑

V ∈VΞ

ūV (t) − min(t) + mout(t)

∑

V ∈VΞ

ūV (0)
, (21)

where min(t) is the total mass of the incoming flow and mout(t) is the total
mass of the outgoing flow, during time [0, t], respectively. Our numerical
results are reflected by Figure 14. Let us provide a few comments on the
three graphs of this figure.

The number of nodes is increasing, whenever the slotted cylinder passes
through the accelerating part of the velocity field (20). In this case, the
cylinder is stretched, and so more nodes are needed in order to adaptively
resolve the elongated edges of the cylinder. We remark that the moderate
increase in numbers of nodes at the beginning of the simulation is due to
numerical diffusion. In contrast to this, the number of nodes is decreasing,
whenever the cylinder enters the decelerating part of the velocity field. In
this case, the cylinder is gradually squashed back to its original shape, and
so fewer nodes are needed in order to adaptively resolve the cylinder’s edges.
Altogether, this explains the periodic behaviour of the graph concerning the
number of nodes in Figure 14, first row.

Figure 14 shows also the variation of the time step τ in its second row.
As mentioned in Subsection 3.2, the time step size is determined, such that

23

−0.5

0

0.5
−0.5

0

0.5

0

0.5

1

x
2

x
1

u

−0.5

0

0.5
−0.5

0

0.5

0

0.5

1

x
2

x
1

u

(a) (d)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(b) (e)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(c) (f)

Figure 10: The slotted cylinder. (a) 3D view, (b) node distribution, and
(c) Voronoi diagram of the initial condition (left column), and after six
revolutions (right column), (d),(e),(f).

24

−0.5

0

0.5
−0.5

0

0.5

0

0.5

1

x
2

x
1

u

−0.5

0

0.5
−0.5

0

0.5

0

0.5

1

x
2

x
1

u

(a) (b)

−0.5

0

0.5
−0.5

0

0.5

0

0.5

1

x
2

x
1

u

−0.5

0

0.5
−0.5

0

0.5

0

0.5

1

x
2

x
1

u

(c) (d)

Figure 11: The slotted cylinder. 3D view on the evolution of ūV (t) at four
different times, (a) t = t53; (b) t = t70; (c) t = t102; (d) t = t180, during
the first revolution.

25

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(a) (b)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(c) (d)

Figure 12: The slotted cylinder. Node distribution during the simulation
at four different times, (a) t = t53; (b) t = t70; (c) t = t102; (d) t = t180,
during the first revolution.

26

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(a) (b)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(c) (d)

Figure 13: The slotted cylinder. Voronoi diagram VΞ during the simulation
at four different times, (a) t = t53; (b) t = t70; (c) t = t102; (d) t = t180,
during the first revolution.

27

0 100 200 300 400 500 600 700 800 900 1000
2000

4000

6000

8000

o
f

n
o

d
es

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

τ

0 100 200 300 400 500 600 700 800 900 1000

0.9999

1

1.0001

timestep

R
F

M

Figure 14: The slotted cylinder. Number of nodes, time step size τ , and
ratio of the first mass moment (RFM).

all upstream cells are convex. Not surprisingly, this leads to an acceleration
(long time steps), whenever the cylinder passes through the accelerating part
of the velocity field, whereas a slow down of the cylinder (short time steps)
is observed in its decelerating part. Altogether, this explains the correlation
between the time step size τ and the number of nodes, as shown in Figure 14.

As to mass conservation, we have implemented boundary conditions, as
explained in Subsection 4.3. We let mU = 0 for all tiles U ∈ Ωin, and so we
have min(t) = 0, for all t ∈ [τ, T], for the total mass of the incoming flow.
Figure 14, third row, shows the ratio of the first mass moment, RFM(t) in
(21). Note that

RFM(t) ≡ 1, for all t ∈ [0, T],

and so this confirms that our proposed advection scheme is conservative.
Figure 10 shows the 3D view of the cell averages ūV , the node distribu-

tion, and the Voronoi diagram of the initial condition (19) in the left column,
in comparison to the corresponding numerical result after six full revolutions
(right column). Observe that the shape of the cylinder is accurately main-
tained during the simulation, and numerical diffusion is widely suppressed.
Finally, the employed TVD slope limiter helps to avoid spurious oscillations
of the numerical solution uh. In fact, the slope limiter serves to guarantee

28

the non-negativity of the cell averages throughout the entire simulation, i.e.,
ūV (t) ≥ 0 for all t ∈ I, V ∈ VΞ.

7 Conclusion and Future Research

We have proposed a conservative and adaptive advection scheme for linear
hyperbolic conservation laws. This semi-Lagrangian method works with fi-
nite volumes of an unstructured mesh, given by the Voronoi diagram of a
current node set. The nodes, and so the Voronoi diagram, is subject to
adaptive modifications during the simulation. These modifications are done
according to customized adaption rules, which rely on available error esti-
mates. This adaptive approach helps to reduce the required computational
costs while maintaining the accuracy, due to higher resolution around dis-
continuities in the solution. The implementation of boundary conditions is
considered in order to control mass flow into or out of the computational
domain. As confirmed in two different numerical experiments, the proposed
advection scheme is of second order. The scheme avoids spurious oscillations
of the solution by using a TVD slope limiter. Altogether, the numerical re-
sults confirm the good performance of the proposed conservative advection
scheme.

Finally, we remark that the proposed conservative semi-Lagrangian ap-
proach cannot be extended to nonlinear advection equations in a straight
forward manner. In fact, the simulation of nonlinear transport processes
requires additional sophisticated techniques, especially for modelling shock
front propagation. The construction of conservative methods for nonlin-
ear transport equations is currently an active research area. Promising ap-
proaches include high order accurate ADER schemes (Arbitrary high or-
der schemes using high order DERivatives), which were recently introduced
in [18, 20]. In view of future research, we intend to combine conservative
ADER schemes on unstructured meshes with our powerful and robust node
adaption strategy of Section 5.

Acknowledgment

The authors were partly supported by the European Union within the
project NetAGES (Network for Automated Geometry Extraction from Seis-
mic), contract no. IST-1999-29034.

29

References

[1] J. Behrens and A. Iske (2002) Grid-free adaptive semi-Lagrangian ad-
vection using radial basis functions. Comput. Math. Appl. 43, 319–327.

[2] J. Behrens, A. Iske, and S. Pöhn (2001) Effective node adaption for
grid-free semi-Lagrangian advection. Discrete Modelling and Discrete

Algorithms in Continuum Mechanics, T. Sonar and I. Thomas (eds.),
Logos Verlag, Berlin, 110–119.

[3] J. Behrens, A. Iske, and M. Käser (2002) Adaptive meshfree method
of backward characteristics for nonlinear transport equations. Mesh-

free Methods for Partial Differential Equations, M. Griebel and
M.A. Schweitzer (eds.), Springer-Verlag, Heidelberg, 21–36.

[4] P. Deuflhard and F. Bornemann (2002) Scientific Computing with Ordi-

nary Differential Equations. Springer, New York.

[5] J. Duchon (1977) Splines minimizing rotation-invariant semi-norms in
Sobolev spaces. Constructive Theory of Functions of Several Variables,
W. Schempp and K. Zeller (eds.), Springer, Berlin, 85–100.

[6] D.R. Durran (1999) Numerical Methods for Wave Equations in Geophys-

ical Fluid Dynamics. Springer, New York.

[7] T. Gutzmer and A. Iske (1997) Detection of discontinuities in scattered
data approximation. Numerical Algorithms 16:2, 155–170.

[8] A. Iske (2002) Scattered data modelling using radial basis functions.
Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak,
and M.S. Floater (eds.), Springer-Verlag, Heidelberg, 205–242.

[9] J.P.R. Laprise and A. Plante (1995) A class of semi-Lagrangian
integrated-mass (SLIM) numerical transport algorithms. Monthly
Weather Review 123, 553–565.

[10] R.L. LeVeque (2002) Finite Volume Methods for Hyperbolic Problems.
Cambridge University Press, Cambridge, UK.

[11] K.W. Morton (1996) Numerical Solution of Convection-Diffusion Prob-

lems. Chapman & Hall, London.

[12] J. O’Rourke, C.-B. Chien, T. Olson, and D. Naddor (1982) A new
linear algorithm for intersecting convex polygons. Comput. Graph. Image
Process. 19, 384–391.

30

[13] T.N. Phillips and A.J. Williams (2001) Conservative semi-Lagrangian
finite volume schemes. Numer. Meth. Part. Diff. Eq. 17, 403–425.

[14] F.P. Preparata and M.I. Shamos (1985) Computational Geometry.
Springer, New York.

[15] A. Priestley (1993) A quasi-conservative version of the semi-Lagrangian
advection scheme. Monthly Weather Review 121, 621–629.

[16] A. Robert (1981) A stable numerical integration scheme for the primi-
tive meteorological equations. Atmosphere-Ocean 19, 35–46.

[17] J.S. Scroggs and F.H.M. Semazzi (1995) A conservative semi-
Lagrangian method for multidimensional fluid dynamics applications.
Numer. Meth. Part. Diff. Eq. 11, 445–452.

[18] V.A. Titarev and E.F. Toro (2002) ADER: Arbitrary high order Go-
dunov approach. J. Sci. Comput. 17, No.1-4, 609–618.

[19] E.F. Toro (1999) Riemann Solvers and Numerical Methods for Fluid

Dynamics. Springer-Verlag, Berlin.

[20] E.F. Toro, R.C. Millington, and L.A.M. Nejad (2001) Towards very high
order Godunov schemes. Godunov methods, Theory and Applications,
E.F. Toro (ed.), Kluwer, New York, 907–940.

[21] S.T. Zalesak (1979) Fully multidimensional flux-corrected transport al-
gorithms for fluids. J. Comput. Phys. 31, 335–362.

Authors’ addresses:

Armin Iske (corresponding author)
Zentrum Mathematik
Technische Universität München
D-85747 Garching, GERMANY
iske@ma.tum.de

Phone: ++49-89-289 17956
Fax: ++49-89-289 17985

Martin Käser
Zentrum Mathematik
Technische Universität München
D-85747 Garching, GERMANY
kaeser@ma.tum.de

31

