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Abstract. This paper proposes a new grid-free adaptive advection scheme. The resulting algo-
rithm is a combination of the semi-Lagrangian method (SLM) and the grid-free radial basis function
interpolation (RBF). The set of scattered interpolation nodes is subject to dynamic changes at run
time: Based on a posteriori local error estimates, a self-adaptive local refinement and coarsening of
the nodes serves to obtain enhanced accuracy at reasonable computational costs. Due to well-known
features of SLM and RBF, the method is guaranteed to be stable, it has good approximation be-
haviour, and it works for arbitrary space dimension. Numerical examples in two dimensions illustrate
the performance of the method in comparison with existing grid-based advection schemes.
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1. Introduction. Let I = [0, T ] ⊂ R, T > 0, be a compact time interval, and
let the computational domain be Ω = R

d, d ≥ 1. We consider the linear advection
equation

d

dt
c(t, x) = 0(1.1)

in Ω̄ = I × Ω, where c : Ω̄ → R models the time-dependent distribution of the
concentration in Ω, i.e. for each pair (t, x) ∈ Ω̄, c(t, x) returns the concentration at
x ≡ x(t) ∈ Ω at time t ∈ I. We rewrite equation (1.1) in the Eulerian form

∂c

∂t
+

dx

dt
· ∇c = 0,(1.2)

and we shall throughout this paper assume that the velocity field

dx

dt
= a(t, x)

is known. The interpretation of (1.2) is that the scalar function c is constant along
trajectories. Each of these trajectories is entirely determined by a : Ω̄ → R

d. Given
the initial distribution of the concentration

c(t, x)
∣

∣

t=0
= c0(x),(1.3)

c0 with a compact support in R
d, our aim is to numerically solve equation (1.1).

Note that the formulation of equation (1.1) in the whole R
d together with the initial

condition (1.3) helps to avoid considering explicit boundary conditions.
One well-established method class for solving (1.1) are the semi-Lagrangian meth-

ods (SLM). We combine one adaptive such method, to be explained in the following
Section 2, with the grid-free radial basis function interpolation, which is subject of
the discussion in Section 3. This results in a new grid-free adaptive advection scheme,
whose performance is illustrated by numerical examples in Section 4, including a
comparison with existing grid-based adaptive advection schemes.
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2. Adaptive Semi-Lagrangian Advection. In this section, we briefly review
the (backward) SLM, where special attention is paid to its adaptive version [1]. For
a specific discussion on the SLM and its applications in meteorology and environ-
mental modelling we refer to the survey [14], whereas for a more general overview we
recommend the textbook [11], Section 7.

The SLM integrates the Lagrangian form of the advection equation along tra-
jectories. Therefore, the starting point of this particular advection scheme is the
discretization

c(t + τ, x) − c(t, x−)

τ
= 0, x ∈ Ω,

of (1.1), where t ∈ I is the current time, τ > 0 the time step size, and x− the upstream
point corresponding to x. The point x− gives us the unique location of that particle
at time t, which by traversing along its trajectory arrives at x at time t + τ . In
particular, c(t + τ, x) = c(t, x−).

For a finite set X = {x1, . . . , xn} ⊂ Ω of (current) nodes, the SLM requires at
each time step t → t + τ computing a vector

ct+τ
X = (c(t + τ, x1), . . . , c(t + τ, xn))T ∈ R

n

of new concentration values at time t + τ from the corresponding vector ct
X of the

previous time step. Recall that at time t = 0 the values in c0
X are given by the initial

condition (1.3). The computation of each new concentration value c(t + τ, x), x ∈ X,
is accomplished as follows.

(a) Compute x̃, an approximation of the upstream point x−;
(b) Interpolate c(t, x̃) using the values ct

X ;
(c) Advect by letting c(t + τ, x) = c(t, x̃).

In [14] (see also [11], equation (7.66a)) it was recommended to use a recursion of
the form

αk+1 = τ · a(t + τ/2, x − αk/2)

in order to compute after merely a few iterations a sufficiently accurate linear ap-
proximation α ∈ R

d of the trajectory arriving at x. The point x̃ in step (a) is then
obtained by x̃ = x−α. However, as pointed out in [14] and confirmed by the numer-
ical examples in [1], the interpolation in step (b) is clearly the most critical part for
the success of the above integration scheme. Usually, the computation of c(t, x̃) in
step (b) is done by finite element methods (cf. [11, 14]). Due to the arising computa-
tional costs required for the maintainance of a finite element mesh, such methods are,
however, prohibitively expensive in higher dimensions. In consequence, their range of
applications is usually limited to lower dimensional problems.

This severe restriction motivates grid-free methods, often also referred to as mesh-
less methods. Generally speaking, a grid-free SLM is essentially based upon a grid-
free interpolation scheme. To this end, we prefer to work with radial basis functions,
which are modern and powerful tools for multivariate scattered data interpolation.
Be it sufficient for the moment to say that this particular interpolation scheme works
in arbitrary space dimension d ≥ 1 and for arbitrary spatial distribution of the inter-
polation nodes. More details on radial basis functions are discussed in the following
Section 3.
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In addition, we also pick up the idea of adaption, as introduced in [1] for a (grid-
based) SLM; for the purpose of achieving a good compromise between the required
complexity and the method’s accuracy, the node set X is subject to adaptive changes
during the SLM (see [1] for further details). In combination, this leads us to a generic
formulation of a grid-free adaptive SLM, each of whose time steps t → t + τ involves
the following computations.

Algorithm 1. (Adaptive SLM using RBF.)

INPUT: X ≡ X(t), and ct
X .

REPEAT {
(1) FOR each x ∈ X DO {

(a) Compute x̃, and determine a set N ≡ N (x̃) ⊂ X of its neighbours;
(b) Compute s, the radial basis function interpolant satisfying s

∣

∣

N
= c(t, ·)

∣

∣

N
;

(c) Advect by letting c(t + τ, x) = s(x̃).
}

(2) Adaptively modify X by refinement/coarsening of nodes, using a posteriori
error estimations at each x ∈ X;

} UNTIL (X has not been changed in step (2))

OUTPUT: X ≡ X(t + τ), and ct+τ
X .

Note that the above Algorithm 1 is entirely grid-free, if the computations in all
of its steps (1a), (1b), (1c), and (2) do not make use of any grid. While the steps
(1b),(1c) are grid-free by the nature of radial basis functions, in step (1a) various
different (grid-free) options are possible for the selection of N . In order to make one
concrete example, for some specific number k, the set N may for instance be given
by the k nearest neighbours of x̃ in X.

The grid-free implementation of step (2) is, however, rather challenging. Indeed,
the practicability of step (2) requires sophisticated rules for the adaptive refinement
and coarsening of the nodes. But this delicate point is beyond the scope of this paper.
We are currently investigating and evaluating various different grid-free strategies for
step (2) to be presented in the future.

The purpose of this paper is more specific. Note that grid-free (meshless) meth-
ods are novel techniques for numerically solving partial differential equations. In
order to mention two which are related to radial basis functions, recent theoretical
developments include meshless Galerkin-type methods [15] and collocation methods
[7, 8]. Their competitiveness in practical applications, however, remains to be shown
by numerical comparison with classical and well-established methods, such as finite
element methods. This contribution makes one step into this direction. We intend to
draw the attention to the availability of radial basis functions for numerically solving
advection equations. To this end, we show their utility by a numerical comparison
against a finite element method of recommendation from [1]. The numerical tests are
presented in Section 4.

3. Radial Basis Function Interpolation. In this section we explain relevant
features of the grid-free radial basis function interpolation which enters step (1b) of
the Algorithm 1. For a comprehensive review on radial basis functions we recommend
the survey papers [4, 6, 12, 13]. Let us refer to the notations in Algorithm 1. Suppose
that x̃ is an approximation to the upstream point belonging to the node x ∈ X, and
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let N ≡ N (x̃) = {x1, . . . , xk} ⊂ X denote a fixed set of points in the neighbourhood
of x̃. Recall that the values of c(t, ·) at N are known from the previous time step.
According to the radial basis function interpolation scheme, for a fixed radial function
φ : [0,∞) → R, the interpolant s : R

d → R satisfying

s
∣

∣

N
≡ c(t, ·)

∣

∣

N
,

as required in step (1b) of Algorithm 1, is of the form

s =

k
∑

j=1

λjφ(‖ · −xj‖) + p.(3.1)

Here, ‖ · ‖ denotes the Euclidean norm on R
d, and p is an element of Πd

m, the linear
space of all d-variate polynomials of degree less than m. The following table provides
a list of commonly used radial basis functions along with the corresponding order m
of the polynomial part p in (3.1).

Thin Plate Splines φ = r2 log(r) m = 2
Multiquadrics φ = (r2 + 1)1/2 m = 1

Gaussians φ = e−r2

m = 0
Inverse Multiquadrics φ = (r2 + 1)−1/2 m = 0

Assume that p1, . . . , pq is a basis of Πd
m, i.e. q =

(

m−1+d
d

)

, where q ≤ k. Then, the
coefficient vector (λT , µT )T ∈ R

k+q of the interpolant s, λ = (λ1, . . . , λk)T ∈ R
k for

the major part and µ = (µ1, . . . , µq)
T ∈ R

q for the polynomial part, is to be computed
subject to constraints

k
∑

j=1

λjp(xk) = 0 for all p ∈ Πd
m.

Altogether, this amounts to solving the linear system

[

Aφ,N P
PT 0

]

·

[

λ
µ

]

=

[

(c(t, xj))1≤j≤k

0

]

,

where

Aφ,N = (φ(‖xj − x`‖)1≤j,`≤k ∈ R
k×k, P = (p`(xj))1≤j≤k;1≤`≤Q ∈ R

k×q.

For each of the radial basis functions mentioned above the linear system has a solution
which is unique provided that the point set N is Πd

m-nondegenerate, i.e.

p(xj) = 0 1 ≤ j ≤ k =⇒ p ≡ 0 for p ∈ Πd
m(3.2)

holds true. In this case, the interpolation scheme achieves to reproduce any poly-
nomial p ∈ Πd

m from its values in N . Note that the above constraint (3.2) on the
distribution of the points in N is rather weak. Indeed, for m = 2, i.e. Πd

m are the
linear polynomials, condition (3.2) requires that the points in N must not all lie on
a straight line. Moreover, for m = 1 the condition (3.2) is trivial, and for m = 0 it is
empty.

In our numerical examples, we considered working with thin plate splines for a test
case in two dimensions, i.e. d = 2. This popular scattered data interpolation method,
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dating back to Duchon [5], has been identified as the analogue of the classical natural
cubic spline interpolation method for univariate functions (see [12], Section 3.2). Ac-
cording to [5] the thin plate spline interpolation scheme yields optimal interpolants
in the Beppo-Levi space

BL2 =
{

f ∈ C(R2, R) : Dαf ∈ L2(R
2) for all |α| = 2

}

being equipped with the semi-norm

|f |2BL2 =

∫

R2

(

f2
x1x1

+ 2f2
x1x2

+ f2
x2x2

)

dx

which represents the bending energy of a thin plate of infinite extent. Due to the
results in [16], we obtain global error estimates of the form

‖c(t, ·) − s‖L∞(Ω̃) ≤ Cf · h

where

h ≡ hN ,Ω̃ = sup
y∈Ω̃

min
x∈N

‖x − y‖

denotes the fill distance of N ⊂ Ω̃ in a bounded and open domain Ω̃ ⊂ Ω satisfying
an interior cone condition.

In our particular application, however, we are mainly interested in the local ap-
proximation order of thin plate spline interpolation. To this end, we recall from the
previous paper [9], that for c ≡ c(t, ·) ∈ Cr(R2, R), 1 ≤ r ≤ 2, the local approximation
order of the thin plate spline interpolation method is r, i.e.

|c(x̃ + h∆x) − sh(x̃ + h∆x)| = O(hr), h → 0,

holds for every ∆x ∈ R
2. Here, for h > 0, sh denotes the thin plate spline interpolant

satisfying

c(x̃ + h∆xj) = sh(x̃ + h∆xj), 1 ≤ j ≤ k,

where ∆xj = xj − x̃, 1 ≤ j ≤ k. If c is only continuous, then the local approximation
by sh is at least consistent, i.e.

|c(x̃ + h∆x) − sh(x̃ + h∆x)| → 0, h → 0.

4. Numerical Results. We have implemented Algorithm 1, and we considered
applying the method on the slotted cylinder, a common test case suggested by Zalesak
[17]. In this test case, the domain Ω = [−0, 5, 0.5] × [−0, 5, 0.5] ⊂ R

2 is the shifted
unit square, and the initial distribution of the concentration at time t0 = 0 is given
by

c(0, x) =

{

4 for x ∈ D
0 otherwise,

where D ⊂ Ω is the slotted disc, as displayed in the Figure 4.1 (left), of radius r = 0.15,
centred at (−0.25, 0), with slot width 0.06 and length 0.22. The slotted cylinder is
rotated by the steady flow field a(x) = −ω(−x2, x1), x = (x1, x2), where ω = 0.3636×
10−4. We let τ = 1800 sec. for each time step size, so that one revolution of the slotted
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Fig. 4.1. Initial time step: The slotted cylinder (2D view, left); Distribution of the nodes and
their trajectories (right).

cylinder around the origin requires 96 time steps. Moreover, we let I = [0, 480τ ]. Note
that, although the domain Ω is not the whole R

2, as required in the introduction, the
test case complies with the original intention. The concentration never interacts with
its boundary ∂Ω, and therefore we do not have to consider boundary conditions.

For the purpose of illustration, we use thin plate spline interpolation in step (1b)
of Algorithm 1. In order to chop off overshoots, as they typically arise when applying
thin plate spline interpolation on discontinuous data (cf. the details in [9]), we adopt
the idea of clipping, as suggested in [10] for the interpolation by cubic elements.

To this end, we replace s in (1b) of Algorithm 1 by

s̄(x̃) =







cmin, if s(x̃) < cmin

cmax, if s(x̃) > cmax

s(x̃) otherwise,

where s is the thin plate spline interpolant to c(t, ·) on N and

cmin = min
x∈N

s(x), cmax = max
x∈N

s(x)

are its extremal values. This yields the semi-Lagrangian method SLM-TPS, which
we wish to compare with the recommended method SLM-CUB in [1], using cubic
finite elements with clipping. We use the self-adaptive grid T from [1] for the main-
tainance of the node set X (being the vertex set of T ). Moreover, in order to make
a fair comparison between the two methods, exactly the same rules for the adaptive
refinement and coarsening of the node set X (resp. T ) were applied. The distribution
of the nodes after the initial sweep in Algorithm 1 are displayed in Figure 4.1 (right)
along with the linear approximations of their trajectories.

As to the selection of the set N of neighbours around an upstream point x̃ in step
(1a) of Algorithm 1 for SLM-TPS, we first locate a triangle T ∈ T containing x̃,
before we let N =

⋃

v∈VT
Cv, where VT is the set of the three vertices of the triangle

T , and for any vertex v in T , Cv is the vertex set of its cell.
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For diagnostic reasons, we record the ratios of first and second mass moments,

RFM(t) =

∫

Ω
ch(x, t) dx

∫

Ω
c(x, 0) dx

and RSM(t) =

∫

Ω
|ch(x, t)|2 dx

∫

Ω
|c(x, 0)|2 dx

,

and the L2-error

η2(t)
2 = ‖ch(t, ·) − c(t, ·)‖2

L2(Ω) =

∫

Ω

|ch(t, x) − c(t, x)|2 dx

between the numerical solution ch(t, ·) and the analytic solution c(t, ·). The Figure 4.2
reflects our results. As the graph of RFM(t) in Figure 4.2 shows, the method SLM-

TPS is slightly inferior, when it comes to preserving the first mass moment: The
method SLM-CUB differs by at most 0.18 % from the ideal value 1.0, whereas for
SLM-TPS the maximal deviation is 0.35 %. However, in terms of the conservation
of the second mass moment, method SLM-TPS is clearly superior over SLM-CUB.
Indeed, the value RSM(t) achieved by SLM-TPS is, compared with SLM-CUB, for
all t ∈ I closer to the ideal value 1.0 at a maximal deviation of 4.28 %, compared
with 9.34 % obtained by using SLM-CUB. Finally, the L2-error η2(t) of SLM-TPS

is for all t ∈ I smaller than the corresponding error of the method SLM-CUB.
The distribution of the concentration values after the final time step, i.e. after

five revolutions of the slotted cylinder, are for both methods, SLM-TPS and SLM-

CUB, displayed in Figure 4.3. In both figures, the colour code is such that the
concentration values are linearly scaled between blue, corresponding to zero, and red,
corresponding to c ≡ 4.

5. Conclusion and Future Work. A new grid-free adaptive semi-Lagrangian
method for the numerical solution of the linear advection equation has been proposed.
The method is based on the grid-free radial basis function interpolation, and therefore
works in arbitrary space dimension. The resulting scheme performs very well on the
test case of Zalesak’s slotted cylinder. Its accuracy (in terms of the L2-error) and
the conservation of the second mass moment is even better than a comparable well-
introduced grid-based method of recommendation in [1].

We plan to present further improvements of the method by involving advanced
refinement and coarsening rules for the scattered (interpolation) nodes. These details
have widely been omitted in this paper. However, recall that the formulation in
Algorithm 1 does not depend on a particular adaption strategy.

Finally, as shown in [2], we remark that a successful intergration scheme for the
linear advection equation is potentially useful for the purpose of solving nonlinear
advection equations, such as the shallow water equations. Therefore, by following
along the lines of [2], we plan to develop a corresponding grid-free advection scheme
for this important class of applications.

Acknowledgments. The second author was partly supported by the European
Union within the project MINGLE (Multiresolution in Geometric Modelling), con-
tract no. HPRN-CT-1999-00117.



8 J. BEHRENS, A. ISKE

REFERENCES

[1] J. Behrens, An adaptive semi-Lagrangian advection scheme and its parallelization, Mon. Wea.

Rev. 124, 1996, 2386–2395.
[2] J. Behrens, Atmospheric and ocean modeling with an adaptive finite element solver for the

shallow-water equations, Applied Numerical Mathematics 26, 1998, 217–226.
[3] R. Bermejo, and A. Staniforth, The conversion of semi-Lagrangian advection schemes to quasi-

monotone schemes, Mon. Wea. Rev. 120, 1992, 2622–2632.
[4] M. D. Buhmann, Radial basis functions, Acta Numerica, 2000, 1–38.
[5] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in Constructive

Theory of Functions of Several Variables, W. Schempp and K. Zeller (eds.), Springer, Berlin,
1977, 85–100.

[6] N. Dyn, Interpolation and Approximation by Radial and Related Functions, in Approximation

Theory VI, Vol. 1, C. K. Chui, L. L. Schumaker, J. D. Ward (eds.), Academic Press, 1989,
211–234.

[7] C. Franke and R. Schaback, Convergence Orders of Meshless Collocation Methods using Radial
Basis Functions, Advances in Computational Mathematics 8 (1998), no. 4, 381–399.

[8] C. Franke and R. Schaback, Solving Partial Differential Equations by Collocation using Radial
Basis Functions, Applied Mathematics and Computation 93 (1998), no. 1, 73–82.

[9] T. Gutzmer, and A. Iske, Detection of Discontinuities in Scattered Data Approximation, in
Numerical Algorithms 16:2, 1997, 155–170.

[10] S. Gravel, and A. Staniforth, A mass-conserving semi-Lagrangian scheme for the shallow-water
equations, Mon. Wea. Rev. 122, 1994, 243–248.

[11] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall, London,
1996.

[12] M. J. D. Powell, The theory of radial basis function approximation in 1990, in Advances in

Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, W. A. Light
(ed.), Clarendon Press, Oxford, 1992, 105–210.

[13] R. Schaback, Multivariate interpolation and approximation by translates of a basis function,
in Approximation Theory VIII, C. K. Chui and L. L. Schumaker (eds.), World Scientific,
Singapore, 1995, 491–514.
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Fig. 4.2. The ratio of the first and second mass moment, RFM (top) and RSM (middle), and
the L2-errors η2(t), t ∈ I (bottom).
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Fig. 4.3. Distribution of the concentration values after five revolutions of the slotted cylinder
using the grid-free method SLM-TPS (top) and the grid-based SLM-CUB (bottom).


