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Summary. Anisotropic triangulations are utilized in recent methods for sparse rep-
resentation and adaptive approximation of image data. This article first addresses se-
lected computational aspects concerning image approximation on triangular meshes,
before four recent image approximation algorithms, each relying on anisotropic tri-
angulations, are discussed. The discussion includes generic triangulations obtained
by simulated annealing, adaptive thinning on Delaunay triangulations, anisotropic
geodesic triangulations, and greedy triangle bisections. Numerical examples are pre-
sented for illustration.

1 Introduction

This article surveys recent triangulation methods for adaptive approximations
and sparse representations of images. The main purpose is to give an elemen-
tary insight into recently developed methods that were particularly designed
for the construction of suitable triangulations adapted to the specific features
of images, especially to their geometrical contents. In this context, the use of
anisotropic triangulations appears to be a very productive paradigm. Their
construction, however, leads to many interesting and open questions. To better
understand the problems being addressed in current research, selected aspects
concerning adaptive approximations on triangulations are discussed. In par-
ticular, relevant algorithmic and computational issues are addressed, where
special emphasis is placed on the representation of geometrical information
contained in images.

Finite element methods (FEM) are among the most popular classical tech-
niques for the numerical solution of partial differential equations, enjoying a
large variety of relevant applications in computational science and engineer-
ing. FEM are relying on a partitioning of the computational domain, where
triangulations are commonly used. In fact, FEM on triangulations provide
very flexible and efficient computational methods, which are easy to imple-
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ment. Moreover, from a theoretical viewpoint, the convergence and stability
properties of FEM on regular meshes are well understood.

Current research concerning different classes of mesh-based approxima-
tion methods, including FEM, is focused on the design of suitable adaptive
meshes to improve their convergence and stability properties over previous
methods. Adaptivity is, for instance, particularly relevant for the numeri-
cal simulation of multiscale phenomena in time-dependent nonlinear evolu-
tion processes. More specific examples are convection-diffusion processes with
space-dependent diffusivity, or the simulation of shock front behaviour in hy-
perbolic problems. In this case, the construction of well-shaped adaptive tri-
angulations with good anisotropic properties (by the shape and alignment
of their locally adapted triangles) is a key issue for the methods’ numerical
stability (see e.g. [14, 23] for further details).

As regards the central topic of this survey, adaptive image approximation
by anisotropic triangulations, the basic problem is

• the construction of anisotropic triangular meshes that are locally adapted
to the geometrical contents of the input image data

in combination with

• the selection of a reconstruction method leading to an optimal or nearby
optimal image approximation scheme.

Note that the above problem formulation is rather general and informal. In
fact, to further discuss this, we essentially require a more formal definition of
the terms “locally adaptive” and “nearby optimal”. Although a comprehensive
discussion on the approximation theoretical background of this problem is far
beyond the aims and scope of this survey, we shall be more specific on the
relevant basics later in Section 2.

The image approximation viewpoint taken here is very similar to that of
terrain modelling, as investigated in our previous work [7, 12]. In that particu-
lar application, greyscale images may be considered as elevation fields, where
the terrain’s surface is replaced by locally adapted surface patches (e.g. poly-
nomials) over triangulations. But this is only one related application example.
In a more general context, we a concerned with the approximation of (certain
classes of) bivariate functions by using suitable models for locally adapted
approximations that are piecewise defined over anisotropic triangulations.

The rich variety of contemporary applications for mesh-based image ap-
proximation methods lead to different requirements for the construction of the
utilized (triangular) meshes. This has provided a diversity of approximation
methods, which, however, are not yet gathered in a unified theory. Despite of
this apparent variety of different methods, we observe that their construction
relies on merely a few common principles, two of which are as follows.

One construction principle is based on a very simple idea: sharp edges be-
tween objects visible in an image correspond to crucial information. The ab-
stract mathematical modelling leads to measures of regularity which take into
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account singularities along curves. But triangulations are only one possible
method for representing geometrical singularities of images. In fact, different
methods were proposed for the rendering of contours in images. For a recent
account of these methods, we refer to [13].

Another common principle requires the image representation to be sparse.
In our particular situation, this means that the triangulation should be as
small as possible. Note that the requirement of sparsity is not necessarily
reflected by the number of vertices (or edges or triangles) in the triangulation,
but it can also be characterized by some suitable entropy measure related to
a compression scheme.

The construction of sparse triangulations for edge-adapted image approx-
imation, according to the above construction principles, leads to an abstract
approximation problem, whose general framework is briefly introduced in Sec-
tion 2. In Section 3, we present four conceptually different approximation
methods to solve the abstract approximation problem of Section 2.

This leads to four different image approximation algorithms, each of which
achieves to combine the following desirable properties:

• good approximation behaviour;
• edge-preservation;
• efficient (sparse) image representation;
• small computational complexity.

Selected computational aspects concerning the implementation of the pre-
sented image approximation algorithms are discussed in Section 3. Supporting
graphical illustrations and numerical simulations are presented in Section 3
and in Section 4. A short conclusion and directions for future work are finally
provided in Section 5.

2 Image Approximation on Triangulations

2.1 Triangulations and Function Spaces

We first fix some notation and introduce basic definitions concerning triangu-
lations and their associated function spaces.

Let Ω ⊂ R2 denote a compact planar domain with polygonal boundary.
Although we consider keeping this introduction more general, most of the
following discussion assumes Ω = [0, 1]2 for the (continuous) computational
image domain.

Definition 1. A continuous image is a bounded and measurable function
f : Ω → [0,∞), so that f lies in the L∞-class of measurable functions, i.e.,
f ∈ L∞(Ω).
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Although images are bounded (i.e., are lying in L∞(Ω) ⊂ Lp(Ω)), we
distinguish between the different function spaces Lp(Ω), corresponding to dif-
ferent norms ‖·‖Lp(Ω) for measuring the reconstruction error on Ω. We further
remark that a natural image can always be represented by a bounded function.
However, the converse is (trivially) not true: for any fixed p ∈ [1,∞], functions
in Lp(Ω) do often not correspond to natural images. One of the main tasks of
functional analysis methods in image processing is to define function classes,
being given by some suitable regularity conditions, which are as small as pos-
sible but contain relevant images. In the context of triangulation methods,
this immediately leads us to one central question: which image classes may
be well-recovered by approximation methods relying on triangular meshes?
Later in this section, we shall briefly discuss this question and give pointers
to the relevant literature.

But let us first define triangulations and their associated function spaces.

Definition 2. A triangulation T of the domain Ω is a finite set {T}T∈T
of closed triangles T ∈ R2 satisfying the following conditions.

(a) The union of the triangles in T covers the domain Ω, i.e.,

Ω =
⋃
T∈T

T

(b) for any pair T, T ′ ∈ T of two distinct triangles, T 6= T ′, the intersection
of their interior is empty, i.e.,

◦
T ∩

◦
T ′ = ∅ for T 6= T ′.

We denote the set of triangulations of Ω by T (Ω).

Note that condition (b) in the above definition disallows overlaps between
different triangles in T . Nevertheless, according to Definition 2, a triangulation
T may contain hanging vertices, where a hanging vertex is a vertex of a triangle
in T which is lying on the interior of an adjacent triangle’s edge. Triangulations
without hanging nodes are conform, which leads us to the following definition.

Definition 3. A triangulation T of Ω is a conforming triangulation of
Ω, if any pair of two distinct triangles in T intersect at most at one common
vertex or along one common edge. We denote the set of conforming triangu-
lations of Ω by Tc(Ω).

For the purpose of illustration, Figure 1 shows one non-conforming trian-
gulation and one conforming triangulation.

On given planar domain Ω, there are many different (conforming) trian-
gulations of Ω. We remark that many relevant applications rely on triangula-
tions, where long and thin triangles need to be avoided, e.g. in finite element
methods for the sake of numerical stability. In this case, Delaunay triangula-
tions are a popular choice.
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(a) (b)

Fig. 1. (a) a non-conforming triangulation with three triangles and five vertices,
where one vertex is a hanging vertex; (b) a conforming triangulation with six tri-
angles and six vertices.

Definition 4. A Delaunay triangulation D of Ω is a conforming triangu-
lation of Ω, such that for any triangle in D its circumcircle does not contain
any vertex from D in its interior.

We remark that the Delaunay triangulation D of Ω with vertices X ⊂ Ω
maximizes the minimal angle among all possible triangulations of Ω with
vertices X. In this sense, Delaunay triangulations are optimal triangulations.
Moreover, the Delaunay triangulation D ≡ D(X) is unique among all triangu-
lations with vertices X, provided that no four points in X are co-circular [20].
Figure 2 shows one Delaunay triangulation for the square domain Ω = [0, 1]2

with |X| = 30 vertices.

Fig. 2. Delaunay triangulation of a square domain with 30 vertices.
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Now let us turn to functions on triangulations, i.e., bivariate functions
f : Ω → R to be defined over a fixed triangulation T . One possibility for doing
so is by using piecewise polynomial functions. In this case, the restriction f

∣∣
T

to any triangle T ∈ T is a bivariate polynomial of a certain degree. To define
piecewise polynomial functions on triangulations, their maximum degree is
usually fixed beforehand and additional boundary or smoothness conditions
are utilized. This then gives a finite dimensional linear function space.

In the situation of image approximation, we prefer to work with piecewise
linear polynomial functions f . This is due to the simple representation of f .
Moreover, we do not require any global smoothness conditions for f apart
from global continuity. Since natural images are typically discontinuous, it
also makes sense to refrain from assuming global continuity for f . This leads
us to the following definition of two suitable function spaces of piecewise linear
polynomials, one with requiring global continuity, the other without requiring
global continuity. In this definition, P1 denotes the linear space of bivariate
linear polynomials.

Definition 5. Let T ∈ T (Ω) be a triangulation of Ω. The set of piecewise
linear functions on T ,

ST :=
{
f : Ω → R : f

∣∣◦
T
∈ P1

}
is given by all functions whose restriction to the interior

◦
T of any triangle

T ∈ T is a linear polynomial.

Note that in the above definition, the restriction f
∣∣◦
T

of f may, for any

individual triangle T ∈ T , be extended from
◦
T to T , in which case f may

not be well-defined. For a conforming triangulation T (Ω), however, f will be
well-defined on Ω, if we require global continuity. In the following definition,
C (Ω) denotes the linear space of continuous functions on Ω.

Definition 6. Let T ∈ Tc(Ω) be a conforming triangulation of Ω. The set of
continuous piecewise linear functions on T ,

S0
T :=

{
f ∈ C (Ω) : f

∣∣
T
∈ P1

}
,

is given by all continuous functions on Ω whose restriction to any triangle
T ∈ T is a linear polynomial.

Note that (for any conforming triangulation T ) S0
T is a linear subspace

of ST , i.e., S0
T ⊂ ST . Moreover, note that S0

T has finite dimension. Indeed,
the (finite) set of Courant elements ϕv ∈ S0

T , for v in T , each of which being
uniquely defined by

ϕv(x) =
{

1 for x = v;
0 for x 6= v; for any vertex x in T ,
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is a basis of S0
T . Therefore, the dimension of S0

T is equal to the number of
vertices in T . Similarly, the linear function space ST has dimension 3|T |,
where |T | denotes the number of triangles in T .

We remark that one important differences between the two approximation
spaces, S0

T and ST , is that S0
T requires conforming triangulations, whereas for

ST the triangulation T may contain hanging vertices. Note that this leads to
different approximation schemes, as illustrated in Figure 3.

(a) (b)

(c) (d)

Fig. 3. (a) a non-conforming triangulation T ; (b) a conforming triangulation T ′
(cf. Figure 1); (c) a piecewise constant function f ∈ ST ; (d) a continuous piecewise
linear function g ∈ S0

T ′ .

2.2 Isotropic and Anisotropic Approximation Methods

When approximating an image f by (best approximating) functions from S0
T

or ST , the resulting approximation quality heavily depends on the quality of
the triangulation T , in particular on the shape of the triangles in T . Several
alternative quality measures for triangulations are proposed in [23].

In this subsection, we discuss relevant principles concerning the construc-
tion of well-adapted triangulations, leading to adaptive image approximation
methods. In this construction, it is essential to take (possible) anisotropic
features of the image data into account. Second derivatives of the image (if
they exist) are not necessarily of comparable amplitude (i.e., magnitude) in
all directions. Furthermore, the ratio between the maximal and the minimal
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amplitudes may vary quite significantly. Due to typical such heterogeneity
(and other related multiscale phenomena) in image data, this gives rise to
prefer anisotropic triangulations.

To be more specific, image approximation methods by triangulations are
split into non-adaptive methods (relying on uniform triangulations) and adap-
tive methods (relying on non-uniform triangulations). Another distinction be-
tween image approximation methods (and their underlying triangulations) is
by isotropic and anisotropic methods. For illustration, Figure 4 shows exam-
ples for uniform vs non-uniform and isotropic vs anisotropic triangulations.

(a) (b) (c)

Fig. 4. (a) a uniform triangulation; (b) a non-uniform isotropic (non-conforming)
triangulation; (c) an anisotropic (conforming) triangulation.

As regards characteristic features of different triangulation types, Figure 4,

(a)triangles in a uniform triangulation have comparable sizes and shapes, so
that the shape of each triangle is similar to that of an equilateral triangle.

(b)non-uniform isotropic triangulations comprise triangles of varying sizes,
but the triangles have similar shapes.

(c)anisotropic triangulations comprise triangles of varying sizes and shapes.

We remark that non-adaptive image approximations (relying on uniform
triangulations) are, in terms of their approximation quality, inferior to adap-
tive methods. In adaptive image approximation methods, however, the con-
struction of their underlying non-uniform triangulations requires particular
care. While non-uniform isotropic triangulations are suitable in situations,
where the target image has point singularities at isolated points, anisotropic
triangulations are particularly useful to locally adapt singularities of the im-
age along curves, or other features of the image that may be reflected by a
heterogeneous distribution of directional derivatives of first and second order.
Therefore, anisotropic triangulations are usually preferred, especially when
it comes to design suitable triangulations for adaptive image approximation
methods.
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2.3 Basic Techniques for Proving Error Estimates

Let us finally discuss available techniques for proving error estimates for image
approximation. The following discussion includes classical results from finite
elements as well as more recent results concerning Besov spaces and the re-
lated smoothness spaces, relying on the Mumford-Shah model. We keep the
discussion of this section rather short, but we give pointers to the relevant
literature. Further details are deferred to a follow-up paper.

The Bramble-Hilbert Lemma. Let us first recall classical error esti-
mates from finite element methods. To obtain estimates for the global ap-
proximation error of a function by a piecewise function on a triangulation T ,
standard analysis on finite element methods provides estimates for a single
triangle T ∈ T (see [2]), where the key estimate is derived from the Bramble-
Hilbert lemma [3]. For any image f from Sobolev space W 2,2(T ), the basic
error estimate of the Bramble-Hilbert lemma reads as

‖f −ΠST f‖L2(T ) ≤ |f |W 2,2(T ), for f ∈W 2,2(T ),

where ΠST f is the orthogonal L2-projection of f onto ST .

Slim and Skinny Besov Spaces. Although classical isotropic Besov
spaces offer a more suitable framework for adaptive approximation schemes,
they usually fail to represent approximation classes relying on anisotropic
triangulations. Just recently, an more flexible concept was proposed to remedy
this problem.

In [15], Karavainov and Petrushev introduced two different classes of
anisotropic Besov spaces, slim and skinny Besov spaces. The construction of
such Besov spaces relies on subdivision schemes leading to a family of nested
triangulations. The approach taken in [15] is rather technical, but their main
results can loosely be explained as follows.

The set of functions belonging to a slim Besov space (relying on a spe-
cific subdivision scheme) are the functions which can be approximated at
a given convergence rate. Skinny Besov spaces are obtained by using similar
construction principles for the special case of piecewise linear approximations.
The quality of the resulting image approximation, however, heavily relies on
the properties of the utilized subdivision scheme. The construction of suitable
subdivision schemes remains a rather critical and challenging task. For further
details, we refer to [15].

Bivariate Smoothness Spaces. Cartoon models lead to a large family
of approximation methods which are based on the celebrated Mumford-Shah
model [19]. These methods essentially take sharp edges of images into account,
and their basic idea is to regard images as piecewise regular functions being
separated by piecewise smooth curves. A generalization of the Mumford-Shah
model has been proposed by Dekel, Leviatan & Sharir in [6]. In their work [6],
smoothness spaces are defined by using a combination of two distinct notions
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of smoothness, one for the inner pieces (away from the edge singularities), the
other for the singularity supporting curves.

The corresponding smoothness spaces, B-spaces, are in [6] defined in a
similar way as by the standard interpolation techniques used for classical
isotropic Besov spaces. In the present setting, we are interested in the use of
smoothness spaces for the characterization of the approximation spaces

Aα :=
{
f ∈ L2(Ω) : inf

|T |=n,T ∈T (Ω)
‖f −ΠST f‖L2(Ω) ≤

C

nα
for some C > 0

}
.

Further in this context, we consider the smoothness space Bα,r1,r2q (Lp(Ω))
in [6, Definition 1.3] with p = 2, r1 = r2 = 2 and q = ∞. This combination
of parameters is in [6] used for the special case of piecewise affine functions
(r1 = 1) on triangles (r2 = 2) by measuring the error in L2(Ω) (p = 2), and
the approximation rates in the L∞-norm (q =∞).

Useful error estimates for B-spaces are proven in [6], where also a suitable
characterization for the relevant approximation classes Aα ≡ Aα(Ω) is given.
In fact, the main result in [6, Theorem 1.9] states that the inclusion Aα ⊂ Bα
holds for any planar domain Ω ⊂ R2, and, conversely, we have the inclusion

Bα(Ω) ∩ L∞(Ω) ⊂ Aα(Ω),

which provides an almost sharp characterization of the approximation classAα.
For further details, we refer to [6].

3 Four Algorithms for Adaptive Image Approximation

In this section we discuss four different algorithmic concepts for adaptive im-
age approximation, which were proposed during the last five years. Each of
the resulting approximation algorithms, to be discussed in Subsections 3.1-3.4,
aims at the construction of suitable anisotropic triangulations to obtain suf-
ficiently accurate image approximations. Moreover, their utilized adaptation
strategies achieve a well-balanced trade-off between essential requirements
concerning computational costs, approximation properties, and information
redundancy. Computational details and key features of the five different con-
cepts are explained in the following Subsections 3.1-3.4.

3.1 Generic Triangulations and Simulated Annealing

A naive approach to solve the image approximation problem of the previous
Section 2 would consist in finding an optimal triangulation (among all possible
triangulations of equal size) to obtain a best image approximation. However,
the problem of finding such an optimal triangulation is clearly intractable. In
fact, the set of all possible triangulations is huge, and so it would be far too
costly to traverse all triangulations to locate an optimal one.
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An alternative way for (approximately) solving this basic approximation
problem is to traverse a smaller set of generic triangulations, according to a
suitable set of traversing rules, to compute only a suboptimal triangulation
but at much smaller computational complexity.

Recently, Lehner, Umlauf & Hamann [18] have introduced such a method
for traversing a set of generic triangulations, where their basic algorithm relies
on simulated annealing. The triangulations output by the method in [18] are
very sparse, i.e., for a target approximation error, the output triangulation
(whose resulting approximation error is below the given tolerance), requires
only a small number of vertices (cf. the numerical comparison in Figure 5).

(a) (b)

(c) (d)

Fig. 5. (a) Triangulation and (b) image reconstruction obtained by simulated
annealing [18]; (c) triangulation and (d) image reconstruction obtained by adaptive
thinning [8] (Section 3.2). In either test example, the triangulation has 979 vertices.

The generic algorithm of [18] is iterative and can briefly be explained as
follows. On given initial triangulation T0, local modifications are performed,
which yields a sequence {Tn}n of triangulations. Any local modification on a
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current triangulation Tk is accomplished by using one of the following three
basic operations (edge flip, local and global vertex move), yielding the subse-
quent triangulation Tk+1.

• For two triangles sharing a common edge in a convex quadrilateral, an edge
flip replaces the diagonal of the quadrilateral by the opposite diagonal;

• local vertex move: a vertex is moved to a new position in its neighbourhood;
• global vertex move: a vertex is moved and its cell is retriangulated.

To each of the three elementary operations, corresponding probabilities
pe, p`, pg, satisfying

pe + p` + pg = 1,

are assigned, according to which the next operation (edge flip, local or global
vertex move) is performed. But the selection of edges to be flipped or vertices
to be moved is by random.

To avoid local optima, the next triangulation is either taken or rejected,
according another probability,

pn = p(∆En, n),

where ∆En is the difference between approximation errors induced by the
triangulations Tn and Tn+1. For further details concerning the probability
measures we refer to [18].

The iteration of [18] was shown to be very flexible, but the computational
efficiency is rather critical. This is due to the construction of the greedy al-
gorithm, which navigates through a very large set of triangulations. Further
improvements may be used to speed-up the convergence of the simulated an-
nealing procedure, where the reduction of computational complexity is done
by working with local probabilities [18].

Finally, the numerical example in Figure 5 (a)-(b) shows the efficacy of
the simulated annealing method. Note that, especially from the viewpoint of
anisotropy, the triangles in Figure 5 (a) are well-aligned with the sharp edges
in the test image.

3.2 Adaptive Thinning Algorithms

Adaptive thinning algorithms [12] are a class of greedy point removal schemes
for bivariate scattered data. In our recent work [8, 9, 10], adaptive thinning al-
gorithms were applied to image data, and more recently, also to video data [11]
to obtain an adaptive approximation scheme for images and videos. The re-
sulting compression methods were shown to be competitive with JPEG2000
(for images) and MPEG4-H264 (for videos).

To explain the basic ideas of adaptive thinning for image data, let X de-
note the set of image pixels, whose corresponding pixel positions are lying on
a rectangular two-dimensional grid. This, in combination with the pixels’ lu-
minance values defines a bivariate discrete function f : X → R. Now the aim
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of the adaptive thinning algorithm is to select a small subset Y ⊂ X of sig-
nificant pixels, whose corresponding Delaunay triangulation D ≡ D(Y ) gives
a suitable finite-dimensional ansatz space S0

D of globally continuous piecewise
linear functions.

The image approximation s : [X] → R to f is then given by the best
approximation s∗ ∈ S0

D in the least squares sense, i.e. s∗ minimizes the `2-
error

‖s− f‖22 :=
∑
x∈X
|s(x)− f(x)|2

among all functions s ∈ S0
D. Note that s∗ is unique and can be computed

efficiently by standard least squares approximation.
The challenge of this particular approximation method is to determine a

good adaptive spline space s ∈ S0
D, by the selection of a suitable subset Y ⊂ X,

such that the resulting least squares error

η ≡ η(Y ) = ‖s∗ − f‖22

is as small as possible. Ideally, one wishes to compute an optimal Y ∗ ⊂ X
which minimizes η(Y ) among all subsets Y ⊂ X of equal size. But the prob-
lem of computing Y ∗ is NP-complete. This requires greedy approximation
algorithms for the selection of suitable (sub-optimal) solutions Y ⊂ X.

In greedy adaptive thinning algorithms, a subset Y ⊂ X of significant
pixels is computed by the recursive removal of pixel points, one after the other.
The generic formulation of the adaptive thinning algorithm is as follows.

Algorithm 1
INPUT: set of pixel positions X and luminance values {f(x)}x∈X .

(1) Let XN = X;
(2) FOR k = 1, . . . , N − n

(2a) Find a least significant pixel x ∈ XN−k+1;
(2b) Let XN−k = XN−k+1 \ x;

OUTPUT: subset Y = Xn ⊂ X of significant pixels.

To implement an adaptive thinning algorithm, it remains to give, for any
Y ⊂ X, a definition for least significant pixels in Y . To this end, several differ-
ent significance measures were proposed in [7, 8, 9, 10, 12]. Each of the utilized
significance measures are relying on (an estimate) of the anticipated error that
is incurred by the removal of the pixel point. The anticipated error for a pixel
y is a local measure σ(y) for the incurred `2-error due to its removal. In the
greedy implementation of adaptive thinning, a pixel y∗ is least significant (in
any step of the algorithm), whenever its anticipated error σ(y∗) is smallest
among all points in the current subset Y ⊂ X. Since σ(y) can be computed
and updated in constant time, this allows for an efficient implementation of
adaptive thinning in only O(N log(N)) operations, where N = |X|.
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3.3 Anisotropic Geodesic Triangulations

The anisotropic meshing problem, as pointed out in [1], can be interpreted
as the search for a criterion based on a locally modified metric, according to
which triangulations are then constructed. To connect this viewpoint with the
concept of anisotropic triangulations, the Euclidean metric corresponds to a
uniform triangulation, whereas metrics whose unit balls are disks of varying
sizes lead to isotropic adaptive triangulations. Finally, anisotropic triangula-
tions can be generated by using metrics whose unit balls are ellipses of varying
sizes, shapes and directions. A suitable triangulation algorithm is then re-
quired to produce triangulations which are aligned with this modified metric,
i.e., each triangle should be included in such an ellipse. Moreover, direction
and ratio between the major and minor radii are directed by the local struc-
ture of data, while the size of the ellipse (i.e., the radius of the ball in the
modified metric) is a parameter depending on the global target reconstruction
quality.

The local metric is commonly defined by a positive definite tensor field,
i.e., a mapping which associates to each point x ∈ Ω a symmetric positive
definite tensor matrix H(x) ∈ R2×2. For any point x0 ∈ Ω, the local metric
H(x0) is then defined by the distance between a point x ∈ Ω and x0,

‖x− x0‖H(x0) =
√

(x− x0)tH(x0)(x− x0).

Note that this concept enables us to define the length of a piecewise smooth
curve γ : [0, 1]→ Ω w.r.t. metric H by

LH(γ) =
∫ 1

0

‖γ′(t)‖H(γ(t))dt

and so the geodesic distance between two points x, y ∈ Ω by

dH(x, y) = min
γ
LH(γ),

where the minimum is taken over all piecewise smooth curves joining x and y.
A quite natural choice for H seems to be the Hessian. One construction of

anisotropic triangulations for image approximation, based on an anisotropic
geodesic metric, has recently been proposed in [1]. Instead of taking the Hes-
sian matrix as tensor structure matrix, a regularized version of the gradient
tensor is used in [1]. Regularization is then performed by the convolution with
a Gaussian kernel; the role of this regularization is to ensure a robust estima-
tion in the presence of noise. Let us denote this regularized gradient tensor
by T (x) and assume that T (x) can be diagonalized in an orthonormal basis,
i.e., for a suitable basis we have (with λ1, λ2 depending on x):

T (x) =
[
λ1 0
0 λ2

]
.
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The geodesic metric is then defined as follows: the matrix T is slightly
perturbed and then set to a power α, which is an ad hoc parameter controlling
the anisotropy of the triangulation. This leads to

H(x) =
[
(λ1 + ε)α 0

0 (λ2 + ε)α

]
.

Using this particular definition for a locally modified metric, the following
difficult problem needs to be solved: determine a small as possible finite set
of vertices V ⊂ Ω satisfying

inf
y∈V

dH(x, y) ≤ δ for some δ > 0.

Here, δ is a global parameter which controls the reconstruction quality. The
meshing of this set of points is then based on the use of the anisotropic Voronoi
diagram, where the Voronoi cells are defined by the modified metric dH rather
than by the Euclidean one. Since the dual of a so obtained Voronoi diagram is
not necessarily a Delaunay triangulation, some effort is necessary to construct
a valid triangulation. This can be achieved by greedy insertion algorithms,
where at each step the farthest point (w.r.t. the modified metric) to the current
set of vertices is added to this set. This strategy is coupled with a suitable
triangulation technique. In Figure 6, it is shown how this method works for
a smooth image with steep gradients in an area around a regular curve. The
result is an anisotropic triangulation. For more details, see [1, 16, 17].

(a) (b) (c)

Fig. 6. Geodesic triangulation with (a) 50, (b) 200, and (c) 800 vertices.



16 L. Demaret, A. Iske

3.4 Greedy Triangle Bisections

In [4], Cohen, Dyn, Hecht & Mirebeau propose a greedy algorithm which is
based on a very simple but effective rule for recursive subdivisions of trian-
gles. The main operations in their method are bisections of triangles, where a
bisection of a triangle T is given by a subdivision of T in two smaller trian-
gles, obtained by the insertion of an edge which connects one vertex in T with
the midpoint of the opposite edge. Therefore, for any triangle there are three
possible bisections, with the (inserted) edges e1,e2 and e3, say. An example
of the two first steps of such a recursive subdivision is shown in Figure 7.
Note that this method produces non-conforming triangulations. Therefore,
the approximation is performed w.r.t. the reconstruction space ST .

(a) (b) (c)

Fig. 7. (a) Initial triangulation; (b),(c) triangulations by greedy bisection [4].

To derive a refinement algorithm from this bisection rule, a suitable cri-
terion is required for selecting the triangle to be subdivided along with the
bisection rule. The criterion proposed in [4] is straight forward: it takes one
triangle with maximal approximation error, along with a bisection whose re-
sulting approximation error is minimal. Therefore, an edge e∗ corresponding
to an optimal bisection of a triangle T is given by

e∗ = argmin
e∈{e1,e2,e3}

(
‖f −ΠST1(e)‖

2
L2(T1(e))

+ ‖f −ΠST2(e)‖
2
L2(T2(e))

)
,

where T1(e) and T2(e) are the triangles resulting from the bisection of T by e.
This procedure outputs a sequence of refined triangulations, which we

denote by Tb,n (b for bisection). In [5, Theorem 5.1], optimality of the bisection
algorithm is proven for strictly convex functions. We can formulate the result
in the relevant L2-setting as follows. For a strictly convex function f ∈ C 2(Ω),
there exists a constant C > 0 satisfying

‖f −ΠSTb,n f‖L2(Ω) ≤
C

n
‖
√

det(D2f)‖Lτ (Ω), with τ =
2
3
,

where Tb,n is the sequence of triangulations produced by greedy bisection in
combination with an L1-based selection criterion [5].
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4 Numerical Simulations

In this final section, we wish to demonstrate the utility of anisotropic trian-
gulation methods for image approximation. To this end, we apply adaptive
thinning of Subsection 3.2 to four different images of size 512×512, as shown in
Figure 8: (a) one artificial image generated by a piecewise quadratic function,
PQuad, and three natural images, (b) Aerial, (c) Game, and (d) Boats.

(a) (b)

(c) (d)

Fig. 8. Four images of size 512×512: (a) PQuad; (b) Aerial; (c) Game; (d) Boats.

The Delaunay triangulations of the significant pixels, output by adaptive
thinning, are shown in Figure 9. The quality of the image approximations,
shown in Figure 10, is measured in dB (decibel) by the peak signal to noise
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(a) (b)

(c) (d)

Fig. 9. Anisotropic Delaunay triangulations. (a) PQuad with 800 vertices (b)
Aerial: 16000 vertices (c) Game: 6000 vertices (d) Boats: 7000 vertices.

ratio,

PSNR = 10 ∗ log10

(
2r × 2r

η̄2(Y,X)

)
,

where the mean square error (MSE) is given by

η̄2(Y,X) =
1
|X|

∑
x∈X
|s(x)− f(x)|2.

Note that for each test case the anisotropic triangulations achieve to cap-
ture the image geometry fairly well. This results in image approximations
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(a) (b)

(c) (d)

Fig. 10. Image approximation by adaptive thinning. (a) PQuad at PSNR 42.85 dB

(b) Aerial: PSNR 30.33 dB (c) Game: PSNR 36.54 dB (d) Boats: PSNR 31.83 dB.

where the key features of the images (e.g. sharp edges) and finer details are
recovered very well, at reasonable coding costs, as reflected the small number
of significant pixels. In fact, the efficient distribution of sparse significant pix-
els is one key feature of adaptive thinning, which yields a very competitive
compression method [8, 9, 11].

Note that the test case PQuad reflects the behaviour of adaptive thinning
for an artificial cartoon image: inside on the smooth parts, the triangles are
uniform and close to equilateral, whereas long and thin triangles are obtained
along the discontinuities. As regards the two test cases Game and Boats, it is
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shown how anisotropic triangulations help concentrate the representing trian-
gles in the content-rich areas of these natural images.

Finally, the performance of adaptive thinning for the test case Aerial
shows the potential of anisotropic triangulations yet once more, but now in
a context where much more information are available. The anisotropy of the
triangles vary according to the kind of feature they represent, and so the
corresponding triangulation helps reproduce the geometrical properties of the
underlying features very well, in particular the roads and buildings.

5 Final Remarks and Future Work

One of the practical issues of anisotropic meshing is related to the high com-
putational costs induced by the search for nearby optimal approximating tri-
angulations. In this article, we have considered methods which are too slow
for applied fields where real-time computational costs are indispensable. Re-
cently, very fast methods, coming from a slightly different world, closer to the
preoccupations of engineering applications, have been developed [21, 22, 24].
These methods rely on some heuristic intended to find an adapted sampling
set of pixels together with corresponding meshing and reconstruction tech-
niques. In [22], a quite detailed comparison of these methods in terms of
number of triangles versus quality and in terms of computational costs is pro-
vided, including comparisons with adaptive thinning. In comparison with the
methods discussed in the present survey (in Subsections 3.1-3.4), the num-
ber of vertices required in the methods of [21, 22, 24] is much higher for a
given target quality, but they allow for very fast implementations. One of the
most challenging tasks for future research remains to bridge the gap between
these rather pragmatic but highly efficient methods and the mathematically
well-motivated but much slower methods of Subsections 3.1-3.4.
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