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Summary. We propose application of Bayes linear methodology to uncertainty
evaluation in reservoir forecasting. On the basis of this statistical model, effective
emulators are constructed. The resulting statistical method is illustrated by ap-
plication to a commonly used test case scenario, called PUNQS [11]. A statistical
data analysis of different output responses is performed. Responses obtained from
our emulator are compared with both true responses and with responses obtained
using the response surface methodology (RSM), the basic method used by leading
commercial software packages.

1 Introduction

A reservoir simulator is a large computer code which requires solving a system
of nonlinear partial differential equations from complex geological model data.
The reservoir geology is typically characterized by a huge number of input
parameters to the simulator. As these input parameters are usually uncertain,
so is the output of the simulator uncertain. Thus, uncertainty evaluation of
large simulation codes has become a major task in reservoir forecasting.

In this paper Bayes linear methodology is applied to reservoir forecast-
ing using a sequential experimental design [9] for the construction of effective
emulators. We remark that the application of the Bayes linear approach to
comparable applications was recently discussed in related works [3, 7]. More-
over, our sequential experimental design is similar to that one in [13].

The performance of Bayes linear methodology is evaluated by comparison
with true responses for different outputs of the reservoir simulator. Moreover,
response surfaces from reservoir forecasting are analyzed, and our results are
also compared with the response surface methodology (RSM) [6], which is the
basic method of the commercial software package COUGAR [2].
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The outline of this paper is as follows. In Section 2, the methodology of
Bayes linear estimation is reviewed. In Section 3, a model for the construc-
tion of effective emulators, based on the Bayes linear estimator, is proposed.
Numerical results are in Section 4, where numerical comparisons with the
response surface methodology (RSM) are performed.

2 Bayes Linear Methodology

Simulator output s(x) is a function of n, n ≥ 1, uncertain input parameters
x ∈ χ ⊂ R

n. Uncertainty evaluation requires the probability density

p(y) = p(s(x) = y) =

∫

χ

δ(s(x) − y)ρ(x)dx,

where ρ(x) is a given density function of x ∈ χ and δ is the Dirac δ-functional.
Statistical quantities, such as expectation, E[s(x)], or variance, Var[s(x)], are
also of particular interest,

E[s(x)] =

∫

χ

s(x)ρ(x)dx,

Var[s(x)] =

∫

χ

∣

∣s(x) − E[s(x)]
∣

∣

2
ρ(x)dx.

For these tasks, Monte Carlo methods are computationally too expensive,
as too many simulation runs are required. As shown in [3, 6, 8], more sophis-
ticated statistical approaches, such as response surface methodology (RSM)
or Bayesian approaches, are more appropriate than Monte Carlo methods.

When s(x) is a smooth function, one can use multiple regression tech-
niques to approximate s(x) from a few simulation runs. In the RSM, a linear
model is used, i.e., a linear combination of q fixed basis functions; usually low
order polynomials. The coefficients of the linear model are calculated using a
standard least squares technique.

RSM was originally introduced in physical experiments, where each obser-
vation of a physical process is subject to measurement error. In contrast, a
simulator is deterministic, i.e., rerunning the code with the same inputs gives
identical observations. In this case, an interpolatory estimator rather than an
approximation is usually preferred. A Bayesian approach yields, unlike RSM,
an interpolatory (posterior) estimator, see the appendix of [3] for details.

Application of a Bayesian approach results in updating a prior distribution
of a statistical model sB by Bayes’ rule,

PPost(sB(x)|sX) ∝ PPrior(sB(x)) PLikelihood(sX|sB(x)),

where sX = (s(x1), . . . , s(xm))T ∈ R
m denotes a response vector containing

m simulation outputs taken at a design set X = {x1, . . . ,xm} ⊂ R
n of m

pairwise distinct input configurations, and P is the (conditional) probability.
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We prefer to work with a Bayes linear estimator, as suggested in [3]. This is
mainly for computational reasons, as the Bayes linear estimator sBL considers
only the first two moments of the prior and posterior distribution, which are
related by

E[sBL(x)|sX] = E[sBL(x)] + Cov[sBL(x), sX]Var[sX]−1(sX − E[sX]),

Var[sBL(x)|sX] = Var[sBL(x)] + Cov[sBL(x), sX]Var[sX]−1Cov[sX, sBL(x)].

Therefore, Bayes linear estimation can be viewed as an approximation to a
full Bayesian approach. Moreover, we remark that in the absence of any prior
information on model parameters for mean and autocovariance, the Bayes
linear methodology is equivalent to (universal) kriging, see [5] for details.

Now the random process sBL(x) with posterior mean E[sBL(x)|sX] and
variance Var[sBL(x)|sX] is referred to as an emulator. An emulator is a cheap
surrogate for a (costly) simulator.

3 Construction of the Emulator

3.1 Model Description

Similarly to [3], we work with a (prior) emulator of the form

sBL(x) = βT g(x∗) + ǫ(x∗), (1)

with unknown coefficients β ∈ R
q, q < m, regression functions g = (g1, . . . , gq),

and where x∗ are the active variables of x ∈ χ. Loosely speaking, the active
variables are those which account for most of the output variation. The dis-
crepancy between the linear regression βT g(x∗) and the simulator s(x) is
modelled by a stationary Gaussian process ǫ(x∗) with zero mean and an auto-
covariance function

Cov[ǫ(x∗), ǫ(y∗)] = σ2
ǫ r(x∗ − y∗),

where r(z) denotes a correlation function to be specified. The selection of
active variables x∗, of the regression functions g and of the correlation function
r(z) are based on prior knowledge about the process. This is discussed in the
following subsection.

3.2 The Prior Summaries

Prior knowledge about the random process is usually built by expert elicita-
tion [4]. In our case, an initial set of simulator runs is used to support the
elicitation process. This initial data is not analyzed statistically. The data is
rather interpreted by reservoir engineers who provide estimates of the prior
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mean E[sBL(x)] and variance Var[sBL(x)]. The required selection of the ac-
tive variables x∗ and of the regression functions g in (1), usually low order
polynomials, is done through sensitivity analysis, as described in [10, 14].

We decided to work with the autocovariance function

Cov[ǫ(x∗), ǫ(y∗)] = σ2
ǫ exp(−θ‖x∗ − y∗‖), (2)

which leads to continuous but non-smooth response surfaces, as desired in
the situation of our particular application, see Section 4. In a more general
situation, the selection of the autocovariance function in (2) should be made
on the basis of previous observations in similar problems.

The parameters θ and σǫ in (2) can be determined by maximum likelihood

estimation (MLE), see [13]. This gives

σ̂2
ǫ =

1

m
(sX − Gβ)T R−1(sX − Gβ),

for the estimation of σ2
ǫ , where m is the number of simulations, and where

R = (r(xi,xj))1≤i,j≤m ∈ R
m×m, G = (gj(xi))1≤i≤m;1≤j≤q ∈ R

m×q.

Estimation of θ by MLE requires global optimization and is generally sensitive
to the number of simulations. Therefore, in our case we prefer to use data
visualization techniques which yields a more robust estimate of θ̂ = 2 for θ.
For more details on the estimation of the autocovariance function in (2) we
refer to our previous paper [1].

3.3 Experimental Design

In computer simulations, the goal of experimental design is to determine suit-
able input configurations for effective data analysis. The required data analysis
is specific to the objectives of the experiment. Possible objectives include un-
certainty propagation, optimization of certain response functionals (e.g. oil
production), and tuning the simulator to physical data, history matching.

In reservoir forecasting, experimental design is of primary importance,
especially since each simulation run is computationally very expensive. In view
of uncertainty evaluation, we are aiming at the construction of a sufficiently
accurate emulator to predict responses at untried input. But we wish to keep
the number of required simulation runs as small as possible.

Possible experimental designs can be split in two different categories: single
stage methods, such as fractional factorial designs (FFD) or Latin hypercube
designs (LHC), and sequential designs which aim at minimizing uncertainty
measures of the emulator. In the approach proposed in this paper, a number
of initial simulator runs are first performed by using FFD. Then, a number
of subsequent simulator runs are done by using a sequential design. But this
requires a specific design criterion.
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The design criterion we work with relies on the maximum mean square

error (MMSE). In this case, design points, x∗, are sequentially added, one
at a time, where the posterior variance Var[sBL(x)|sX] of the current Bayes

linear emulator sBL ≡ s
(m)
BL is maximal among all x ∈ χ. In this way, the

prediction error of the subsequent (posterior) emulator s
(m+1)
BL vanishes at x∗.

A similar design criterion is proposed in [13], but for kriging.
In summary, each step of the sequential design is performed as follows.

(1) Compute an input configuration x∗ which maximizes Var[sBL(x)|sX];
(2) Run the simulator at the selected configuration x∗ to obtain s(x∗);
(3) Rebuild the emulator by including the new simulator output s(x∗).

As regards a stopping criterion, we chose a customized diagnostic measure
which relies on the prediction error

η(m) = |s
(m−1)
BL (xm) − s(xm)|,

where xm = x∗ denotes the design point which was added at step m, and

s(xm) is the simulator response at xm. Note that s
(m)
BL (xm) = s(xm). When

the sequence η(m) of prediction errors stabilizes, i.e., |η(m)−η(m−1)| < TOL

for some tolerance TOL, we take s
(m)
BL as an a sufficiently accurate emulator.

4 Numerical Results for the PUNQS Test Case

4.1 Reservoir Model Description

The PUNQS test case relies on a synthetic reservoir model taken from the
North Sea Brent reservoir, a real-world oilfield. The PUNQS test case is fre-
quently used as an industrial reservoir engineering model since its use in the
European research project PUNQ [11] is a benchmark test for comparative
inversion studies and for stochastic reservoir modelling.

A top structure map of the PUNQS reservoir field is shown in Figure 1.
The geological model contains 19 × 28 × 5 = 2660 grid blocks, 1761 of which
are active. The reservoir is surrounded by a strong aquifer in the North and
in the West, and it is bounded by a fault to the East and to the South. A
small gas cap is located in the centre of this dome-shaped structure. The
geological model consists of five independent layers, where the porosity distri-
bution in each layer was modelled by geostatistical simulation. Initially, the
field contains six production wells located around the gas-oil contact. Due to
the strong aquifer, no injection wells are required.

As suggested by reservoir engineers, we consider the following seven main
sources of uncertainty: (i) the analytical coefficient of the aquifer strength,
AQU, (ii) the residual gas oil saturation, GOS, (iii) the residual water
oil saturation, WOS, (iv) the vertical permeability multiplier in low qual-
ity sands, VPML, (v) the vertical permeability multiplier in high quality
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Fig. 1. PUNQS test case. Top structure map of the reservoir field.

sands, VPMH, (vi) the horizontal permeability multiplier in low quality
sands, HPML, (vii) the horizontal permeability multiplier in high quality
sands, HPMH. For each of the seven input variables, a uniform distribution
in the parameter interval [−1, 1] is assumed.

To evaluate and compare different methods by their emulator accuracy,
we decided to work with three different error measures when recording the
resulting prediction errors for an emulator sE. The error measures are the
mean absolute error

η1 = ‖s − sE‖1/|Ξ| =
1

|Ξ|

∑

x∈Ξ

|s(x) − sE(x)|,

mean square error,

η2
2 = ‖s − sE‖

2
2/|Ξ| =

1

|Ξ|

∑

x∈Ξ

|s(x) − sE(x)|2,

and maximum error,

η∞ = ‖s − sE‖∞ = max
x∈Ξ

|s(x) − sE(x)|,

where Ξ denotes a fine uniform grid contained in the computational domain χ.
We have implemented the proposed approach in the language R [12].
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4.2 Numerical Results from Two-Dimensional Input

In this subsection, we present numerical results for two different responses in
the PUNQS model from 2D input. The small size of the PUNQS reservoir
model, containing only less than 20, 000 grid cells, allows us to perform sev-
eral thousand simulation runs, which are included in the two numerical tests.
The responses from these simulations are taken to visualize the real response
surface, whose graph is then compared with both the graph of the Bayes linear
emulator sBL and the graph of the emulator sRSM obtained by the response
surface methodology (RSM).

To demonstrate the good performance of the proposed Bayes linear ap-
proach, we selected two rather challenging test cases involving rough response
surfaces s(x) of high variation.

The first test case is concerning the oil production rate at well PRO15
(see Figure 1 bottom right) after 13 years, response surface P15OPR, as a
function of its two main active variables, HPMH and HPML. The design
set X was constructed by applying FFD to obtain an initial set of 7 points,
followed by a sequential design for further 5 points, yielding m = 12 design
points in total.

Figure 2 displays the response surface of the Bayes linear emulator, sBL,
and the response surface obtained by RSM, emulator sRSM. For comparison,
Figure 2 displays 10 × 10 grid points of the true response surface.

(a) (b)

Fig. 2. PUNQS test case P15OPR(HPMH,HPML). Response surface of (a)
Bayes linear emulator sBL, (b) sRSM, each constructed by using 12 design points. A
10 × 10 mesh grid of the true response surface P15OPR is shown for comparison.

Note that the response surface sBL obtained from the Bayes linear estima-
tor (Figure 2 (a)) is, in comparison with sRSM of RSM (Figure 2 (b)), much
closer to the true response surface P15OPR, and so the Bayes linear esti-
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mator is superior. This is also confirmed by our numerical results in Table 1,
where their prediction errors η1, η2, and η∞ are shown.

Table 1. PUNQS test case P15OPR(HPMH,HPML). Prediction errors from
emulators sBL and sRSM, each constructed by using m = 12 design points.

Method η1 η2 η∞

BL 3.0 4.6 17.6

RSM 6.2 7.1 16.2

In our second test case, we consider the bottom hole pressure at well
PRO15 after 13 years, response surface P15BHP, as a function of HPMH
and GOS. The design set X was constructed by applying FFD to obtain an
initial set of 7 points, followed by a sequential design for further 2 points,
yielding m = 9 design points in total.

Figure 3 displays the response surface of the Bayes linear emulator, sBL,
and the response surface obtained by RSM, emulator sRSM, each of which was
constructed by using m = 9 design points. For comparison, Figure 3 displays
9×9 grid points of the true response surface. Our numerical results are shown
in Table 2.

(a) (b)

Fig. 3. PUNQS test case P15BHP(HPMH,GOS). Response surface of (a) Bayes
linear emulator sBL, (b) sRSM, each constructed by using m = 9 design points. A
9 × 9 mesh grid of the true response surface P15OPR is shown for comparison.

Note that the Bayes linear estimator continues to be superior to RSM
in terms of its better reconstruction quality. This is supported by both the
response surface graphs in Figure 3 and the numerical results in Table 2.
Table 2 shows the prediction errors η1, η2 and η∞ obtained from the two
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Table 2. PUNQS test case P15BHP(HPMH,GOS). Prediction errors from emu-
lators sBL and sRSM, constructed by using m = 7 and m = 9 design points each.

Method m η1 η2 η∞ m η1 η2 η∞

BL 7 3.7 5.3 13.4 9 2.7 4.3 12.6

RSM 7 4.2 5.5 12.4 9 3.6 4.8 11.3

different emulators, sBL and sRSM. Note that Table 2 involves two different
comparisons, one using the initial set of m = 7 design points, the other using
all m = 9 design points. Note that the accuracy of the emulator sBL is, unlike
that of sRSM, significantly improved by the adaptive insertion of only two
design points, x8 and x9. Moreover, the prediction quality of the Bayes linear
emulator sBL is superior to that of sRSM not only in smooth regions of the true
surface P15BHP, but also in regions where P15BHP is highly nonlinear.
However, the emulator sBL exhibits small overshoots near discontinuities of
P15BHP, which explains the somewhat inferior prediction error η∞ of sBL.
The same comment applies to our first test case, see Table 1.

4.3 Numerical Results from High-Dimensional Input

Let us finally present numerical results obtained from high-dimensional input
configurations. To this end, we have analyzed responses from output con-
cerning the oil production rate at production well PRO15 after 13 years,
response P15OPR, as a function of all seven input variables which were
listed at the outset of this section, AQU, GOS, WOS, VPML, VPMH,
HPML, and HPMH.

We have performed an initial fractional factorial design (FFD) of 79 simu-
lations. To reduce computational complexity, a sequential design is performed
in the restricted input space of the three dominating active variables, HPMH,
HPML, and WOS. These three main active variables were determined by
a sensitivity analysis (using a Pareto plot [9]), on the basis of the 79 initial
simulator runs. Further 30 design points were added by sequential design,
yielding m = 109 design points in total.

Given the high dimension of this test case, n = 7, in combination with the
small number of design points, m = 109, Bayes linear estimation performs
remarkably well in terms of prediction quality obtained from its emulator sBL.
Indeed, we found η1 = 4.3, η2 = 5.0, and η∞ = 13.1.

5 Conclusion

We have shown the utility of Bayes linear methodology, in combination with
sequential adaptive design, for uncertainty evaluation in reservoir forecast-
ing. The resulting Bayes linear estimation has been applied to the PUNQS
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test case, a rather simple but fairly realistic and frequently used model prob-
lem from reservoir engineering. The performance of the resulting emulator
has been compared with that obtained from the response surface method-
ology (RSM), the basic method of commercial reservoir software, such as
COUGAR [2]. We found that the Bayes linear methodology is superior to
RSM, especially for highly nonlinear responses. For high-dimensional input
data a significant number of more simulator runs need to be included in the
initial sequential design. This is illustrated in our previous paper [1].
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