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Abstract. In previous work, a new adaptive meshfree advection scheme for numer-
ically solving linear transport equations has been proposed. The scheme, being a
combination of an adaptive semi-Lagrangian method and local radial basis function
interpolation, is essentially a method of backward characteristics. The adaptivity of
the meshfree advection scheme relies on customized rules for the refinement and
coarsening of scattered nodes. In this paper, the method is extended to nonlinear

transport equations. To this end, in order to be able to model shock propagation, an
artificial viscosity term is added to the scheme. Moreover, the local interpolation
method and the node adaption rules are modified accordingly. The good perfor-
mance of the resulting method is finally shown in the numerical examples by using
two specific nonlinear model problems: Burgers equation and the Buckley-Leverett

equation, the latter describing a two-phase fluid flow in a porous medium.

1 Introduction

Many physical phenomena in transport processes are described by time-
dependent hyperbolic conservation laws. Their governing equations have the
form

∂u

∂t
+ ∇f(u) = 0 (1)

where for some domain Ω ⊂ R
d, d ≥ 1, and a compact time interval

I = [0, T ], T > 0, the function u : I × Ω → R is unknown. Moreover,
f(u) = (f1(u), . . . , fd(u))T denotes the flux tensor. In this paper, we consider
numerically solving (1) on given initial conditions

u(0, x) = u0(x), for x ∈ Ω = R
d, (2)

and for nonlinear flux functions f .
In previous work [3,4], a new adaptive meshfree advection scheme has

been proposed for numerically solving (1) for the special case where

f(u) = a · u, (3)

in which case we obtain the linear (passive) advection equation

∂u

∂t
+ a · ∇u = 0 (4)
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provided that the given velocity field

a = a(t, x) ∈ R
d, t ∈ I, x ∈ Ω,

is divergence-free.
The method in [3,4] is a combination of an adaptive semi-Lagrangian

method (ASLM) [1,2] and the meshfree radial basis function interpolation.
The resulting advection scheme is used for the simulation of tracer trans-
portation in the arctic stratosphere [4]. We remark that the scheme in [3,4]
is a method of characteristics, see [7,12]. Indeed, the characteristic curves of
(4) coincide with the trajectories of fluid particles, and the meshfree ASLM
in [3,4] captures the flow of particles along their characteristic curves. This
is accomplished by computing backward trajectories for a finite set of cur-
rent particles (nodes) at each time step, whereas the node set is adaptively
modified during the simulation.

In this paper, an adaptive meshfree method of backward characteristics
is designed for the purpose of numerically solving nonlinear equations of the
form (1). In contrast to the linear case, a nonlinear flux function f usually
leads to discontinuities in the solution u, shocks, as observed in many relevant
applications in fluid dynamics, meteorology, astrophysics, petroleum reservoir
simulation, etc. The characteristics-based method in [3,4] becomes unwieldy
or impossible in nonlinear problems where the evolution of the flow along
the characteristic curves may be much more complicated or characteristic
curves may even be not defined, cf. [9], Subsection 6.3.1. Therefore, we ap-
ply a vanishing viscosity approach yielding the modified advection-diffusion
equation

∂u

∂t
+ ∇f(u) = ε · ∆u, (5)

with ε > 0 being the artificial diffusion coefficient.
When it comes to extending the advection scheme of [3,4], the local inter-

polation scheme is to be modified accordingly. The extension of the advection
scheme is subject of the discussion in Section 2. The two remaining major
ingredients, local thin plate spline interpolation, and the customized adaption
rules, are then explained in the Sections 3 and 4.

Finally, the good performance of the resulting adaptive and meshfree
method of backward characteristics is shown by numerical results in Section 5,
where we consider using two different nonlinear model problems: Burgers

equation, a standard test case, where

f(u) =
1

2
u2 · r, (6)

with flow direction r ∈ R
d, and the Buckley-Leverett equation, whose flux

function has the form

f(u) =
u2

u2 + µ(1 − u)2
· r. (7)
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The Buckley-Leverett equation models the saturation of a two-phase flow in
a porous medium when neglecting gravitational forces or capillary effects. In
this case, the value of µ in (7) is the ratio of the two different fluid’s viscosi-
ties. This model problem is typically encountered in oil reservoir modelling.
Details on this particular application are explained in the final Section 5.

2 Meshfree Method of Backward Characteristics

For the special case of passive advection (3), the scalar function u is constant
along trajectories, streamlines, whose shapes are entirely and uniquely deter-
mined by the (given) velocity field a ≡ a(t, x). Likewise, in the nonlinear case
the solution u is constant along trajectories of fluid particles, characteristic
curves. In contrast to the linear case of passive advection, these characteristic
curves do, however, depend on u.

In order to numerically solve the modified equation (5), the adaptive
meshfree semi-Lagrangian method of [3,4] is extended as follows. At each
time step t → t+ τ , with τ > 0 being the time step size, the values u(t+ τ, ξ)
at a current finite set Ξ of nodes, each of which corresponding to a flow
particle, are computed from the previous values u(t, ξ), ξ ∈ Ξ. Initially, the
set Ξ0 is randomly chosen.

Starting point of the method is the Lagrangian form of (5),

du

dt
= ε · ∆u,

where du
dt

= ∂u
∂t

+ ∇f(u) is the material derivative. This leads us to the
discretization

u(t + τ, ξ) − u(t, x−)

τ
= ε∆u(t, x−),

where x− ≡ x−(ξ) is the upstream location of the node ξ. Note that a particle
located at the upstream point x− at time t moves along its trajectory and
arrives at ξ at time t + τ . Having computed x− for any ξ ∈ Ξ, the desired
approximation of u(t + τ, ξ) would thus be given explicitly by

u(t + τ, ξ) = u(t, x−) + τ · ε∆u(t, x−), for ξ ∈ Ξ. (8)

But on given ξ ∈ Ξ, the exact location of the upstream point x− is usually
not known. A linearized approximation of x− is given by

x̃ = ξ − β,

where β = τv and v = ∂f(u)
∂u

is the advection velocity, i.e.

v(t, x) = ẋ =
dx

dt
. (9)
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x−

ξ

x~

Fig. 1. Upstream point x− of the node ξ ∈ Ξ, and its approximation x̃ ≈ x−.

In order to compute x̃, we need to solve the ordinary differential equation (9).
Figure 1 displays the backward trajectory of a node ξ ∈ Ξ, its correspond-
ing upstream point x−, along with a linear approximation of the trajectory,
leading to x̃ ≈ x−.

For computing x̃, our implementation utilizes a fixed point iteration, based
on the midpoint rule, already used in the seminal paper on semi-Lagrangian
discretization by Robert [16]:

β(k+1) = τ · v

(

t +
τ

2
, ξ −

β(k)

2

)

. (10)

Note that the above iteration (10) relies on the evaluation of v at the
intermediate time t + τ

2 . In the situation of passive advection, this can be
accomplished by the evaluation of the given wind field a ≡ v. But in the
nonlinear case, the velocity v does also depend on the solution u. In order to

compute v
(

t + τ
2 , ξ − β(k)

2

)

we employ the following extrapolation scheme.

v
(

t +
τ

2
, ·

)

=
3

2
v(t, ·) −

1

2
v(t − τ, ·). (11)

Initially, in order to obtain the required values of u(τ, ·) from the given initial
conditions (2), we use a generalized two-level Lax-Friedrich scheme on Ξ0 ≡
Ξτ .

Having computed the values u(t + τ, ξ), for all ξ ∈ Ξ, via (8), the current
node set Ξ ≡ Ξt (at time t) is finally modified by the removal (coarsening),
and the insertion (refinement) of nodes, yielding a new node set Ξ ≡ Ξt+τ

(at time t+ τ). The adaption of the nodes relies on a customized a posteriori
error indicator, to be explained in Section 4.
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We finally remark that the characteristics-based discretization scheme,
as introduced in this section, has been theoretically analyzed by Falcone
and Ferretti [10]. Their concise convergence analysis shows that the semi-
Lagrangian method is of second order in time and space, provided that the
interpolation method is of second order.

3 Local Interpolation using Thin Plate Splines

In this section, we are concerned with computing approximations for the
values u(t, ·),∆u(t, ·) in the advection step (8), and v(t, ·), v(t − τ, ·) in the
extrapolation (11). To this end, we work with a local interpolation scheme,
which first collects on given x ∈ Ω a set Nx ≡ N t

x of current neighbours (at
time t) in the local neighbourhood of x, before the (known) function values
of u at these neighbouring points are used for computing the approxima-
tions of u(t, ·),∆u(t, ·), v(t, ·), v(t− τ, ·). But this requires some preparations.
Therefore, we defer details to later in this section.

As already observed in [3,4], the interpolation is critical for the advection
method’s performance in terms of its efficiency and approximation quality.
Indeed, the interpolation scheme does not only affect the evaluation of the
model u(x) ≡ u(t, x), but also the adaption rules, to be explained in the
following Section 4, do heavily rely on the interpolation. Altogether, a reliable
and robust interpolation scheme of good approximation quality is required.

As explained in the previous work [3,4], thin plate splines provide suitable
and powerful meshfree methods for scattered data interpolation. But the
setting in [3,4] needs to be extended here. According to the general framework
of thin plate spline interpolation, dating back to Duchon [8], we work with
interpolants of the form

s(y) =
∑

ν∈Nx

λνφk(‖y − ν‖) +
∑

|α|≤k

µαyα, (12)

in order to solve interpolation problems of the form

s(ν) = u(ν), for all ν ∈ Nx. (13)

In (12), the radial basis function φk(r) = r2k log(r), k ≥ 1, is referred
to as thin plate spline, and ‖ · ‖ is the Euclidean norm on R

d. Moreover,
α = (α1, . . . , αd) in (12) is a multi-index, a d-tuple of non-negative integers,
with absolute value |α| = α1 + . . . + αd, and where

yα = yα1
1 · · · · · yαd

d for y = (y1, . . . , yd)
T ∈ R

d.

The above N = #Nx interpolation conditions in (13) constitute a linear
system of N equations with N + Q unknowns in the coefficient vectors λ =
(λν)ν∈Nx

∈ R
N of the major part and µ = (µα)|α|≤k ∈ R

Q of the polynomial
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part of s in (12), where Q =
(

k+d
d

)

is the dimension of the linear space Πd
k of

all real-valued polynomials in d variables and of degree at most k.
In order to eliminate the Q additional degrees of freedom, the coefficients

λν in (12) are subject to the additional Q side conditions

∑

ν∈Nx

λννα = 0, for all |α| ≤ k. (14)

Altogether, solving (13) under constraints (14) leads us to the linear sys-
tem

[

ANx
PNx

PT
Nx

0

]

·

[

λ

µ

]

=

[

(u(ν))ν∈Nx

0

]

, (15)

where

ANx
= (φk(‖ν − ν′‖))ν,ν′∈Nx

∈ R
N×N and PNx

= (να)ν∈Nx;|α|≤k ∈ R
N×Q.

As to the well-posedness of thin plate spline interpolation, we remark that
there always exists an interpolant s of the form (12) satisfying (13). Moreover,
s is unique provided that the points in Nx are Πd

k -unisolvent, i.e.

p(ν) = 0 for all ν ∈ Nx =⇒ p ≡ 0 (16)

for p ∈ Πd
k . In this case, the linear system (15) has a unique solution, and thus

the thin plate spline interpolation scheme achieves to reconstruct polynomials
in Πd

k exactly. Note that (16) is a very mild side condition. E.g., for k = 1
this requires that the points in Nx must not all lie on a straight line.

For further details on thin plate spline interpolation, including their op-
timality properties, and alternative choices for radial basis functions φ, we
refer to the recent tutorial paper [14].

Now let us finally turn to the approximation of the values u(t, ·),∆u(t, ·),
v(t, ·), v(t − τ, ·). In order to compute an approximation for v(t, x), on given
x ∈ Ω, we first consider solving the interpolation problem

s(ν) = v(t, ν), for all ν ∈ N t
x,

by using the ansatz (12) for s and with k = 1. This then gives us by s(x) the
desired approximation of v(t, x), i.e. s(x) ≈ v(t, x). Likewise, the approxima-
tion of v(t − τ, ·) is computed by solving

s(ν) = v(t − τ, ν), for all ν ∈ N t−τ
x ,

using exactly the same approach, but for the previous set N t−τ
x of neighbours.

As to the approximation of ∆u(t, x̃), this requires using a smoother in-
stance of φk in (12), i.e. with k > 1, since ∆φ1(‖x‖) has a singularity at
zero. We prefer to work with φ2(r) = r4 log(r), whose Laplacian ∆φ2(‖x‖)
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is well-defined on all of R
d. This amounts to first solving the interpolation

problem
s(ν) = u(t, ν), for all ν ∈ N t

x̃,

using the ansatz (12) with k = 2, which provides by

∆s(y) =
∑

ν∈N t

x̃

λν∆φ2(‖y − ν‖) + 2
(

µ(2,0,...,0) + µ(0,...,0,2)

)

the desired approximation ∆s(x̃) ≈ ∆u(t, x̃). Moreover, s(x̃) ≈ u(t, x̃). In
our numerical examples, however, we kept on using the basis function φ1

for computing an approximation of u(t, x̃). This helps to avoid undesired
oscillations near the shocks.

4 Adaption Rules

4.1 Error Indication

An effective strategy for the adaptive modification of the nodes requires well-
motivated refinement and coarsening rules as well as a customized error in-
dicator. We understand the error indicator η : Ξ → [0,∞) as a function of
the current node set Ξ ≡ Ξt (at time t) which serves to assign a signifi-

cance value η(ξ) to each ξ ∈ Ξ. The value η(ξ) is required to reflect the local
approximation quality of the interpolation around ξ ∈ Ξ. The significances
η(ξ), ξ ∈ Ξ, are then used in order to flag single nodes ξ ∈ Ξ as “to be
refined” or “to be coarsened” according to the following criteria.

Definition 1. Let η∗ = maxξ∈Ξ η(ξ), and let θcrs, θref be two tolerance val-
ues satisfying 0 < θcrs < θref < 1. We say that a node ξ ∈ Ξ is to be

refined, iff η(ξ) > θref · η
∗, and ξ is to be coarsened, iff η(ξ) < θcrs · η

∗.

In our numerical examples typical choices for the relative tolerance values
are θcrs = 0.001 and θref = 0.2. Note that a node ξ cannot be refined and
be coarsened at the same time; in fact, it may neither be refined nor be
coarsened.

Now let us turn to the definition of the error indicator η. We follow along
the lines of [13], where a local scheme for the detection of discontinuities of
a surface from scattered data was developed, and we let

η(ξ) = |u(ξ) − s(ξ)|,

where the thin plate spline interpolant s ≡ sN matches current values of
u ≡ u(t, ·) at a neighbouring set N ≡ N (ξ) ⊂ Ξ \ {ξ} of current nodes, i.e.
s(ν) = u(ν) for all ν ∈ N . In our numerical examples, we preferred to use the
thin plate spline φ1(r) = r2 log(r), and thus the ansatz (12) with k = 1. This
particular interpolation scheme achieves to reconstruct linear polynomials.
In this case, the value η(ξ) vanishes whenever u is linear around ξ. Moreover,
the value η(ξ) is small whenever the reproduction quality of u by s around ξ
is good. In contrast, a high value of η(ξ) typically indicates that u is subject
to strong variation locally around ξ.
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4.2 Coarsening and Refinement

In order to balance the approximation quality of the model against the re-
quired computational complexity we insert new nodes into regions where the
value of η is high (refinement), whereas we remove nodes from Ξ in regions
where the value of η is small (coarsening).

To avoid additional computational overhead and complicated data struc-
tures, effective adaption rules are required to be as simple as possible. In
particular, these rules ought to be given by local operations on the current
node set Ξ. The following coarsening rule is in fact very easy and, in combi-
nation with the refinement, it turned out to be very effective as well.

Coarsening. A node ξ ∈ Ξ is coarsened by its removal from the current
node set Ξ, i.e. Ξ is modified by replacing Ξ with Ξ \ {ξ}.

As to the refinement of a node ξ ∈ Ξ, we follow along the lines of the
previous paper [4], where the effective refinement rules were motivated on the
basis of available local error estimates for radial basis function interpolation.
For the special case of thin plate spline interpolation, the local error estimate
at x ∈ Ω is according to Wu and Schaback [18] of the form

|u(x) − s(x)| ≤ C · hk
N ,%(x) (17)

where C > 0 is a constant depending on u, and (for some radius % > 0)

hN ,%(x) = sup
‖y−x‖<%

dN (y)

is the local fill distance of N around x, with

dN (y) = min
ν∈N

‖y − ν‖

being the Euclidean distance between the point y and the set N . We remark
that for the special case k = 1, d = 2, the thin plate spline interpolation
scheme is due to [13] locally of second order accuracy.

As suggested in [4], the reduction of the local error (17) around any ξ ∈ Ξ
is accomplished by reducing the distance function dN = minν∈N ‖ · −ν‖ in a
local neighbourhood of ξ.

Now recall that for a fixed node set Ξ ⊂ R
d and any ξ ∈ Ξ, the Voronoi

tile

VΞ(ξ) =
{

x ∈ R
d : dΞ(x) = ‖x − ξ‖

}

⊂ R
d

of ξ w.r.t. Ξ contains all points in R
d whose nearest point in Ξ is ξ. The

tile VΞ(ξ) is a convex polytope whose vertices are referred to as the Voronoi

points, forming a finite point set Vξ in the neighbourhood of ξ. Figure 2 shows
the Voronoi tile VΞ(ξ) of a point ξ along with the set Vξ of its Voronoi points.
For more details on Voronoi diagrams, we refer to [15].
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ξ

VΞ(ξ)

Fig. 2. Refinement of the node ξ. The Voronoi points (¦) are inserted.

Now observe that for ξ ∈ N the distance function dN is convex on VΞ(ξ).
Moreover, it has local maxima at the Voronoi points in Vξ. Altogether, this
gives rise to define the local refinement of nodes as follows.

Refinement. A node ξ ∈ Ξ is refined by the insertion of its Voronoi points
into the current node set Ξ, i.e. Ξ is modified by replacing Ξ with Ξ ∪ Vξ.

5 Numerical Examples

We have implemented the proposed advection scheme for the special case of
two dimensions, i.e. d = 2. In this section, the performance of the method on
nonlinear equations (5) is shown. To this end, we considered using two model
problems: Burgers equation, where the flux function is given by (6), and the
Buckley-Leverett equation, whose flux function is (7).

5.1 Burgers Equation

Burgers [6] introduced the nonlinear flux function (6) in the hyperbolic con-
servation law (1) as a mathematical model of free turbulence in fluid dynam-
ics. Burgers equation is nowadays a standard test case, popular mainly for
the following reasons: (a) it contains the simplest form of a nonlinear advec-
tion term u ·∇u simulating the physical phenomenon of wave motion, and (b)
for its shock wave behaviour: As soon as the shock front occurs, there is no
classical solution of the PDE and its weak solution becomes discontinuous.

In the test case, the following initial condition is used.

u0(x) =







exp
(

‖x−c‖2

‖x−c‖2−R2

)

for ‖x − c‖ < R

0 otherwise
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with R = 0.25, c = (0.3, 0.3)T , and we let the unit square Ω̃ = [0, 1]2 ⊂ Ω =
R

2 be the computational domain, cf. [11]. Moreover, we selected the value
ε = 2 ∗ 10−3 for the diffusion coefficient in (5), and we let r = (1, 1)T in (6),
yielding a flow field along the diagonal of Ω̃.

Initially, u0 is sampled at 4446 randomly chosen points in the unit square,
yielding the initial node set Ξ0 ⊂ Ω. Moreover, a constant time step size
τ = 0.0075 has been selected. A plot of the solution u at the three time steps
t2 = 2 · τ, t80 = 80 · τ , and t160 = 160 · τ is shown in Figure 3.

Observe that the node adaption scheme achieves to localize the support
of the solution u very effectively. Moreover, the shock front propagation is
reasonably well resolved by the distribution of the current nodes, cf. the time
steps t = t80, t160 in Figure 3. As already observed in the numerical examples
of the previous paper [4], where we studied passive (linear) advection, this
confirms the utility of the customized adaption rules yet once more.

Figure 4 shows a plot of the number of nodes per time step. The number
of nodes, initially #Ξ0 = #Ξt1 = 4446, immediately drops down to #Ξt2 =
1484. This is due to adaptivity, starting at time t = t2. Then, the number of
nodes remains roughly constant for a while. Due to the growing support of
u, a moderate increase of the number of nodes can be observed in the second
half of the simulation, resulting in #Ξt160 = 1841 after the final time step
t = t160.

5.2 Buckley-Leverett Equation

Buckley and Leverett [5] introduced the flux function (7) in hyperbolic con-
servation laws of the form (1) in order to describe the flow of two different
liquids in a porous medium. This two-phase flow problem is typically en-
countered in applications of oil reservoir modelling, where specific enhanced
oil recovery processes are simulated. When an underground source of oil is
tapped, a certain amount of oil flows out on its own due to the high reservoir
pressure. After the flow has stopped, there is usually still a large amount of
oil in the reservoir pores. A standard method like waterflooding can now be
used, where a fluid (e.g. water) is injected into a well in a reservoir to displace
the contained hydrocarbons (e.g. oil) and produce them from another well. If
gravity effects and capillary forces are neglected and the flux field is known,
the two-phase flow is described by the saturation equation only, namely the
Buckley-Leverett equation.

In our test case, we assume a single water injection well in the center of a
100% oil saturated, homogeneous, porous medium, i.e. reservoir rock, defined
on the unit square. We allow open boundaries, so that the displaced oil can
leave the computational domain Ω̃ = [0, 1]2 ⊂ Ω = R

2. Here, the function u
quantifies the saturation of water in the reservoir pores. The values of u lie
between 0 and 1, where u ≡ 1 denotes pure water and u ≡ 0 pure oil. In this
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Fig. 3. Burgers equation: Evolution of the solution u for four different time steps,
t = t0, t2, t80, t160 (left), and the corresponding node distribution (right).
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Fig. 4. Burgers equation: Number of nodes per time step.

case, the initial condition (2) is given by

u0(x) =

{

1 for ‖x − c‖ ≤ R

0 otherwise

with the injection well centered at c = (0.5, 0.5)T and with radius R = 0.05.
Thus, initially the water saturation u inside the injection well is 1 and outside
the well it is 0. A radial flow direction r = (x− c)/‖x− c‖ in (7) is assumed,
so that the injected water should displace the oil radially. We decided to
select a constant time step size τ = 0.001, and the simulation comprises 264
time steps. Moreover, we let ε = 4 ∗ 10−3 for the diffusion coefficient in (5).
Finally, we selected the value µ = 0.5 for the viscosity ratio of water and oil,
appearing in the flux function (7).

The evolution of the oil’s displacement by water is shown in Figure 5
(3D view and top view) and Figure 6 (side view) for four different times
t = t0, t2, t132, t264. Initially, the function u0 is sampled at a set Ξ0 of #Ξ0 =
4446 of randomly distributed nodes.

Already after the second time step, the nodes are adapted to the vicinity
of the well, and the number of nodes immediately drops down to #Ξt2 = 128,
see Figure 7. As soon as water flows into the well, a shock wave is formed,
and a discontinuity in u can be observed, cf. Figures 5 and 6. In this case,
a certain amount of oil is displaced immediately, whereas beyond the shock
front there is a mixture of oil and water, with less oil at proceeding time.
This phenomenon is referred to as the rarefaction wave.

Figure 5 and Figure 6 also show a comparison of the numerical and the
analytic solution, the latter determined by Welge’s tangent method [17]. It
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Fig. 5. Buckley-Leverett equation: The saturation u (3D view, left column; top
view, right column), and the analytic solution (solid line, right column) for four
different time steps t = t0, t2, t132, t264 (left).
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Fig. 6. Buckley-Leverett equation: The saturation u (nodes), and the analytic so-
lution (solid line) for four different time steps t = t0, t2, t132, t264, side view.

can be observed, that the adaptive distribution of nodes achieves to capture
the propagating shock front (the solid line in Figure 6) well. This helps to
reduce the required computational costs while maintaining the accuracy, due
to higher resolution around the shock. Note that since the radius of the
propagating shock front increases linearly with time, the number of nodes
increases linearly at proceeding time, ending up with #Ξt264 = 1967 at the
final time step t = t264 of the simulation, see Figure 7.

6 Conclusion

The meshfree method of backward characteristics for linear (passive) advec-
tion from the previous work [3,4] has been extended for solving nonlinear

transport problems. In order to avoid degeneration of characteristic curves, a
vanishing viscosity approach has been added to the advection scheme. More-
over, the local interpolation scheme, using thin plate splines, has been mod-
ified accordingly. An error indicator derived from the interpolation scheme
yields in combination with customized adaption rules an effective distribution
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Fig. 7. Buckley-Leverett equation: Number of nodes per time step.

of nodes during the simulation. Numerical examples on nonlinear advection-
dominated PDEs confirm the good performance of the proposed method.

We finally remark that the proposed method is potentially useful for
higher dimensional problems. Note that our approach poses no principal
restrictions to enhancements in higher dimensions. We have, however, not
implemented the scheme for dimensions d > 2, yet.
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