
Meshfree Thinning of 3D Point Clouds

Nira Dyn

Tel-Aviv University

Armin Iske

University of Hamburg

Holger Wendland

University of Sussex

July 26, 2007

Abstract

An efficient data reduction scheme for the simplification of a surface
given by a large set X of 3D point-samples is proposed. The data re-
duction relies on a recursive point removal algorithm, termed thinning,
which outputs a data hierarchy of point-samples for multiresolution
surface approximation. The thinning algorithm works with a point re-
moval criterion, which measures the significances of the points in their
local neighbourhoods, and which removes a least significant point at
each step. For any point x in the current point set Y ⊂ X, its signifi-
cance reflects the approximation quality of a local surface reconstructed
from neighbouring points in Y . The local surface reconstruction is done
over an estimated tangent plane at x by using radial basis functions.
The approximation quality of the surface reconstruction around x is
measured by using its maximal deviation from the given point-samples
X in a local neighbourhood of x. The resulting thinning algorithm is
meshfree, i.e., its performance is solely based upon the geometry of the
input 3D surface point-samples, and so it does not require any further
topological information, such as point connectivities. Computational
details of the thinning algorithm and the required data structures for
efficient implementation are explained and its complexity is discussed.
Two examples are presented for illustration.

1 Introduction

Surface reconstruction from large sets of 3D points is a challenging problem
in computer graphics and reverse engineering. In this context, it is usually
required, as a preprocessing step, to reduce the complexity of an input scat-
tered point set X = {x1, . . . , xN} ⊂ R3. The discrete set X of unorganized
point samples, often referred to as a 3D point cloud, may, for instance, be
acquired by a 3D laser scan from the surface of a geometric object. In rel-
evant applications, the size |X| = N of the point cloud X can be of the

1

order of several millions. This makes an efficient surface reconstruction and
visualization, even on modern hardware, a rather difficult task.

Complexity reduction from large 3D point clouds has therefore become
one of the key problems for surface reconstruction and visualization. In
this preprocessing task, called model simplification, it is required to extract
a small subset Y ⊂ X, |Y | ≪ |X|, of points which approximate the given
3D point cloud X sufficiently well, in view of subsequent methods for surface
rendering. Moreover, efficient methods for surface visualization often rely on
a multiresolution representation of the surface. Such multiresolution models
typically require the construction of a suitable coarse-to-fine data hierarchy

Y1 ⊂ Y2 ⊂ · · · ⊂ YL ⊂ X (1)

from the given data points X, where each point set Yℓ in (1), 1 ≤ ℓ ≤ L,
corresponds to one level of the surface multiresolution model.

There exist several different techniques for point-based surface model
simplification, including clustering [3, 20, 21], particle simulation [23], and
iterative simplification [1, 2, 9, 12], see the survey [19]. Iterative simplifi-
cation methods are usually preferred, whenever strong emphasis is put on
the quality of the reconstructed surface. Moreover, such progressive model
simplifications are typically used in combination with multiresolution meth-
ods [2, 9]. Relevant techniques for iterative simplification, such as edge
collapse and vertex removal, are usually based on mesh decimation, see [12]
for a survey.

Other related methods for iterative simplification include thinning [8],
a recursive point removal scheme, where the points in X are removed ac-
cording to some suitable removal criterion. Thinning algorithms are efficient
methods for the construction of a point data hierarchy (1), requiring at most
O(N log N) operations, under mild assumptions, provided that appropriate
data structures are used for their implementation.

We remark that thinning can be viewed as the inverse of point insertion.
Both concepts, thinning and insertion, essentially require careful manage-
ment of the data structure needed to represent the resulting data hierarchy
(1), where commonly used data structures are usually mesh-based. For a
recent account on models and data structures for multiresolution mesh rep-
resentation, we refer to [10]. For a recent survey on mesh-based thinning
algorithms and their application to terrain modelling and image compres-
sion, see [6].

This paper proposes a meshfree thinning algorithm. Unlike previous
(mesh-based) thinning algorithms, the meshfree approach of this paper does
not require any sophisticated data structures and algorithms for the gen-
eration and maintenance of a mesh. Yet, the complexity of our meshfree
thinning algorithm is, under mild assumptions, still O(N log N).

Our meshfree thinning algorithm works with local surface approxima-
tion, for estimating the significance of a point. The local approximation

2

relies on two ingredients: principal component analysis for the estimation of
a local tangent plane, and a kernel-based smoothing approximation using
compactly supported radial basis functions [4, 27].

The idea to use local approximations for the reconstruction of a surface
from given 3D point-samples is not new. In a series of papers by Alexa
et. al [1, 2, 9], local surface approximations are constructed by using the
method of moving least squares (MLS) [16]. As one ingredient of their sur-
face reconstruction method, a rather naive recursive point removal scheme,
based on MLS, is suggested, where the choice for a point to be removed is
merely based on the current set of points. This is in contrast to our more
sophisticated point removal scheme, where information from previously re-
moved points is taken into account, leading to a more accurate significance
measure. We remark that an accurate significance measure is very crucial
for a greedy thinning algorithm, where early removals of significant points
cannot be corrected in later stages of the algorithm, as supported by our
previous results in [8, 6].

Moreover, the reconstruction method in [1, 2, 9] is limited to smooth
surfaces, since it is assumed that any surface point has a unique tangent
plane, which in turn is essentially used in the subsequent construction of
their local surface reconstruction. In contrast, our significance measure can
also handle points where the surface is not smooth, by assigning a high
significance to a point whose neighbouring points cannot be approximated
sufficiently well by a plane.

The outline of this paper is as follows. In Section 2, we first provide a
generic introduction to thinning algorithms, and discuss required properties
of a meshfree significance measure. Details on the kernel-based local surface
reconstruction are explained in Section 3, and relevant results on its ap-
proximation properties are reviewed. These results imply desired properties
of the significance measure of a point in a point cloud. In Section 4, an
effective significance measure is proposed, based on the local approximation
method of Section 3. Then, in Section 5 various important computational
aspects are discussed, which are required for an efficient implementation of
our meshfree thinning algorithm. In particular, it is shown in Section 5 that
the computational complexity of our meshfree thinning algorithm is, under
mild assumptions, O(N log N). Finally, the efficacy and good performance
of the proposed meshfree thinning method is illustrated in Section 6, where
we use two popular test data sets, called Happy Buddha and Dragon, taken
from the 3D scanning repository of Stanford University [22].

2 Thinning Algorithms

In this section, we first provide a generic introduction to thinning algorithms,
and then specify several requirements on our meshfree thinning algorithm.

3

2.1 Generic Formulation

In order to briefly explain the basic features of thinning, let Y ⊂ X denote
a current subset of X, where initially Y = X. Using a specific significance
measure, we compute for each point x ∈ Y a (non-negative) significance
value σ(x). At each removal step, thinning deletes one point with minimal
significance from Y . In this sense, thinning is a greedy point removal scheme,
whose generic formulation is as follows.

Algorithm 1 (Thinning).

INPUT: X with |X| = N , and n ∈ {1, . . . , N − 1};

(1) Let XN = X;

(2) FOR k = 1, . . . , n

(2a) Locate a least significant point x ∈ XN−k+1;

(2b) Let XN−k = XN−k+1 \ {x};

OUTPUT: Y ≡ XN−n ⊂ X, of size |XN−n| = N − n.

Note that the thinning algorithm computes, on input X, a nested se-
quence

X = XN ⊃ XN−1 ⊃ . . . ⊃ Xj ⊃ . . . (2)

of subsets of X, where |Xj | = j for N − n ≤ j ≤ N . Moreover, the required
data hierarchy in (1) can be constructed from (2) by selecting L suitable
breakpoints k1, k2, . . . , kL ∈ {n, . . . , N}, satisfying k1 < k2 < · · · < kL, and
defining the coarse-to-fine nested sequence

Xk1
⊂ Xk2

⊂ · · ·XkL
⊂ X.

Note that the implementation of thinning requires a significance mea-
sure which allows us, for any point x of a current subset Y ⊂ X, obtained
during thinning, to determine its significance σ(x) in Y . Then, for given
significances {σ(x) :x ∈ Y }, a point x∗ ∈ Y whose significance is minimal
among those of all points in Y is said to be least significant, in which case x∗

may be removed from Y in step (2b) of Algorithm 1. For a more compre-
hensive introduction to thinning algorithms, we refer to the textbook [15,
Chapter 4].

The goal of this paper is the construction of an effective significance mea-
sure for thinning from 3D point clouds. The proposed significance measure
of this paper is meshfree and allows us (under mild assumptions) to imple-
ment thinning (Algorithm 1), at asymptotic computational cost O(N log N).
Details on the efficient implementation of Algorithm 1, required data struc-
tures, and other relevant computational aspects are discussed in Section 5.

4

2.2 Meshfree Thinning from 3D Point Clouds

Before we give details on our meshfree thinning algorithm, let us make a
few prior remarks concerning the representation of a surface and the con-
clusions which follow from such a representation for constructing a suitable
significance measure.

We believe that the design of an effective significance measure is inti-
mately connected to the reconstruction process of the surface. Hence, the
following points have to be taken into account.

• The reconstruction of a surface should be local, meaning that only the
nearest neighbours of a point x should be employed to reconstruct
the surface in the neighbourhood of the point x. We will refer to
this as local approximation and give a detailed description in the next
section. The idea of locality should be incorporated into the design of
the significance measure. This is important since the significance of a
point depends on the local behaviour of the surface, and since locality
is closely related to low computational complexity.

• The locality of the significance measure should reflect the local behav-
ior of the surface. In a locality of slow changes, the surface should
be reconstructable from less information, than in localities of rapid
changes. Hence, data sites in locations of slow changes should have
a lower significance measure, than data sites in locations where the
surface varies rapidly. We describe very precisely in the next section
how we locally approximate the surface and how this influences the
definition of the significance measure.

• To ensure that all the available information during a thinning process
is used in the estimation of the significances of the current points, the
significance measure of a current point incorporates also information
from previously removed points from that neighbourhood. To be more
precise, suppose Y ⊂ X is the current set of points, and the significance
of x ∈ Y is computed. Then our local reconstruction of the surface
depends only on neighbouring points of x from Y , yet the significance
σ(x) of x is determined by the deviations of the local reconstruction
not only at the point x, but also at a set of already removed points in
the neighbourhood of x.

In the following two sections we discuss the local approximation method,
and the design of an effective significance measure, which reflects these re-
quirements, i.e., small computational costs and high accuracy.

5

3 Local Surface Approximation

Probably the two most dominant reconstruction processes from scattered
data are moving least squares ([16, 26]) and radial basis functions ([4, 27]).
Here, we employ radial basis functions, or more generally, kernel-based ap-
proximation methods to locally describe the surface. We first shortly review
the relevant material, starting with function approximation. Then, we de-
scribe how to locally approximate a surface by considering it as a function
relative to a local tangent plane.

3.1 Approximation of Functions using Reproducing Kernel

Hilbert Spaces

Suppose Z = {z1, . . . , zN} ⊂ Ω ⊂ Rd is a set of pairwise distinct points,
which we will also call data sites and f1, . . . fN ∈ R are given function values,
assumed to stem from a function f ∈ C(Ω), which is otherwise unknown.
It is our goal to create a sufficiently good reconstruction sf,Z of f from the
data. To make this more precise, we will assume that the target f actually
belongs to a Hilbert space H of functions defined on the domain Ω. We
will further assume that point evaluations are continuous on H. In such a
situation, it is well known (cf. [27]) that H is a reproducing kernel Hilbert
space, i.e., there exists a unique function Φ : Ω × Ω → R satisfying

1. Φ(·, x) ∈ H for all x ∈ Ω,

2. f(x) = (f,Φ(·, x))H for all x ∈ Ω and all f ∈ H.

In this setting, it seems to be natural to define the reconstruction sf,Z ≡
s0 as the minimal-norm interpolant, i.e., as the solution of

min{‖s‖H : s ∈ H, s(zj) = f(zj), 1 ≤ j ≤ N}. (3)

Again, it is well known (cf. [27]) that the solution to this minimization
problem can be written as a linear combination of the reproducing kernel Φ
of H:

Lemma 3.1 The solution s0 of (3) can be represented as

s0(x) =
N∑

j=1

αjΦ(x, zj), (4)

where the coefficient vector α = (α1, . . . , αN)T ∈ RN can be computed by
solving the linear system AΦ,Zα = f |Z with the coefficient matrix

AΦ,Z = (Φ(zi, zj)).

6

It is important for the design of a significance measure, to understand the
approximation quality of the interpolant s0 = sf,Z . This quality is measured
in terms of the so called fill distance or mesh norm

hZ,Ω := sup
x∈Ω

min
zj∈Z

‖x − zj‖,

which gives the radius of the largest data site free ball in Ω, where ‖ · ‖ de-
notes the Euclidean norm on Rd. Furthermore, since we employ Wendland
functions [25] for the reconstruction process, which are known to be repro-
ducing kernels in Sobolev spaces, we restrict ourselves here to such Sobolev
spaces Hτ (Ω) with τ > d/2, ensuring that point evaluation functionals are
continuous by Sobolev’s embedding theorem (cf. [11]). In such a situation,
the following result is known (cf. [17]).

Lemma 3.2 Suppose f ∈ Hτ (Ω), where τ > d/2 and Ω is a bounded region
with a sufficiently smooth boundary. Then, for dense enough data sets, the
error between f and its reconstruction sf,Z based upon the reproducing kernel
of Hτ (Ω) satisfies the estimate

‖f − sf,Z‖L∞(Ω) ≤ Chτ−d/2‖f‖Hτ (Ω),

where h = hZ,Ω and C > 0 is a constant depending only on Ω but not on Z
or f .

This result clearly shows that for a smooth target function f , only few
data sites are necessary to well approximate (reconstruct) f up to a given
accuracy by scattered data interpolation, when employing a smooth kernel.
However, in general the precise degree of smoothness of the target function f
is unknown and it often happens that a rough target function is approxi-
mated by a smoother kernel. In such a situation, it is well-known that the
interpolation operator is in general not bounded. Nonetheless, the following
result holds (cf. [18]).

Lemma 3.3 Suppose τ ≥ β > d/2. Suppose the target function f comes
from the rougher Sobolev space Hβ(Ω), while the interpolant sf,Z is formed
using the kernel of the smoother Sobolev space Hτ (Ω). Then,

‖f − sf,Z‖L∞(Ω) ≤ Chβ−d/2ρτ‖f‖Hβ(Ω),

where

ρ = ρZ,Ω :=
hZ,Ω

qZ
, qZ = min

j 6=k
‖zj − zk‖.

Note that the uniformity measure ρ always satisfies ρ ≥ 1 and is close to
one if the data set is almost uniformly distributed, while it tends to infinity
if the data set becomes more and more non uniform.

Both results have some important consequences for our way of defining
a significance measure. We can conclude that:

7

• the error bound is larger, if the target function is less smooth,

• the error bound is larger for a non uniform data set, than for a uniform
one.

This implies for the significance of a data site:

• If the function is smooth around the data site and if there are still
enough other data sites in the neighbourhood, the data site should
have a low significance.

• If the function is rough around the data site and if there are still
enough other data sites in the neighbourhood, the data site should
have a medium significance.

• If the function is rough around the data site and if there are only few
other data sites in the neighbourhood, the data site should have a high
significance.

Note that the error estimates indicate that it is not only necessary for the
function to be smooth but also to have a small Sobolev norm. Unfortunately,
this norm is in general not at our disposal.

We will give the exact definition of our significance measure in the next
section. Before, we will address another computational issue. Interpolation
in the above form has two disadvantages. The first one comes from the fact
that the corresponding interpolation matrix AΦ,Z becomes ill conditioned
whenever two data sites are too close together. More precisely, the smallest
eigenvalue λmin(AΦ,Z) of AΦ,Z can be bounded from below by

λmin(AΦ,Z) ≥ Cq2τ−d
Z ,

which becomes worse for smoother kernels (cf. [27, Chapter 12]). The sec-
ond drawback always appears when the data is noisy. In such a situation
interpolation is not the right tool. Instead of solving (3) it is then more
appropriate to solve

min

N∑

j=1

[s(zj) − fj]
2 + λ‖f‖2

H

 . (5)

The solution sλ to (5) can be written in the form (4). The only difference
is that the coefficient vector α ∈ RN is now chosen by solving the linear
system

(AΦ,Z + λI)α = f |Z,

where I denotes the identity matrix. Obviously, there is the question of how
to choose the smoothing parameter λ > 0. This has been extensively studied

8

in particular in the context of smoothing splines, see for example [24]. In our
application, we follow a new, deterministic approach from [28]. The error
estimate for sλ, under the conditions of Lemma 3.2, is

‖f − sλ‖L∞(Ω) ≤ C
{

hτ−d/2 +
√

λ
}
‖f‖Hτ (Ω). (6)

This together with the fact that

λmin(AΦ,Z + λI) ≥ λ

indicates that a good choice for the smoothing parameter λ is given by
λ ≈ h2τ−d. We term the approximation so constructed by smoothing ap-
proximation. Note that (6) indicates that our conclusions, which we have
derived for interpolation also hold for smoothing approximation at least if
the target function belongs to the reproducing kernel Hilbert space. A result
analogous to Lemma 3.3 for smoothing approximation is still missing, but
numerical tests indicate that the smoothing approximation behaves similarly
to the interpolant, also in the case of a rougher target function.

3.2 Local Surface Approximation by Projection

Here we indicate how function approximation can be used for surface ap-
proximation. Let S ⊂ R3 denote the surface, and let x be a point on the
surface. Suppose that we have a set N ⊂ S of neighbouring points to x.
Our local surface approximation is defined by the following two steps

1. Estimate a tangent plane T to S through x using the information given
by N .

2. Project the points from N to T to define the data sites Z, and use the
signed distance from each point y in N to its projection point on T as
the data values. The points on the smoothing approximation to this
data, in the vicinity of the point x, constitute the local approximation
to the surface in the vicinity of x.

Obviously, both steps might be problematic, especially for surface points,
where the surface is locally subject to strong variations, e.g. where the sur-
face is oscillatory or in the vicinity of feature points (points where the surface
is not smooth). In such critical situations, the information in N may either
not suffice to determine a unique tangent plane, or two or more points from
N are projected to the same point on the tangent plane. In either case, we
mark the point x as indispensable by assigning a high significance measure
to it. This allows us to handle smooth surfaces with features.

The significance measure of a point on the surface, where the surface is
smooth, is presented in the next section. We end this section by describing
the procedure we use for estimating the tangent plane T .

9

The approach taken in this paper is based on a principal component
analysis (PCA). PCA has been applied in this context by Hoppe in [13, 14].
To estimate from N a local tangent plane to S at x and its normal vector,
we first compute the center of gravity

x̂(N) = x̂ =
1

|N |
∑

y∈N

y

and then the covariance matrix

cov(N) =
∑

y∈N

(y − x̂)(y − x̂)T ∈ R3×3.

Note that cov(N) is symmetric and positive semi-definite, and so its
three eigenvalues λ1, λ2, and λ3 are non-negative, and its eigenvectors, cor-
responding to different eigenvalues, are orthogonal. Now the eigenvalues
of cov(N) can be used to measure whether the points in N are close to a
plane or not. To be more precise, if two eigenvalues of cov(N), say λ1 and
λ2, are close to each other and the third one, λ3, is much smaller, then the
eigenvectors corresponding to λ1 and λ2 span the tangent plane whereas the
eigenvector corresponding to λ3 determines the normal to it.

This procedure not only gives us a way of estimating a tangent plane,
based on N , but also gives us a quantitative way of marking a point to be
indispensible, whenever the situation of two large eigenvalues and one small
eigenvalue does not prevail for cov(N).

4 Significance Measure

In this section, we propose an effective significance measure denoted by σ∞,
at points which we estimate to be points where the surface is smooth. For
any such x ∈ Y , Y ⊂ X, the significance σ∞(x) measures the quality of the
surface approximation in the local neighbourhood of x, based on a small
number of closest points to x in Y .

To explain the construction of σ∞ in details, we first introduce some
notions and notation. Recall that X = {x1, . . . , xN} ⊂ R3 denotes a (large)
3D point cloud sampled from an unknown surface S. For any subset Y ⊂ X,
obtained during the thinning algorithm, and for any x ∈ Y we denote by
N Y

x ⊂ Y \ {x} a (small) set of neighbours of x in Y . The neighbourhood
sets {N Y

x :x ∈ Y } are constructed during the performance of the thinning
algorithm. Initially, when Y = X, NX

x consists of the m closest points
to x in X \ {x}, where m = O(1) is a fixed parameter determined at the
beginning of the algorithm. Note that x is not contained in NX

x . Moreover,
by our way of updating the neighbourhood sets, x will at no stage of the
thinning algorithm be contained in any of its neighbourhood sets N Y

x , for
Y ⊂ X.

10

To further explain this, during the thinning algorithm the current neigh-
bourhood sets {N Y

x : x ∈ Y } are updated, after the removal of a least sig-
nificant point x∗ ∈ Y (in step (2b) of Algorithm 1). Only neighbourhood
sets which contain x∗ are updated. This is done by replacing x∗ in such a
neighbourhood set N Y

x , by one closest point to x from

⋃

y∈NY
x

N Y
y \ ({x} ∪ N Y

x).

We assume that the above set is not empty, which is an assumption that
excludes isolated clusters of points in X and during the thinning algorithm.
As observed in all our numerical experiments, this non-clustering assumption
holds for reasonable point clouds X.

The points in N Y
x are used to compute a local approximation to the

surface S in the neighbourhood of the surface point x ∈ S, as explained in
the previous section. First we determine an estimated tangent plane T Y

x

at the surface point x and its normal nY
x . If this stage is successful, then

the points from the local neighbourhood N Y
x are projected onto the tangent

plane T Y
x . Denoting by πY

x : R3 → T Y
x the orthogonal projection onto T Y

x ,
we define for any y ∈ R3,

δ(y;nY
x) = (y − πY

x (y)) · nY
x ,

as the signed distance between y and T Y
x .

Only in case πY
x (y) 6= πY

x (z) for y 6= z, y, z ∈ N Y
x , a local approximation

s(·;N Y
x) : T Y

x → R to the surface S at x is constructed. It is the smoothing
approximation fitting the data

{
(πY

x (y), δ(y;nY
x)) : y ∈ N Y

x

}
.

The significance in Y , of any x ∈ Y , for which such a local approximation
is constructed, is given by

σ∞(x) = max
y∈MY

x

|s(πY
x (y);N Y

x) − δ(y;N Y
x)|, (7)

where MY
x is a set of points from the neighbourhood of x in (X \ Y)∪ {x},

called the test set of x relative to Y .
The construction of the test sets {MY

x : x ∈ Y }, being maintained during
the performance of the thinning algorithm, is done as follows. With the
initialization of the thinning algorithm, when Y = X, we let MX

x = {x}
for every x ∈ X. During the thinning algorithm, the current test sets
{MY

x :x ∈ Y } are updated after the removal of a least significant point
x∗ ∈ Y (in step (2b) of Algorithm 1). The update of the test sets is done
by distributing the points from MY

x∗ among the test sets {MY
x : x ∈ N Y

x∗}.
More precisely, for each y ∈ MY

x∗ , a closest point x is located among the

11

points in N Y
x∗ , i.e., ‖y − x‖ = minz∈NY

x∗
‖y − z‖, and y is added to the test

set MY
x . The point y ∈ MY

x∗ is added to a unique test set. The number of
test sets that are updated is at most |N Y

x∗ |.
It is important to note that the test sets so constructed, form a parti-

tioning of X, i.e., for any set Y generated during the thinning algorithm,
the test sets {MY

x :x ∈ Y } are pairwise disjoint and their union coincides
with X.

The significance σ∞(x) of x ∈ Y in (7) measures the quality of the
smoothing approximation s(·;N Y

x) in the local neighbourhood of x. Indeed,
a small value σ∞(x) indicates that the surface S is smooth in the vicinity
of x, and/or that the density of the points {πY

x (y) : y ∈ N Y
x } is high (see

Subsection 3.1), while a large value σ∞(x) indicates the opposite. Hence,
σ∞(x) is a reasonable significance measure.

It is easy to conclude from the thinning algorithm, from the definition of
the test sets, and from the significance measure σ∞, approximation results
about the quality of the approximation of X and S by the current set Y ,
generated by the thinning algorithm, and by the union of the corresponding
local approximating surfaces.

To formulate these results, we recall that for two non-empty point sets,
A and B, the directed Hausdorff distance H(A, B) from A to B is defined
by

H(A, B) = sup
a∈A

inf
b∈B

‖a − b‖.

Note that for A ⊂ B, H(A, B) = 0. The Hausdorff distance between the
sets A and B is defined to be haus(A, B) = max{H(A, B), H(B, A)}.

Corollary 4.1 At any stage of the thinning algorithm,

haus(X, Y) = H(X, Y) ≤ RY , (8)

with Y ⊂ X denoting the current set of points, and

RY = max
y∈Y

max
x∈MY

y

‖x − y‖.

An approximation to S during thinning with current set Y is the set of
points

GY =
⋃

y∈Y

{
πY

y (x) + nY
y s(πY

y (x);N Y
y) : x ∈ R3, ‖x − y‖ ≤ RY

y

}
,

with RY
y = maxx∈MY

y
‖x − y‖, defined for any y ∈ Y .

Corollary 4.2 At any stage of the thinning algorithm, with Y ⊂ X denot-
ing the current set of points, we have

H(X,GY) ≤ max
y∈Y

σ∞(y).

12

A direct consequence of the last corollary is

H(S,GY) ≤ max
y∈Y

σ∞(y) + H(S, X),

where H(S, X) measures the quality of the representation of the surface S
by the given point cloud X. The last two inequalities are of interest only if
for each y ∈ Y a local approximation is constructed, and σ∞(y) is obtained
by (7).

5 Implementation and Computational Aspects

The discussion in this section is concerning data structures which are used
in order to obtain an efficient implementation of our meshfree thinning algo-
rithm. Recall from the discussion in Section 2, that our aim is to implement
meshfree thinning, Algorithm 1, at complexity O(N log N).

Let us elaborate on the tasks, required for updating the data after the
removal of a least significant point, before explaining further details on the
utilized data structures. Note that by the removal of a point x∗ ∈ Y from
Y , the points from its dual neighbourhood,

DY
x∗ = {x ∈ Y :x∗ ∈ N Y

x }, (9)

are affected, since x∗ is removed from their neighbourhoods. Therefore the
significances {σ∞(y) : y ∈ DY

x∗} need to be updated, after the update of the
neighbourhoods {N Y

y : y ∈ DY
x∗}. Also the significances of the points in N Y

x∗

have to be updated, since their test sets {MY
x : x ∈ N Y

x∗} are updated with
the removal of x∗. Thus, steps (2a)–(2b) in Algorithm 1 of our meshfree
thinning algorithm are accomplished by the performance of the following
tasks:

(T1) Locate a least significant point x∗ ∈ Y with σ∞(x∗) = minx∈Y σ∞(x);

(T2) Remove x∗ from the data structure.

(T3) Distribute the points in the test set MY
x∗ among the points in the test

sets {MY
x : x ∈ N Y

x∗}, as explained in Section 4.

(T4) Update the neighbourhood sets {N Y
x : x ∈ DY

x∗}, as explained in Sec-
tion 4, and update the dual neighbourhood sets {DY

x : x ∈ N Y
x∗} ac-

cordingly.

(T5) For each y ∈ DY
x∗ ∪N Y

x∗ , update its significance σ∞(y).

(T6) Update the data structure.

13

In order to analyze the required computational costs, first note that we
store the indices of the points in the neighbourhoods {N Y

x :x ∈ Y }, the dual
neighbourhoods {DY

x : x ∈ Y } and the test sets {MY
x :x ∈ Y }, separately,

and thus need to update their index sets only. Moreover, note that the
number of points in DY

x depends on the density of the points in Y in the
vicinity of x. Here we assume that |DY

x | = O(1) for any x ∈ Y , as observed
in all our numerical experiments. Under this reasonable assumption and the
non-clustering assumption of the previous section, and since |N Y

x∗ | = m, the
updates in task (T4), (T5) require O(1) operations.

As for the complexity of task (T3), note that the sizes of the test sets
{MY

x :x ∈ Y } are increasing during the performance of the thinning al-
gorithm. Under the simplistic assumption that the points in X \ Y are
uniformly distributed over the test sets {MY

x :x ∈ Y }, the distribution of
the points in the test set MY

x∗ among the test sets {MY
x : x ∈ N Y

x∗} requires
c∗(N − n)/n operations, where N = |X|, n = |Y |, and c∗ = O(1) is the cost
of finding a nearest point among m points.

Task (T6) can usually be accomplished in O(log N) operations, pro-
vided that additional pointers to the nodes of the data structure are stored.
Another possibility, which does not require such an interference with the
internal data structure is based upon a balanced binary search tree. In fact,
this is the data structure which we employed in our implementation. To be
more precise, we use an AVL-tree, even if any balanced binary search tree
would do it. To built the tree we define an ordering on the points by using
their significances σ∞. Hence, a point x is smaller (i.e., less significant) than
another point y, iff σ∞(x) < σ∞(y). In case of equality, we use their point
indices to decide on their ordering in the tree.

We remark that an AVL-tree, like a heap, can be built in O(N log N)
operations [5]. Moreover, any removal or insertion (or update of) a node can
be done in O(log N) operations, where this includes operations required for
rebalancing the tree. Hence, when using an AVL-tree, under the assumption
that the number of points in DY

x is O(1), task (T5) requires only O(log N)
operations.

Likewise, in task (T2) the deletion of the least significant point x∗ from
the AVL-tree can be accomplished in only O(log N) operations. We remark
that an AVL-tree is organized such that the left most element in the tree
is least significant. Thus, in task (T1) x∗ can be located by O(log N)
operations, since the (balanced) AVL-tree has depth O(log N).

It remains to discuss the computational complexity of the preprocessing
stage of finding m nearest neighbours to a point x ∈ X. To solve this
problem efficiently, we use another tree-based data structure, namely a kd-
tree [5] to store the points in X. A kd-tree is a binary tree which can also be
built in O(N log N) operations. Moreover, the k nearest neighbours problem
can be answered in O(k log N) operations. Therefore, under the assumption
m = O(1), the neighbourhood set NX

x can be obtained in only O(log N)

14

operations for any x ∈ X. Moreover, note that the construction of the dual
neighbourhoods DX

x , for all x ∈ X, from the sets NX
x , x ∈ X, requires

only O(N) operations. For more details concerning kd-trees, we refer to the
textbook [5].

In our implementation, we aimed to have in the neighbourhood set N Y
x

the closest m points to x from Y \ {x}, for each x ∈ Y , and for each set Y
generated during the thinning algorithm. In order to keep the computational
complexity as required, the updates in task (T4) in our implementation,
are based on the initial kd-tree. Although not all the neighbourhood sets
consist of the m closest points, this strategy gives good results if N − n is
still large enough, and guarantees that the updates of {N Y

x : x ∈ DY
x∗} in

task (T4) can be performed by O(1) operations. Note that by this strategy,
any point from Y \ {x∗} can replace x∗ in {N Y

x : x ∈ DY
x∗}, yet the number

of replacing points, which is the number of dual neighbourhoods that have
to be updated, is at most |DY

x∗ |, which according to our assumption is O(1),
and so the updates of {DY

x : x ∈ N Y
x∗} in task (T4) in our implementation,

can be performed by O(1) operations.
In summary, building the initial AVL-tree, the kd-tree, and the sets

NX
x , DX

x , MX
x , for all x ∈ X, requires only O(N log N) operations. Task

(T1) requires O(log N) operations, and so do tasks (T2) and (T6). Tasks
(T4) and (T5) for both strategies of updating the neighbourhoods, require,
under our above assumptions, O(1) operations, whereas task (T3) requires
c∗(N − n)/n operations.

Therefore, the total cost needed for the performance of tasks (T1)–(T6)
after the removal of one least significant point from Y , with n = |Y |, is
O(log N)+ c∗(N −n)/n. Since the number of point removals is bounded by
N , the total computational complexity of our meshfree thinning algorithm
is (under the above assumptions) only at most O(N log N) operations, as
stated in the introduction.

6 Numerical Simulations

We have implemented the proposed thinning algorithm efficiently by using
the data structures AVL-tree and kd-tree, as explained in Section 5. The
update of N Y

x , for x ∈ DY
x∗ , and the distribution of the points in the test set

MY
x∗ , as required after the removal of x∗, is based on the initial kd-tree.
In order to illustrate the efficacy of our meshfree thinning algorithm,

we applied our implementation to two standard test data sets from the
3D scanning repository of Stanford University [22]. These two data sets,
called Happy Buddha and Dragon, are displayed in Figure 1 (a) and (b).

In either test case, we decided to use one of the compactly supported
functions Φ from [25] for the construction of the local surface approxima-
tions. We remark that this choice for Φ allows us to effectively control the

15

(a) (b)

Figure 1: Two test data sets from the Stanford 3D scanning repository.
(a) Happy Buddha of size |X| = 543, 521; (b) Dragon of size |X| = 435, 544.

75 % of data 50 % of data 25 % of data 10 % of data

Figure 2: Happy Buddha. Data hierarchy output by meshfree thinning.

smoothness of the surface approximation s in (4). A popular alternative
for the choice of the kernel are Duchon’s celebrated thin plate splines [7],
Φ(x, y) = ‖x − y‖2 log(‖x − y‖), which would provide comparable numeri-
cal results, at slightly larger computational costs though, since in this case
linear polynomials need to be added to the form of the minimizer in (4).

Figure 2 shows for the first test case, Happy Buddha, a nested sequence
Y1 ⊂ Y2 ⊂ Y3 ⊂ Y4 ⊂ X of four 3D point clouds, which were output by our
meshfree thinning algorithm. The sizes of the subsets Yℓ are 10 %, 25 %,
50 %, and 75 % of the size |X| = 543, 521 of the original data X. For the

16

other test case, Dragon, Figure 3 shows a data hierarchy of four 3D point
clouds, which were output by our meshfree thinning algorithm, comprising
10 %, 25 %, 50 %, and 75 % of points from the initial point cloud consisting
of |X| = 435, 544 data points.

75 % of data 50 % of data

25 % of data 10 % of data

Figure 3: Dragon. Data hierarchy output by meshfree thinning.

Figure 4: Happy Buddha. Least significances during meshfree thinning.

Note that in either test case, each of the four subsets Yℓ, 1 ≤ ℓ ≤ 4, in
the constructed data hierarchy, manage to capture the geometric features
of the geometric object remarkably well. Moreover, also their topology is
maintained correctly.

17

Finally, Figure 4 shows for the test case Happy Buddha the graph of the
significances σ∞(x∗) as a function of the removal step k in Algorithm 1. Note
that the least significances are not necessarily monotonically increasing. Yet
the global trend of the significances is monotonically increasing.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T.
Silva. Point set surfaces. In IEEE Visualization, pages 21–28, 2001.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T.
Silva. Computing and rendering point set surfaces. IEEE Trans. Vis.
Comput. Graph., 9(1):3–15, 2003.

[3] D. Brodsky and B. Watson. Model simplification through refinement.
In Proceedings of Graphics Interface, pages 221–228, Montreal, May
2000. AK Peters.

[4] M. D. Buhmann. Radial Basis Functions. Cambridge University Press,
Cambridge, UK, 2003.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, Massachusetts, 2nd edition, 2001.

[6] L. Demaret, N. Dyn, M.S. Floater, and A. Iske. Adaptive thinning
for terrain modelling and image compression. In N.A. Dodgson, M.S.
Floater, and M.A. Sabin, editors, Advances in Multiresolution for Ge-
ometric Modelling, pages 321–340, Berlin, 2005. Springer.

[7] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev
spaces. In W. Schempp and K. Zeller, editors, Constructive Theory of
Functions of Several Variables, pages 85–100. Springer, 1977.

[8] N. Dyn, M.S. Floater, and A. Iske. Adaptive thinning for bivariate
scattered data. Journal of Computational and Applied Mathematics,
145(2):505–517, 2002.

[9] S. Fleishman, D. Cohen-Or, M. Alexa, and C.T. Silva. Progressive
point set surfaces. ACM Trans. Graph., 22(4):997–1011, 2003.

[10] L. De Floriani and P. Magillo. Multiresolution mesh representation:
models and data structures. In A. Iske, E. Quak, and M.S. Floater, ed-
itors, Tutorials on Multiresolution in Geometric Modelling, pages 363–
417, Berlin, 2002. Springer.

[11] F.G. Friedlander and M.S. Joshi. Introduction to the Theory of Dis-
tributions. Cambridge University Press, Cambridge, UK, 2nd edition,
1999.

18

[12] M. Garland and P. Heckbert. Surface simplification using quadratic
error metrics. In SIGGRAPH’97, Washington, DC, 1997. ACM.

[13] H. Hoppe. Surface Reconstruction from Unorganized Points. PhD the-
sis, University of Washington, 1994.

[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. In SIGGRAPH’92,
volume 26, pages 71–78, Washington, DC, 1992. ACM.

[15] A. Iske. Multiresolution Methods in Scattered Data Modelling. Springer,
Berlin, 2004.

[16] D. Levin. The approximation power of moving least-squares. Math.
Comput., 67:1517–1531, 1998.

[17] F. J. Narcowich, J. D. Ward, and H. Wendland. Sobolev bounds on
functions with scattered zeros, with applications to radial basis function
surface fitting. Math. Comput., 74:643–763, 2005.

[18] F. J. Narcowich, J. D. Ward, and H. Wendland. Sobolev error estimates
and a Bernstein inequality for scattered data interpolation via radial
basis functions. Constructive Approximation, 24:175–186, 2006.

[19] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces. In Proceedings of the conference on Visualization’02,
pages 163–170, Washington, DC, 2002. IEEE.

[20] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for
rendering complex scenes. In B. Falcidieno and T.L. Kunii, editors,
Modeling in Computer Graphics: Methods and Application, pages 455–
465, Berlin, 1993. Springer.

[21] E. Shaffer and M. Garland. Efficient adaptive simplification of massive
meshes. In Proceedings of the conference on Visualization’01, pages
127–134, Washington, DC, 2001. IEEE.

[22] Stanford. The stanford 3d scanning repository, 2005. Stan-
ford Computer Graphics Laboratory, University of Stanford,
http://graphics.stanford.edu/data/3Dscanrep/.

[23] G. Turk. Re-tiling polygonal surfaces. In SIGGRAPH’92, Washington,
DC, 1992. ACM.

[24] G. Wahba. Spline models for observational data. In CBMS-NSF, Re-
gional Conference Series in Applied Mathematics, Philadelphia, 1990.
SIAM.

19

[25] H. Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Adv. Comp. Math.,
4:389–396, 1995.

[26] H. Wendland. Local polynomial reproduction and moving least squares
approximation. IMA J. Numer. Anal., 21:285–300, 2001.

[27] H. Wendland. Scattered Data Approximation. Cambridge University
Press, Cambridge, UK, 2005.

[28] H. Wendland and C. Rieger. Approximate interpolation with appli-
cations to selecting smoothing parameters. Numerische Mathematik,
101:643–662, 2005.

20

