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Abstract This contribution discusses interactions between kernel methods, frame
analysis, and persistent homology. To this end, we explain recent connections be-
tween these research areas, where special emphasis is placed on the discussion of
reproducing kernel Hilbert spaces and persistent mechanisms. We show how inter-
actions between these novel methodologies give new opportunities for the construc-
tion of numerical algorithms to analyze properties of data that are so far unexplored.

1 Introduction

In the last decades, the concept of kernel methods, along with their related notion
of reproducing kernel Hilbert spaces (RKHS), has played an increasingly impor-
tant role in a broad range of applications in data processing: multivariate interpola-
tion and approximation [35, 36], signal sampling techniques [21], solution spaces
of PDEs [20], characterization of integral operators [24], dimensionality reduction
methods [17], probability and statistics [3], and machine learning [22], to mention
but a few, are relevant applications, where kernel methods are of fundamental im-
portance. More recent developments are relying on interactions between kernels
and frame theory, with providing new opportunities for the construction of high per-
formance numerical algorithms that are combining the advantages of kernels and
frames. Quite recently, new tools for the efficient analysis of point cloud datasets
arose from computational methods in differential geometry and algebraic topology,
where persistent homology is one prominent example for such a new technique. In
fact, persistent homology provides a basic algorithmic framework for computing
homological information from large point cloud data.
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In this paper, we show how interactions between novel methodologies give new
opportunities for the construction of numerical algorithms to analyze properties of
data that are so far unexplored. To this end, we first give a short introduction to
reproducing kernel Hilbert spaces in Section 2, where we also discuss the funda-
mental result of Mercer’s theorem, along with relevant applications in sampling the-
ory and approximation. Basic concepts of frames and their relation to reproducing
kernel Hilbert spaces are explained in Subsection 2.3. We introduce basic features
of persistent homology in Section 3, including aspects concerning their stability
properties. In Section 4, we finally discuss interactions between frames, kernels and
persistent homology. This discussion includes a suitable description concerning the
stability of frames and persistent homology and their relations. We finally describe
novel concepts for kernels that are tailored to the space of persistent diagrams.

2 Reproducing Kernels and Approximation Theory

In this section, we give a short introduction to the basic concepts of kernels, repro-
ducing kernel Hilbert spaces, and selected of their applications. We primarily focus
on interpolation and approximation methods, and new interactions with frame the-
ory. For the main ideas of these concepts we follow along the lines of [27, 28, 39].

2.1 Reproducing Kernel Hilbert Spaces (RKHS)

Despite the multiple and diverse contexts in which the concept of RKHS appears, the
main principles can be cast in one unified framework. As a starting point, there are
two important, closely related, concepts: a kernel, and an underlying RKHS. Even
though there is a close relationship between them, we distinguish the differences
of these points of view. One of the main motivations for defining a kernel is to
analyze arbitrary unstructured sets by mapping its elements to a set with some useful
structure: in the current case, the target will be a Hilbert space.

Definition 1. Given a nonempty set E, a kernel is a function K : E×E → R, such
that a Hilbert space H, and a map Φ : E→ H, exists with

K(x,y) = 〈Φ(x),Φ(y)〉H, ∀x,y ∈ E.

If we use as the scalar field C instead of R, we have to take care of defining

K(x,y) = 〈Φ(y),Φ(x)〉H, ∀x,y ∈ E.

due to the sesquilinearity of the scalar product in C. The map Φ , and the space H,
are denominated feature map and feature space.
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Due to the concept of kernels, K is to measure and analyze the similarity between
the elements of E (a set without any predefined structure) using the scalar product
of the Hilbert space H. There are no special constraints on the feature space H, but
as we will see in Proposition 5, the interesting candidates are essentially equivalent,
and the prototypical examples will be given by reproducing kernel Hilbert spaces.

Definition 2. A Hilbert space HK of real-valued functions defined on a nonempty
set E is a reproducing kernel Hilbert space (RKHS), if there exist a map, the repro-
ducing kernel, K : E×E→ R, satisfying:

1. For Kx : E→ R, Kx(y) := K(x,y), y ∈ E, we have Kx ∈ HK , ∀x ∈ E.
2. Reproduction property:

f (x) = 〈 f ,Kx〉, ∀x ∈ E, ∀ f ∈ HK . (1)

We have, as in the previous definition, an arbitrary nonempty set E as a starting
point, but the focus now is on the particular type of Hilbert space HK , and the set of
functions {Kx}x∈E used to generate the reproduction property (the crucial charac-
teristic for the applications of this framework). The work that follows is to analyze
the relation of these definitions by constructing adequate feature maps Φ , and pre-
senting specific examples of RKHS with a given kernel K.

Remark 1 (Symmetric and positive semi-definite properties [27]). The reproduction
property allows to immediate obtain several basic aspects of reproducing kernels:

1. K(x,x)≥ 0, for any x ∈ E.
2. ∑

n
i=1 ∑

n
j=1 λiλ jK(xi,x j)≥ 0, for any {xi}n

i=1 ⊂ E, {λi}n
i=1 ⊂ C.

3. K(x,y) = K(y,x), for any x,y ∈ E.

Defining Ky(x) := K(x,y), for x ∈ HK , and using (1), we obtain Ky(x) = 〈Ky,Kx〉H
for all x ∈ E. With letting x = y, we obtain

K(y,y) = 〈Ky,Ky〉H = ‖Ky‖2
HK
≥ 0.

In a similar spirit, if we select n points {xi}n
i=1 ⊂ E, and n complex numbers

{λi}n
i=1 ⊂ C, when using the relation K(xi,x j) = Kxi(x j) = 〈Kxi ,Kx j〉H, we obtain

the positive-semidefinite property:

n

∑
i=1

n

∑
j=1

λiλ jK(xi,x j) =
n

∑
i=1

n

∑
j=1

λiλ j〈Kxi ,Kx j〉H =

〈
n

∑
i=1

λiKxi ,
n

∑
j=1

λ jKx j

〉
H

≥ 0,

where symmetry follows immediately from

K(x,y) = Kx(y) = 〈Kx,Ky〉H = 〈Ky,Kx〉H = Ky(x) = K(y,x).

Remark 2 (RKHS Prototype I). Given a symmetric positive-definite kernel K, there
is a prototypical example of RKHS that can be constructed by generating a vector
space with the functions Kx : E→ R, Kx(y) = K(x,y):
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HK := span{Kx : x ∈ X}.

The scalar product is given by 〈Kx,Ky〉HK :=K(x,y), and the feature map is given by

ΦK : E→ HK , ΦK(x) := Kx

We will see alternative ways of constructing prototypical RKHS with a main result
based on the Mercer’s theorem, Theorem 3.

One important characteristic of a Hilbert space, equivalent to the reproduction
property is the continuity of the point evaluation functionals (or Dirac functionals),
namely, that given x ∈ E, the map f → f (x) is continuous for all f ∈ H. This fact
is a straightforward consequence of the Riesz representation theorem. Recall that
for any Hilbert space H, the map Lg : H→ R, Lg( f ) = 〈 f ,g〉, f ∈ H is a linear and
bounded (continuous) functional for any g∈H. Conversely, the Riesz representation
theorem, a fundamental property of Hilbert spaces [13], specifies that for any linear
and bounded functional L : H→ R, there exist a unique vector g ∈ H satisfying
L( f ) = 〈 f ,g〉, for any f ∈ H.

Theorem 1. Let H be a Hilbert space of real functions defined in a nonempty set
E, and let Lx : H→ R, Lx( f ) := f (x), be the point evaluation functional at x ∈ E.
The linear map Lx is continuous for any x ∈ E, if and only if H has a reproduction
property, f (x) = 〈 f ,Kx〉H, for a set {Kx}x∈E ⊂ H, and any f ∈ H, x ∈ E.

Proof. If the functional Lx is continuous, with the Riesz representation theorem, we
have a vector Kx ∈ H with the reproduction property Lx( f ) = f (x) = 〈 f ,Kx〉H, for
any x ∈ E, and f ∈ H. Conversely, with the reproduction property, we can construct
a bounded linear functional Lx( f ) = 〈 f ,Kx〉H due to the continuity of the scalar
product: that is, the point evaluation functionals are continuous. �

Remark 3 (Pointwise, uniform, strong and weak convergence). Another specific
property of reproducing kernel Hilbert spaces is the fact that strong convergence
implies pointwise convergence. Recall that for any nonempty set A, and any metric
space (M,d), a sequence of mappings fn : A→M converges pointwise (or simply) to
f : A→M, if fn(x) converges to f (x), for any x ∈ A, i.e., limn→∞ d( fn(x), f (x)) = 0.
The convergence is called uniform if limn→∞ supx∈E(d( fn(x), f (x))) = 0. Uniform
convergence obviously implies pointwise convergence, but the opposite does not
hold in general.

We recall two other important notions of convergence: strong (or norm) conver-
gence and weak convergence. In order to set these definitions we require a normed,
(or Banach) space B. The sequence xn converges weakly to x, if f (xn) converges
to f (x) (i.e., limn→∞ f (xn) = f (x) in C), for every bounded linear operator f in
B. If B is a Hilbert space, with the Riesz representation theorem we can write
〈xn,y〉 → 〈x,y〉 (in C), for any y ∈ B. The sequence xn converges normwise (or
strong), if ‖xn − x‖B converges to zero. Due to the Cauchy Schwarz inequality,
strong convergence implies weak convergence (see [27, p. 18]). But the converse is,
in general, not true: take for instance any complete orthogonal system {φn}n∈N of a
Hilbert space H. The sequence φn converges to zero weakly, since
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∑
n∈N
|〈φn, f 〉H|< ∞, ∀ f ∈ H,

but ‖φn‖H does not necessarily converge to zero.
Moreover, note that strong convergence does not necessarily imply pointwise

convergence. A standard example is the function space Lp, for 1≤ p < ∞, where we
may have pointwise divergence on any set of measure zero, without affecting norm
convergence. This is in contrast to the situation in a RKHS, where we can establish
the following result, due to the reproduction property.

Proposition 1. In a RKHS, strong convergence implies pointwise convergence.

Proof. In a reproducing kernel Hilbert space H, each point evaluation functional is
continuous, and so we have | f (x)| ≤ ‖ f‖HMx. Therefore,

| fn(x)− f (x)|= |( fn− f )(x)| ≤ ‖ fn− f‖HMx.

As the metric in the Hilbert space H is given by d( f ,g) := ‖ f − g‖H, we see that
strong convergence implies pointwise convergence. �

Let us now recall a few elementary properties concerning the uniqueness of re-
producing kernels, characterization of linear subspaces of RKHS, and orthogonal
projections on RKHS. All of the following basic results are straightforward appli-
cations of the reproduction property.

Proposition 2. The reproducing kernel K in a RKHS HK is unique.

Proof. Let K′ another reproducing kernel of HK . We set Kx(y) : = K(x,y), and
K′x(y) := K′(x,y). By the reproduction property in HK we obtain the identity

‖Kx−K′x‖2 = 〈Kx−K′x,Kx−K′x〉
= 〈Kx−K′x,Kx〉−〈Kx−K′x,Kx〉
= Kx−K′x−Kx +K′x = 0

which completes our proof. �

Proposition 3. Any linear subspace H of a RKHS HK is also a RKHS.

Proof. Let the point evaluation functionals be Lx( f ) = f (x), f ∈HK , x ∈ E, and let
Lx|H be their restrictions to H. By Proposition 1, and the continuity of the Lx|H, the
subspace H is a RKHS. �

Proposition 4. If a RKHS HK is a linear subspace of a Hilbert space H, the ortho-
gonal projection in Hk is given by

PHK ( f )(x) = 〈 f ,Kx〉, f ∈ H.

Proof. For any f ∈H, we can write f = f ′+g, with f ′ ∈HK , and g ∈H⊥K . We have
then PHK ( f )(x) = 〈 f ′,Kx〉+ 〈g,Kx〉. As Kx ∈HK , we obtain PHK ( f )(x) = 〈 f ,Kx〉. �
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We now explore relations between the reproducing kernel K and a basis of the
space HK (see Theorem 2). This relation can conveniently be used for checking
whether a given Hilbert space has a reproducing kernel (see Remark 7). We will see
that in the case of a RKHS, the kernel can be expanded as a product of the basis
elements, provided that the Hilbert space is topologically separable. Although many
commonly used spaces are separable, it is important to recognize counterexamples.

Remark 4 (Separable spaces). A topological space (X ,τ) is separable if there is a
countable dense subset D, namely, D = X , D ⊂ X . Recall that a Hilbert space H
is separable, iff H has a countable orthonormal basis. Indeed, let {ψi}i∈I ⊂ H be a
orthonormal set, i.e., 〈ψi,ψ j〉= δi j for i, j ∈ I, with the usual Kronecker symbol δi j.
For any i, j ∈ I, i 6= j, we have

‖ψi−ψ j‖2 = 〈ψi−ψ j,ψi−ψ j〉= 〈ψi,ψi〉−〈ψi,ψ j〉−〈ψ j,ψi〉+ 〈ψ j,ψ j〉= 2.

If H is separable with a countable dense set D, and I is not countable, we have a con-
tradiction using the density condition of D. The argument is to consider an injective
map from I to D by selecting for every φi, i ∈ I an element in D. We have then
a countable identification which contradicts the hypothesis of a non-countable I.
Conversely, we can use the countable property of the base field (C or R) of H in
order to construct a countable dense set given a countable orthonormal basis.

Remark 5 (Counterexamples for separable spaces). As a topological concept, the
separability of a Banach space depends on the underlying norm. For instance, a
classical example of a nonseparable Banach space is the set of bounded operators
in a Hilbert space, B(H), with the norm topology, namely, the topology induced
by the operator norm ‖T‖op := sup‖x‖H≤1‖T (x)‖H, T ∈ B(H). Although this topo-
logy is standard for the vector space B(H), it turns out to be too fine to allow the
construction of countable dense sets. Another standard example of a non-separable
topological set can be described when considering sequences of complex numbers
(cn)

∞
n=1, with cn ∈ C for all n ∈ N. To this end, we recall the linear sequence spaces

`p(C) :=

c = (cn)
∞
n=1

∣∣∣∣‖c‖p :=

(
∑
n∈Z
|cn|p

)1/p

< ∞

 for 1≤ p < ∞,

and the linear space of bounded sequences,

`∞(C) :=
{

c = (cn)
∞
n=1,(cn)

∣∣∣∣‖c‖∞ := sup
n∈N

cn < ∞

}
.

Any bounded sequence c0 := (cn)
∞
n=1 converging to zero, limn→∞ cn = 0 has finite

norm ‖c‖∞ < ∞, and so c0 is an element of `∞, Among these examples, the space of
bounded sequences, `∞, is the only case of a non-separable space.

For a separable RKHS HK , we can give an important characterization of HK .
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Theorem 2. Let HK be a reproducing kernel Hilbert space. Then, we have

K(x,y) =
∞

∑
i=1

ψi(x)ψi(y), ∀x,y ∈ E, (2)

with a countable orthonormal system {ψi}i∈N of HK , if and only if HK is separable.

Proof. If the decomposition (2) holds, we define Kx : E→R by Kx :=∑
∞
i=1 ψi(x)ψ j,

for x∈ E. Then, we have Kx(y) = K(x,y), and with the reproduction property (1) we
obtain:

f (x) = 〈 f ,Kx〉=
∞

∑
i=1
〈 f ,ψi(x)ψi〉=

∞

∑
i=1
〈 f ,ψi〉ψi(x),

for any f ∈HK and x∈ E. Therefore, the orthonormal system {ψi}i∈N is a countable
orthonormal basis, i.e., HK is separable. Conversely, let HK be a separable RKHS,
with K its reproducing kernel. We then define Ky(x) := K(x,y), with Ky ∈ HK , for
y ∈ E. Since HK is separable, there exists a countable orthonormal basis {ψi}i∈N
with Ky = ∑

∞
i=1 ci(y)ψi. The coefficients ci(y) can be computed as scalar products

ci(y) = 〈Ky,ψi〉= ψi(y), and so we obtain the decomposition (2). �

Remark 6 (Kernel decomposition is basis independent). Note that the only require-
ment for the set {ψi}i∈N in the proof of Theorem 2 is to be a countable orthonormal
system. For any other countable orthonormal system {φi}i∈N, we obtain, under the
same hypothesis, the decomposition K(x,y) = ∑

∞
i=1 φi(x)φi(y).

Remark 7 (Examples and counterexamples for RKHS [40]). We are now in a posi-
tion, where we can present elementary examples and counterexamples for RKHS.

The sequence space `2 is a RKHS. In fact, using |cn| ≤ 1, for all c∈ `2, ‖c‖`2 = 1,
we see that the point evaluation functional Ln(c) := cn, for c := (cn)

∞
n=1 ∈ `2, and

n ∈ N, is continuous with operator norm ‖Ln‖op = 1. In this case, the kernel is
K(n,m) = δnm.

The linear space of square integrable functions L2([−π,π]) is not a RKHS. In
fact, for L2([−π,π]) there is countable orthonormal system {ψl}l∈N, for instance
ψl(t) = sin(tl)/

√
π . Therefore, L2([−π,π]) is separable. Now we see that the ex-

pression

K(t,s) :=
1
π

∞

∑
`=1

sin(t`)sin(s`),

is not necessarily convergent (take for instance t = s = π/2), in which case the
reproduction property does not hold. Alternatively, we can analyze the point evalua-
tion functionals, and check that Lx( f ) := f (x), for f ∈ L2([−π,π]) and x ∈ [−π,π],
is not continuous (for a fixed x, the expression | f (x)| is for ‖ f‖2 = 1 unbounded).

In the following subsection we discuss more elaborate examples of RKHS.
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Mercer’s theorem, feature maps and feature spaces

We now address an important result in RKHS theory, Mercer’s theorem, which al-
lows us to construct concrete examples of feature maps and feature spaces, thereby
providing an important link between the concepts of kernels and RKHS (see Defi-
nitions 1 and 2). Up to now we have worked in a very general setting (a nonempty
set E without any particular structure), which is of importance in relevant applica-
tions of kernel methods. For the sake of convenience, when setting the framework
of the Mercer’s theorem, we assume a measurable space (E,µ), with E ⊂ Rn and
µ a Borel measure. The following step is to construct our main tool, which is an
integral operator LK defined on the space of square integrable functions

L2
µ(E) := { f : E→ C,

∫
E
| f (x)|2 dµ(x)< ∞}.

Now we transfer the information from the rarefied environment given by (E,µ)
and K, into the richer structural setting of the linear space L2

µ(E) and the linear
operator LK . Once we ensure that the spectral theorem machinery can be applied to
the operator LK , we obtain a useful decomposition for K, which allows to construct
a prototypical example of RKHS HK .

Theorem 3 (Mercer’s theorem [28]). Let K be a continuous, symmetric, positive-
semidefinite kernel defined in a measurable space (E,µ), with E ⊂ Rn closed, and
let µ be a Borel measure. Further assume∫∫

E2
K(x,y)2 dµ(x)dµ(y)< ∞.

and, moreover, let the integral operator LK : L2(E)→ L2(E) be defined as

LK f (x) :=
∫

E
K(x,y) f (y)dµ(y).

Then, we have the decomposition

K(x,y) =
∞

∑
i=1

λiψi(x)ψi(y), (3)

where {λi}∞
i=1 and {ψi}∞

i=1 are the eigenvalues and eigenvectors of the operator LK .

Proof (sketch). First verify that LK is a positive, self-adjoint compact operator. Then
we can construct an orthonormal basis {ψi}∞

i=1 of L2(E), consisting of eigenvectors,
with corresponding positive eigenvalues λi. This basis is then used for building the
kernel expansion (3). To compute the adjoint of LK , we use 〈LH f ,g〉 = 〈 f ,L∗Hg〉
with

〈LH f ,g〉=
∫

E

∫
E

K(x,y) f (y)g(x)dµ(x)dµ(y) =
∫

E
f (z)L∗Hg(z)dµ(z),
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where we let

L∗Hg(z) :=
∫

E
K(x,z)g(x)dµ(x) =

∫
E

K∗(z,x)g(x)dµ(x) with K∗(x,z) :=K(z,x).

Using the symmetric property of K, we obtain LK = L∗K (see [25, p. 91]). With
the spectral theorem we obtain the orthonormal basis {ψi}∞

i=1 and corresponding
eigenvalues λi, used to construct the decomposition (3). �

Remark 8 (RKHS Prototype II [28]). Given a symmetric positive semi-definite ker-
nel K, Mercer’s theorem allows us to construct another prototypical example of a
RKHS. By using decomposition (3), we can construct a feature map Φµ : E→ l2(C),
with Φµ(x)= (

√
λiψi(x))∞

i=1. If the number of nonzero eigenvalues is N <∞, we use
the vector space RN instead of `2. As explained in [28], the eigenvectors {ψk} and
eigenvalues {λi} depend on the measure µ , i.e., by selecting a different measure,
we obtain a different feature map Φ .

We now show that the different prototypes of RKHS we used so far, and any other
that can be constructed, are essentially equivalent. The main idea is to construct an
isometry between the first RKHS prototype we described in Remark 2, and any
arbitrary feature space H with feature map Φ : E→ H, and 〈Φ(x),Φ(y)〉= K(x,y).

Proposition 5. Let E be a nonempty set, K : E×E → R be a positive semi-definite
kernel, and Φ be an arbitrary feature map with feature space H, that is, Φ : E→H,
with 〈Φ(x),Φ(y)〉H = K(x,y). We define the vector spaces

HΦ := span{Φx,x ∈ E}, HK := span{Kx,x ∈ E},

with Φx := Φ(x), and Kx(y) := K(x,y), for any x,y ∈ E. Denoting by RE the vector
space of real-valued functions on E, we define the linear operator

LΦ : H→ RE , LΦ(v)(x) := 〈v,Φx〉H.

Then, the restriction LΦ |HΦ
is an isometry (isometric isomorphism) from HΦ to HK .

Proof. For LΦ(v) = 0 we have 〈v,Φx〉 = 0, for all x ∈ E. Then, kerLΦ = H⊥
Φ

, and
therefore LΦ |HΦ

is bijective. Now note that LΦ(Φy)(x)= 〈Φy,Φx〉=K(x,y)=Ky(x)
for any x ∈ E, therefore LΦ maps the function Φy to Ky, which implies that
span{Φx,x ∈ E} is isomorphic to span{Kx,x ∈ E}. The isometry property follows
from 〈Φx,Φy〉H = K(x,y) = 〈Kx,Ky〉HK . �

Remark 9 (Applications to sampling theory [40]). We apply the general framework
of RKHS to sampling as follows. Given a RKHS HK with kernel K : E ×E → R,
the main component for constructing a sampling procedure is an adequate selection
of points {tk}k∈N ⊂ E, such that {Ktk}k∈N is a complete orthogonal system of HK .
In this context we have

‖Ktk‖
2 = 〈Ktk ,Ktk〉= K(tk, tk), f (tk) = 〈 f ,Ktk〉.
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Therefore, the sampling reconstruction formula is given as

f (x) = ∑
k∈N
〈 f ,Ktk〉

Ktk(x)√
K(tk, tk)

= ∑
k∈N

f (tk)
Ktk(x)√
K(tk, tk)

, ∀ f ∈ HK , x ∈ E.

We can use this scheme to obtain the well known case of Nyquist-Shannon sampling
framework when using Bω , the space of square integrable functions whose Fourier
transform is supported in the interval [−ω,ω] (the space of bandlimited functions,
or the Paley-Wiener space). This space turns out to be a RKHS with kernel

K(x,y) =
sin(ω(x− y))

ω(x− y)
.

Using the function sinc(x) := sin(x)/x, and the sequence {tk := k∆ ,k ∈ Z}, for
a sampling step ∆ , we obtain the well-known sampling formula

f (x) =
1

2ω
∑
k∈Z

f (tk)sinc
(

ω

π
(x− tk)

)
, ∀ f ∈ Bω , x ∈ R.

2.2 Further Aspects in Approximation Theory

Approximation is concerned with the design and analysis of computational methods
for function reconstruction. A standard problem consist in recovering a function
f : Ω →R, from a finite set of values f (x1), . . . , f (xn), with X := {x1, . . .xn}, and a
nonempty set Ω . To set up a suitable framework for measuring the error behavior,
execution speed, and quality of the approximation procedures, the first step is to
identify the structure of the spaces in which the target function f lies. To this end, it
is common standard to first select a normed linear space, or a Banach space, and then
to fix a suitable linear subspace for building efficient approximation methods. Basic
definitions and features can conveniently be presented in the context of a metric
space.

Definition 3. Let (M,d) be a metric space, and U ⊂ M. A best approximation of
f ∈M in U is an element u? ∈U satisfying

d( f ,u?) = d( f ,U) for d( f ,U) := inf{d( f ,u),u ∈M}. (4)

Basic questions that need to be addressed are the existence, uniqueness, and con-
struction of best approximations. An elementary property for a subset U to fulfill in
order to guarantee existence of a best approximation, is compactness. Further details
on this can be found in standard texts on approximation theory (e.g. [10, 11, 32, 38]).

Proposition 6. If U ⊂M is a compact set in the metric space (M,d), then for every
f ∈M, there exist a best approximation u? ∈U of f .



Interactions between Kernels, Frames, and Persistent Homology 11

Proof. For d : = inf{d( f ,u),u ∈ M}, we take a minimal sequence {uk}k∈N ⊂ U
satisfying d( f ,uk) → d for n → ∞. Since U is compact, the minimal sequence
{uk}k∈N has a limit point u? ∈ U , giving a best approximation of f : To see that
u? satisfies (4), we use the triangle inequality d( f ,u?)≤ d( f ,uk)+d(uk,u?). Since
d(uk,u?)→ 0 for n→ ∞, we have d( f ,u?) = d. �

We now regard normed linear spaces V (instead of metric spaces) to develop
criteria for best approximations.

Proposition 7. Let U be a finite dimensional subspace of a normed linear space V .
For every f ∈V there exist a best approximation in U.

Proof. For any u0 ∈ U , the subset U0 : = {u ∈ U : ‖ f − u‖ ≤ ‖ f − u0‖} ⊂ V is
compact. Due to Proposition 6 there exists a best approximation u? ∈U of f . �

Up to know we have only addressed the existence of best approximations. To
guarantee uniqueness, we work with strictly convex norms.

Remark 10 (Strictly convex norm). A norm ‖‖ in a vector space V is said to be
strictly convex, iff the unit ball B = {v ∈ V : ‖v‖ ≤ 1} ⊂ V is strictly convex in V .
Due to the sublinearity, every norm is convex, but in the case of Lp spaces, the norms
‖‖∞ and ‖‖1 are the only cases that are not strictly convex.

Proposition 8. Let U be a linear subspace of a normed linear space V with strictly
convex norm. Then every element f ∈V has at most one best approximation.

Proof. Let f ∈ V , and assume that we have two different best approximations
u1,u2 ∈U with d := ‖ f − u1‖ = ‖ f − u2‖. We can use the strict convexity of the
norm to compute∥∥∥∥ f − 1

2
(u1 +u2)

∥∥∥∥< 1
2
‖ f −u1‖+

1
2
‖ f −u2‖= d,

which contradicts our assumption on the optimality of u1 and u2, and so there can
only exist at most one best approximation of f . �

We now consider best approximations in pre-Hilbert spaces H.

Proposition 9. Let H be a pre-Hilbert space, and U ⊂ H a linear subspace. Then,
an element u? ∈U is a best approximation of an element f ∈ H in U, if and only if

〈 f −u?,v〉= 0, ∀v ∈U. (5)

Proof. Assuming that an element u? ∈ U satisfies the orthogonality (5), we can
apply the Pythagoras theorem to obtain

‖ f −u‖2 = ‖( f −u?)+(u?−u)‖= ‖ f −u?‖+‖u?−u‖> ‖ f −u?‖

for any u ∈U . In this case, u? is a best approximation of f .
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Assuming that the orthogonality (5) does not hold for some v ∈U , we can select
one λ :=−〈 f −u?,v〉/‖v‖2 to compute

‖ f −u?+λv‖2 = ‖ f −u?‖+2λ 〈 f −u?,v〉+λ
2‖v‖2 < ‖ f −u?‖2,

in which case u? cannot be a best approximation of f . �

RKHS and Approximation Theory

We now demonstrate how to construct approximation algorithms in a RKHS. To this
end, we follow along the lines of [37]. For further details, see [6, 23, 35, 36, 41].

Remark 11 (RKHS approximation scheme). The basic setup for approximation in a
RKHS is as follows. The first ingredient is an (unknown) function f : Ω → R to
be reconstructed from a discrete set of (given) values f (x1), . . . , f (xn), based on the
sampling elements X = {x1, . . . ,xn} ⊂Ω , for a nonempty set Ω . The second ingre-
dient is a RKHS HK with kernel K : Ω×Ω →R, where we assume f ∈HK . Finally,
the third ingredient a finite dimensional approximation space, a linear subspace of
HK of the form

SX := span{Kx, x ∈ X}, with Kx : Ω → R, Kx(y) := K(x,y).

Given these ingredients, we can directly apply the basic framework of kernel-based
approximation to efficiently reconstruct f . From an application point of view, one
important decision is the selection of a suitable kernel K, with corresponding RKHS
HK . We show two important properties of the resulting approximation scheme:
uniqueness and optimality of the best approximation.

Theorem 4. For a nonempty set Ω , let HK be a RKHS with kernel K : Ω ×Ω → R.
Moreover, let f ∈ HK be a function, whose scalar values f (x1), . . . , f (xn) ∈ R on
X := {x1, . . . ,xn} ⊂ Ω are given. Then, there exists a best approximation f ∗X of f
in SX := span{Kx : x ∈ X}, whose coefficients are the unique solution of the linear
system

f ∗X (xk) =
n

∑
i=1

a∗i K(xi,xk) = f (xk), 1≤ k ≤ n. (6)

Proof. Since SX ⊂ HK is a finite-dimensional linear subspace, there exists a best
approximation f ∗X ∈ SX of f ∈ HK satisfying

〈 f − f ∗X ,s〉= 0, ∀s ∈ SX ,

due to Propositions 7 and 9. From the reproduction property (1), for the function
Kxk(y) := K(xk,y), we get

0 = 〈 f − f ∗X ,Kxk〉= f (xk)− f ∗X (xk), 1≤ k ≤ n.

Since f ∗X is an element of SX , we obtain (6). �
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Theorem 5. Under the conditions und with the notations of Theorem 4, we find the
optimality property

min
g∈OX ( f )

‖g‖K = ‖ f ∗‖K , OX ( f ) := {g ∈ SX , g|X = f |X}.

Proof. For any g ∈ OX ( f ), we have

‖g‖2
K = ‖ f ∗X +(g− f ∗X )‖2

K = ‖ f ∗X‖2 +2〈 f ∗X ,g− f ∗X 〉+‖g− f ∗X‖2. (7)

The inner product (7) can be analyzed by using Kxi(y) := K(xi,y), y ∈ X , to obtain

< f ∗X ,g− f ∗X >=

〈
n

∑
i=1

a∗i Kxi ,g− f ∗X

〉
=

n

∑
i=1

a∗i 〈Kxi ,g− f ∗X 〉=
n

∑
i=1

a∗i (g(xi)− f ∗X (xi)).

Since f ∗X (xi) = f (xi), and g(xi) = f (xi), for i = 1, . . . ,n, we have 〈 f ∗X ,g− f ∗X 〉 = 0.
Therefore, we obtain ‖g‖ ≥ ‖ f ∗X‖, for all g ∈ OX ( f ) from (7). �

2.3 Interactions between Kernels and Frames

In this section, we address interactions between frame theory and reproducing kernel
Hilbert spaces, whose connections are investigated in [30, 33]. The main goal is to
gain additional flexibility (when using a frame instead of a basis in a Hilbert space)
to enlarge the set of admissible kernels and RKHS. In frame theory one considers a
family of vectors {ψx}x∈X in a (real) Hilbert space H, where X is a locally compact
Hausdorff space with a positive Radon measure µ (see [16]). When X is finite or
discrete (e.g., X = N), we consider using a counting measure µ , and the resulting
concept will be a generalization of an orthogonal basis. This provides quite flexible
tools for the analysis and synthesis of a signal f ∈ H.

A frame {ψx}x∈X ⊂ H relies on the stabilization of the analysis operator.

Definition 4. A set of vectors {ψx}x∈X ⊂ H in a Hilbert space H is a frame, if

A|| f ||2 ≤ ||V f ||2 ≤ B|| f ||2, ∀ f ∈ H

for 0 < A ≤ B < ∞, the lower and upper frame bounds, where V : H → L2(X),
(V f )(x) = 〈 f ,ψx〉, for x ∈ X, is the analysis operator.

Reducing the difference between A and B improves the stability of V , and for the
case of A = B, or A = B = 1, the resulting frame is denominated tight frame and
Parseval frame, respectively. The synthesis operator V ∗ : L2(X)→ H,

V ∗((ax)x∈X) =
∫
X

axψx dµ(x),
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is defined through a positive Radon measure µ , when X is a locally compact Haus-
dorff space (see [16]). The maps V ∗ and V are combined in the frame operator

S =V ∗V : H→ H,S f =
∫
X
〈 f ,ψx〉ψxdµ(x),

which plays an important role, since the operator norm of S can be bounded by A
and B,

A≤ ||S||op ≤ B. (8)

Now we turn to the interaction with reproducing kernel Hilbert spaces.

Theorem 6. Let H be a Hilbert space of functions over a nonempty set Ω , with a
frame {φi}i∈I ⊂ H, where I is discrete. Let Kx(y) := ∑i∈I φi(y)φi(x), where {φi}i∈I
is the dual frame of {φi}i∈I . Then, H is a reproducing kernel Hilbert space, if

‖Kx‖H < ∞, ∀x ∈Ω .

Proof. We use the frame property to proof the continuity of point evaluation func-
tionals (see Theorem 1). The frame property gives

f = ∑
i∈I
〈 f ,φi〉φi, ∀ f ∈ H, (9)

where the inner product in (9) is defined on H.
Now we use the semi-norm ‖ f‖x = | f (x)|, for x ∈ Ω , on H. This allows us to

rewrite (9), by pointwise convergence, as

f (x) = ∑
i∈I
〈 f ,φi〉φi(x), ∀x ∈Ω ,

which in turn can be restated as

f (x) = 〈 f ,∑
i∈I

φiφi(x)〉, ∀x ∈Ω .

Using the Cauchy Schwarz inequality, we obtain

| f (x)|= ‖〈 f ,∑
i∈I

φiφi(x)〉‖ ≤ ‖ f‖ ‖∑
i∈I

φiφi(x)‖.

Since
Kx = ∑

i∈I
φiφi(x)

is assumed to be bounded, the linear point evaluation functional Lx( f ) := f (x) is
bounded, which implies that H is a RKHS, due to Theorem 1. �

Theorem 7. If HK is a reproducing kernel Hilbert space of functions over a nonempty
set Ω , which contains a frame {φi}i∈I , then the reproducing kernel can be expressed
as
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K(x,y) = ∑
i∈I

φi(x)φi(y). (10)

Proof. On the one hand, in the spirit of in Theorem 6, any function in f ∈ HK can
(due to the frame property) be written as

f (x) =< f ,∑
i∈I

φiφi(x)>, ∀x ∈Ω , ∀ f ∈ HK .

On the other hand, since HK is a RKHS, there is a kernel K, such that

f (x) = 〈 f ,Kx〉, ∀x ∈Ω , ∀ f ∈ HK .

Now, due to the unicity of the reproducing kernel (see Proposition 2), we obtain
the kernel decomposition based on a frame {φi}i∈I in (10). �

3 Persistent Homology

In this section, we present a short introduction to the basic ideas of persistent ho-
mology, which is an important algorithmic and theoretical tool developed over the
last decade as a topic of computational topology. First, we present basic concepts
on persistent homology as an important new development in computational topo-
logy for extracting qualitative information from a point cloud data X = {xi}. Here,
our interest lies mostly on datasets arising from time frequency analysis and signal
processing problems.

3.1 Simplicial and Persistent Homology

We first recall elementary concepts on simplicial homology as a basic homology
theory used for constructing algebraic data from topological spaces (see [18] for
similar material).

Remark 12 (Simplicial complexes). A basic component in this context is a (finite)
abstract simplicial complex which is a nonempty family of subsets K of a vertex
set V = {vi}m

i=1 such that V ⊆ K (here we simplify the notation and we identify
the vertex v with the set {v}) and if α ∈ K,β ⊆ α , then β ∈ K. The elements of
K are denominated faces, and their dimension is defined as their cardinality minus
one. Faces of dimension zero and one are called vertices and edges, respectively.
A simplicial map between simplicial complexes is a function respecting their struc-
tural content by mapping vertices in one structure to vertices in the other, and the
images of the vertices of a simplex always span a simplex. These concepts represent
combinatorial structures capturing the topological properties of many geometrical
constructions. Given an abstract simplicial complex K, an explicit topological space
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is defined by considering an associated (non necessarily unique) geometric real-
ization or polyhedron, denoted by |K|. These are constructed by thinking of faces
as higher dimensional versions of triangles or tetrahedrons in a large dimensional
Euclidean spaces and gluing them according to the combinatorial information in K.

Remark 13 (Homology groups). A basic analysis tool of a simplicial complex K, is
the construction of algebraic structures for computing topological invariants, which
are properties of |K| that do not change under homeomorphisms and even continu-
ous deformations. From an algorithmic point of view, we compute topological in-
variants of K by translating its combinatorial structure in the language of linear
algebra. For this task, a basic scenario is to consider the following three steps. First,
we construct the groups of k-chains Ck, defined as the formal linear combinations of
k-dimensional faces of K with coefficients in a commutative ring R (e.g. R = Z, or
R = Zp). We then consider linear maps between the group of k-chains by construc-
ting the boundary operators ∂k, defined as the linear transformation which maps a
face σ = [p0, · · · pn]∈Cn into Cn−1 by ∂nσ = ∑

n
k=0(−1)k[p0, · · · , pk−1, pk+1, · · · pn].

In a third step, we construct the homology groups, being defined as the quotient
Hk := ker(∂k)/im(∂k+1). Finally, the concept of number of k-dimensional holes are
defined using the rank of the homology groups, βk = rank(Hk) (Betti numbers). In a
sphere, for instance, we have zero 1-dimensional holes, and one 2-dimensional hole,
whereas in a torus there are two 1-dimensional holes and one 2-dimensional hole.

3.2 Basics on Persistent Homology

In many application problems a main objective is to analyze experimental datasets
X = {xi}m

i=1 ⊂ Rn and understand their content by computing qualitative informa-
tion. Topological invariants are important characteristics of geometrical objects,
and their properties would be fundamental tools for understanding experimental
datasets. The major problem when computing topological invariants of datasets are
their finite characteristics and the corresponding inherent instability when com-
puting homological information. Indeed, minor variations (e.g. noise and error in
measurements) on how topological structures are constructed from X , could pro-
duce major changes on the resulting homological information. Persistent homology
[7, 15, 14] is an important computational and theoretical strategy developed over
the last decade for computing topological invariants of finite structures. We now
describe its motivations, main principles, and theoretical background.

Motivations

A major problem when using tools from simplicial homology for studying a dataset
X = {xi}m

i=1 ⊂ Rn is the fact that we do not have a simplicial complex structure at
hand. If we assume that X is sampled from a manifold (e.g. X ⊂M , with M being a
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submanifold of Rn), a main objective would be to compute homological information
of M using only the dataset X . We remark that more generalized settings, where
M is not necessarily a manifold, are fundamental cases for many applications and
experimental scenarios. But we can discuss, for illustration purposes, the simplified
situation of M being a manifold. We also notice that the crucial problem of finding
density conditions for X to be a meaningful sampling set of a manifold M has been
recently addressed in [29], and we discuss these issues later in this report.

Attempting to construct a simplicial complex structure from X can be a very
difficult problem. A simple strategy would be to consider the homology of the spaces

Xε = ∪m
i=1B(xi,ε),

where a ball B(xi,ε) of radius ε is centered around each point of X . A naive approach
would be to try to find an optimal εo such that the homology of Xεo corresponds to
the homology of M . But this approach is highly unstable, as different homological
values might be obtained when considering small perturbations of εo.

The proposal in persistent homology is to consider topological information for
all ε > 0 simultaneously, and not just a single value εo. The key concept is that a
general homological overview for all values ε > 0 is a useful tool when studying
the topology of finite datasets. From a computational point of view, estimating ho-
mological data for all continuous values ε > 0 might sound unreasonable, but there
are two crucial remarks for implementing these ideas in an efficient computational
framework. On the one hand, despite the fact that we are considering a continuous
parameter ε > 0, it can be verified that for a given dataset X , there is actually only a
finite number of non-homeomorphic simplicial complexes

K1 ⊂ K2 ⊂ ·· · ⊂ Kr

(which is the concept of a filtration to be explicitly defined later on) that can be con-
structed from {Xε ,ε > 0}. On the other hand, another crucial property is that the per-
sistent homology framework includes efficient computational procedures for calcu-
lating homological information of the whole family K1⊂K2⊂ ·· · ⊂Kr, see [42, 31].

We also remark that, given a parameter ε with corresponding set Xε , there are
various topological structures useful for studying homological information of a con-
tinuous object from which the samples X are taken. In particular, an efficient com-
putational construction is given by the Vietoris-Rips complexes Rε(X), defined with
X as the vertex set, and setting the vertices σ = {x0, . . . ,xk} to span a k-simplex of
Rε(X) if d(xi,x j) ≤ ε for all xi,x j ∈ σ . For a given εk the Vietoris-Rips complex
Rεk(X) provides an element of the filtration K1 ⊂ K2 ⊂ ·· · ⊂ Kr, with Kk = Rεk(X).
In conclusion, there is only a finite set of positive values {εi}r

i=1, that describe homo-
logical characteristics of X , each of which generate a Vietoris Rips complex {Ki}m

i=1
representing the topological features of the family {Xε ,ε > 0}. Therefore, the topo-
logical analysis of a point cloud data X boils down to the analysis of a filtration
K1 ⊂ K2 ⊂ ·· · ⊂ Kr, which is the main object of study in persistent homology. We
now describe the main conceptual ingredients in this framework.
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3.3 Conceptual Setting

The input in the persistent homology framework is a filtration of a simplicial com-
plex K, defined as a nested sequence of subcomplexes /0 = K0 ⊂ K1 ⊂ ·· · ⊂ Kr = K.
Given a simplicial complex K, we recall that the boundary operators ∂k connect the
chain groups Ck, and define a chain complex, denoted by C∗, and depicted with the
diagram:

. . .Ck+1
∂k+1−−→Ck

∂k−→Ck−1→ . . . .

We remark that on given chain complex C∗, one defines the k-cycle groups and the
k-boundary groups as Zk = ker∂k, and Bk = im∂k+1, respectively. As we have nested
Abelian groups Bk ⊆ Zk ⊆Ck, the k-homology group Hk = Zk/Bk is well defined.

There are several basic definitions required for the setting of persistent homo-
logy. A persistent complex is defined as a family of chain complexes {Ci

∗}i≥0 over
a commutative ring R, together with maps

f i : Ci
∗→Ci+1

∗ related as C0
∗

f0−→C1
∗

f1−→C2
∗

f2−→ . . . ,

or more explicitly, described with the following diagram

...
...

...

C0
2 C1

2 C2
2 . . .

C0
1 C1

1 C2
1 . . .

C0
0 C1

0 C2
0 . . .

0 0 0 . . .

f 0

f 0

f 0

f 0

f 1

f 1

f 1

f 1

f 2

f 2

f 2

f 2

∂3 ∂3 ∂3

∂2 ∂2 ∂2

∂1 ∂1 ∂1

∂0 ∂0 ∂0

We remark that, due to the applications we have in mind, we will assume that
chain complexes are trivial in negative dimensions. Given a filtration of a sim-
plicial complex K, a basic example of a persistent complex is given by consider-
ing the functions f i as the inclusion maps between each simplicial complex in the
nested sequence /0 = K0 ⊂ K1 ⊂ K2 ⊂ ·· · ⊂ Kr = K. Another fundamental concept
is a persistent module, defined as a family of R-modules Mi and homomorphisms
φ i : Mi → Mi+1. We say that the persistent module is of finite type if each Mi is
finitely generated, and the maps φ i are isomorphisms for i ≥ k and some integer k.
The basic example of a persistent module is given by the homology of the simplicial
complexes of a filtration. We now define the p-persistent homology group of Ki as
the group

H i,p
k = Zi

k/(B
i+p
k ∩Zi

k),
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where Zi
k and Bi

k stand respectively for the k-cycles and k-boundaries groups in Ci.
This group can also be described in terms of the inclusions Ki ⊂Ki+p, their induced
homomorphisms f i,p

k : H i
k→ H i+p

k , and the corresponding relation

im( f i,p
k )∼= H i,p

k .

These persistent homology groups contain homology classes that are stable in the
interval i to i+ p: they are born before the “time” index i and are still alive at index
i+ p. Persistent homology classes alive for large values of p, are stable topological
features of X , while classes alive only for small values of p are unstable or noise-
like topological components. We will see, in the following paragraphs, alternative
views for explaining generalized versions of persistent objects as functors between
special categories.

The output of the persistent homology algorithm are representations of the evo-
lution, with respect to the parameter ε > 0, of the topological features of X . These
representations are depicted with persistent diagrams indicating, for each homo-
logy level k, the amount and stability of the different k-dimensional holes of the
point cloud X . We now present a more precise explanation of the concepts related
to persistent diagrams and some of its properties.

The main task we now describe is the analysis of persistent homology groups
by capturing their properties in a single algebraic entity represented by a finitely
generated module. Recall that a main objective of persistent homology is to con-
struct a summary of the evolution (with respect to ε) of the topological features of
X using the sets {Xε ,ε > 0}. This property is analyzed when constructing, with the
homology groups of the complexes Ki, a (graded) module over the polynomial ring
R = F[t] with a field F. The general setting for this procedure is to consider a per-
sistent module M = {Mi,φi}i≥0 and construct the graded module α(M) =

⊕
i≥0 Mi

over the graded polynomial ring F[t], defined with the action of t given by the shift
t · (m0,m1, . . .) = (0,φ 0(m0),φ 1(m1), . . .). The crucial property of this construction
is that α is a functor that defines an equivalence of categories between the category
of persistent modules of finite type over F, and the category of finitely generated
non-negatively graded modules over F[t]. In the case of a filtration of complexes K0
to Kr, this characterization of persistent modules provides the finitely generated F[t]
module:

α(M) = Hp(K0)⊕Hp(K1)⊕·· ·⊕Hp(Kr).

These modules are now used in a crucial step that defines and characterizes the
output of persistent homology. The main tool is the well-known structure theorem
characterizing finitely generated modules over principle ideal domains (this is why
we need F to be a field). This property considers a finitely generated non-negatively
graded module M, and ensures that there are integers {i1, . . . , im}, { j1, . . . , jn},
{l1, . . . , ln}, and an isomorphism:

M∼=
m⊕

s=1

F[t](is)⊕
n⊕

r=1

(F[t]/(t lr))( jr).
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This decomposition is unique up to permutation of factors, and the notation F[t](is)
denotes an is shift upward in grading. The relation with persistent homology is given
by the fact that when a persistent homology class τ is born at Ki and dies at K j it
generates a torsion module of the form F[t]τ/t j−i(τ). When a class τ is born at Ki
but does not die, it generates a free module of the form F[t]τ .

We can now explain the concept of persistent diagrams using an additional char-
acterization of F[t]-modules. We first define a P-interval as an ordered pair (i, j),
where 0 ≤ i < j for i, j ∈ Z∪ {∞}. We now construct the function Q mapping a
P-interval as Q(i, j) = (F[t]/t j−i)(i), Q(i,∞) = F[t](i), and for a set of P-intervals
S = {(i1, j1), . . . ,(in, jn)}, we have the F[t]-module

Q(S) =
n⊕

`=1

Q(i`, j`).

The map Q turns out to be a bijective map between the sets of finite families of
P-intervals and the set of finitely generated graded modules over F[t].

Now, we can recap all these results by noticing that the concept of persistent
diagrams can be described as the corresponding set of P-intervals associated to the
finitely generated graded module over F[t], constructed with the functor α from
a given filtration /0 = K0 ⊂ K1 ⊂ K2 ⊂ ·· · ⊂ Kr = K. There are several graphical
representations for persistent diagrams, and two well known examples are the so
called barcodes, and triangular regions of index-persistent planes.

3.4 Generalizations with Functorial Properties

In order to design useful generalizations of persistent homology, it is important to
understand its setting in a deeper conceptual level. A recent formulation, providing
the core features of persistent homology, has been presented in [7], and describes
this concept as a functor between well chosen categories. Indeed, a crucial aspect of
persistent homology is the association from an index set to a sequence of homology
groups constructed from a filtration /0=K0⊂K1⊂K2⊂ ·· · ⊂Kr =K. An important
generalization of this construction considers a general partially ordered set P as an
index set which we associate to a family of objects in a given category C. Notice that
we can consider the partially ordered set P as a category P, whose objects are P, and
a morphism from x to y is defined whenever x ≤ y. With this setting, a P-persistent
object in C is defined as a functor Φ : P→ C, described also as a family of objects
{cx}x∈P in C, and morphisms φxy : cx→ cy, when x≤ y.

These concepts are of fundamental importance for extending the main ideas of
persistent homology in more general situations. Notice that in standard persistent
homology we use the partial ordered sets P = N or P = R, but important exten-
sions have been recently developed in the context of multidimensional persistence.
Here, we consider multidimensional situations where the partial ordered sets are,
for instance, P = Nk or P = Rk, k > 1. These developments are motivated by mul-
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tiple practical considerations, such as the analysis of point cloud using both density
estimations and the Vietoris Rips Complex construction.

3.5 Stability Properties

A crucial property in persistent homology is the concept of stability of persistent
diagrams. We recall that for a topological space X , and a map h : X → R, we say
that h is tame if the homology properties of {Xε ,ε > 0}, for Xε = h−1(]−∞,ε[), can
be completely described with a finite family of sets Xa0 ⊂ Xa1 ,⊂ ·· · ⊂ Xar , where
the positive values {ai}r

i=0 are homology critical points. If we denote the persistent
diagram for X and h : X → R, as dgmn(h), we have a summary of the stable and
unstable holes generated by the filtration

Xa0 ⊂ Xa1 ,⊂ ·· · ⊂ Xar

(see [14]). With these concepts, the stability of persistent diagrams is a property
indicating that small changes in the persistent diagram dgmn(h) can be controlled
with small changes in the tame function h : X → R (see [12] for details on the
stability properties of persistent diagrams).

An important theoretical and engineering problem to investigate is the sensibility
of the persistent homology features of X f when applying signal transformations to
f . This is in relation to the question of finding useful signal invariants using the
persistent diagram of X f . For instance, in the case of audio analysis, a crucial task
is to understand the effects in the persistent diagram of X f when applying audio
transformations to f as, for instance, delay filters or convolution transforms (e.g
room simulations). This task requires both theoretical analysis and numerical ex-
periments. For a conceptual analysis, a possible strategy is to consider these recent
theorems explaining the stability of persistent diagrams.

In order to introduce the idea of stability of persistent diagrams we now introduce
with more detail the basic concepts.

Definition 5. Let X be a topological space, and α : X→R a continuous function. A
homological critical value (or HCV) is a number a ∈ R for which the map induced
by α ,

Hn(α
−1(]−∞,a− ε[))→ Hn(α

−1(]−∞,a+ ε[)),

is not an isomorphism for all ε > 0 and for some integer n ≥ 0. Recall that each
α−1(]−∞,a[) is a sublevel set of α , and it plays a crucial role in Morse theory,
as well as in our current setting. A tame function is now defined to be a function
α : X→ R that has only a finite number of HCV.

Typical examples of tame functions are Morse functions on compact manifolds,
and piecewise linear functions on finite simplicial complexes [12].
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Definition 6. For a tame function α : X → R, we define its persistent diagram
dgm(α) as the persistent diagram of the filtration K1 ⊂K2 ⊂ ·· · ⊂Kr =X where we
let Ki = f−1(]−∞,ai]), and a1 < a2 < · · ·< ar are the critical values of α (cf. [9]).

Definition 7. For two nonempty multisets X ,Y ⊂ R2 with the same cardinality the
Hausdorff distance and bottleneck distances are defined as

dH(X ,Y ) = max
{

sup
x∈X

inf
y∈Y
||x− y||∞,sup

y∈Y
inf
x∈X
||y− x||∞

}
,

dB(X ,Y ) = inf
γ

sup
x∈X
||x− γ(x)||∞

where we consider all possible bijection of multisets γ : X → Y . Here, we use

||p−g||∞ = max{|p1−q1|, |p2−q2|}, for p,q ∈ R2.

We also have the inequality between these distances: dH(X ,Y )≤ dB(X ,Y ) (see [12]).

Theorem 8. Let X be a topological space with tame functions α,β : X→ R. Then,
the following stability property holds:

dB(dgm(α),dgm(β )≤ ||α−β ||∞. (11)

4 Interactions with Persistent Homology

We finally present interactions between kernels and frames with persistent homo-
logy. We remark that these interactions provide basic concepts for exploring new
possibilities on relating frames, kernels and persistent homology. We discuss two
particular aspects: relations between kernels and persistent homology and relations
between frames and persistent homology. Recent developments have uncovered spe-
cific interactions with novel ways for studying data and signal in different contexts.

4.1 Interactions between Kernels and Persistent Homology

The construction of kernels for comparing persistent diagrams has recently become
an important topic due to the fact that measures like the bottleneck distance are in-
efficient to compute in practice. A better conceptual and numerical strategy is to use
reproducing kernels and their ability to translate unstructured data in a more conve-
nient setting of linear algebra. Several methods have been proposed in the last years,
including the usage of discrete measures (e.g. [1, 2, 26, 34]), constructing distance
vectors from persistent diagrams seeing as finite metric spaces [8], and manipulat-
ing persistent diagrams to construct “landscapes”, defined as functions which can
be more conveniently compared as elements of a vector space of functions [5].
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In this section we present one representative strategy of the list labeled by “dis-
crete measures”, which considers functions derived from a heat diffusion process
having as initial condition a persistent diagram as presented in [34].

We first remark that the bottleneck distance used in our previous discussions can
be embedded in p-Wasserstein distances, which is a more general type of distance
defined for any positive real number p as

dW,p(F,G) =

(
inf

γ
∑
x∈F
||x− γ(x)||p∞

)1/p

.

Here, as before, γ ranges over all bijections from the elements of F to the elements
of G. Notice that as p→ ∞, we have dW,∞ = dB.

We now define the particular kernel on the space of persistent diagrams described
in [34]. The intuition behind these ideas is to use scale-space theory which considers
a particular type of multi-scale decomposition of signals. This theory has been ap-
plied in image processing, and the idea is to apply these mechanisms to persistent
diagrams seen as special type of images. This decomposition is given by the evolu-
tion derived by the partial differential equation for the heat diffusion problem. Each
step in this evolution corresponds to one particular scale, and we construct a cor-
responding family of kernels for each scale, as indicated in the following definition.

Definition 8 ([34]). Let Ω = {x = (x1,x2) ∈ R2,x2 ≥ x1} be the space above the
diagonal, and let δp be a Dirac delta centered at the point p. For a persistent dia-
gram D, we consider the solution u : Ω ×R≥0 → R, (x, t)→ u(x, t) of the partial
differential equation ∆xu = ∂tu in Ω ×R≥0, u = 0 on ∂Ω ×R≥0, u = ∑p∈D δp on
∂Ω×{0}. Using the set of persistent diagrams D, the feature map Ωσ : D→ L2(Ω)
at scale σ is defined as Φσ (D) = u|t=σ , (namely Φσ (D)(x) = u(x,σ),x ∈Ω ). This
map provides a kernel kσ (the persistence scale space kernel) on D with

kσ (F,G) = 〈Φσ (F),Φσ (G)〉L2(Ω).

With the concepts just introduced, we can now cite a main result of [34], where
a stability property is described involving the application of the feature map to the
persistent diagram. This presents a new type of interaction between persistent ho-
mology and kernel methods.

Theorem 9 ([34]). The kernel kσ is 1-Wasserstein stable, namely, for F,G two per-
sistent diagrams, and a feature map Φσ , we have

||Φσ (F)−Φσ (G)||L2(Ω) ≤
1

σ
√

8π
dW,1(F,G).
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4.2 Interactions between Frames and Persistent Homology

We now provide one particular interaction between frames and persistent homo-
logy, as described in more details in our previous work [4, 19]. Our basic result pro-
vides theoretical statements concerning stability properties of persistent diagrams
of frame transforms |V f |, when considering a frame decomposition V f ∈ L2(X),
where X is the parameter set of the frame {ψx}x∈X, and f ∈ H.

Theorem 10 ([4]). Let f ,g ∈ H and assume |V f | and |V g| are tame functions with
V : H→ L2(X) a frame analysis operator, where we consider a discrete topological
space X with a counting measure. Then, the following stability property holds.

dB(dgm(|V f |),dgm(|V g|))≤
√

B|| f −g||H.

Proof. This is a consequence of the inequality (8) (the bounding of the norm of the
frame operator) and the stability of the persistent diagrams described in (11):

dB(dgm(|V f |),dgm(|V g|))
≤ || |V f |− |V g| ||∞
≤ ||V f −V g||2 (counting measure property)
≤ ||V || || f −g||H
≤
√
||V ∗V |||| f −g||H ||V ||2 = ||V ∗V ||

≤
√
||S|| || f −g||H

≤
√

B|| f −g||H.

�

This proposition is an initial step towards the integration of frame theory and
persistent stability. We remark that new developments have been achieved in gene-
ralizing the work in [12], and the inequality (11), by avoiding the restrictions im-
posed by the functional setting and expressing the stability in a purely algebraic
language (see [7, 9]). The usage of these more flexible and general stability proper-
ties is a natural future step in our program.

As an illustrative example, we present in Fig. 1 two acoustic signals f0, f1 and
their corresponding spectrograms (STFT) |V f0| and |V f1|. These represent a parti-
cular frame construction as required in the Theorem 10. In Fig. 1(e) and Fig.1(f) we
display the persistent homology diagrams when considering |V f0| and |V f1| as two
dimensional functions and analyzing the corresponding level sets as indicated in the
definitions 5 and 6. In these persistent diagrams we have selected only the 30 most
prominent 1-dimensional homological structures, displayed by the 30 dots with the
largest distance to the diagonal (identity function) in the persistent diagram. These
diagrams can be seen as homological fingerprints describing topological features of
the corresponding spectrograms. These persistent diagrams can be used to identify
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and discriminate these spectrograms using a compact or sparse representation. We
are then displaying a new type of characterization of time-frequency data using
topological properties for identifying and discriminating signals.

a) signal f0 b) signal f1

c) |V f0|: spectrogram of f0 d) |V f1|: spectrogram of f1

e) dgm(|V f0|) (1-homology) f) dgm(|V f1|) (1-homology)

Fig. 1 Time-frequency plots and discriminative properties of persistence (experiment from [4]).
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