Übungen zur Mathematischen Stochastik

Hausaufgabenblatt 1

Ausgabe am Freitag, 27.10.02

Abgabe am Freitag, 3.11.02, bis 14:20 Uhr

in H2, letzte Reihe, in die Mappe Ihrer Ü-Gruppe

Aufgabe H 1.1:

 $(A_n, n \in \mathbb{N}^*)$ seien Teilmengen von Ω .

- (a) Schreiben Sie die folgende Formel für N=2 und N=3 in ausführlicher Form (z.B. $A_1 \cup A_2 = \ldots$)
- (b) Beweisen Sie, dass die Formel wohldefiniert und richtig ist, und zwar für beliebiges N, auch für $N = \infty$ $(\bigcup_{i=1}^{0} A_i := \emptyset)$.

$$\bigcup_{n=1}^{N} A_n = \sum_{n=1}^{N} (A_n \setminus \bigcup_{i=1}^{n-1} A_i).$$

Aufgabe H 1.2:

Es sei $\Omega = \{0, 1\}^2$.

- (a) Zeigen Sie, dass das Mengensystem \mathcal{E} , bestehend aus \emptyset , Ω , $A := \{(0,1), (1,0), (1,1)\}$ und $B := \{(0,0), (0,1)\}$, keine σ -Algebra ist.
- (b) Welche σ -Algebra \mathcal{A} wird von \mathcal{E} erzeugt? Ist $\mathcal{A} = \mathcal{P}(\Omega)$?
- (c) Drücken Sie alle Elemente von \mathcal{A} durch A und B aus.

Aufgabe H 1.3:

Stellen Sie die folgenden Teilmengen von \mathbb{R}^2 mit Hilfe von Mengen aus \mathcal{G}_2 dar:

- (a) eine Halbebene $H := \{(x_1, x_2) : x_2 \le b_2\},\$
- (b) ein Geradenstück G mit den Endpunkten $(a_1, a_2), (b_1, b_2)$ und $a_i < b_i$,
- (c) ein abgeschlossenes Dreieck mit den Ecken (0,0), (c,0), (d,h), wobei 0 < d < c und h > 0.

Veranschaulichen Sie Ihren Ansatz jeweils mit einer Skizze(!).