Übungen zu Stochastische Prozesse I

Präsenzaufgabenblatt 13:

Besprechung am Montag, 30.01.06

Aufgabe P 13.1:

Gegeben sei eine HMKS (X_t) , konstruiert aus $((T_n, Z_n))$ mit $I = \{1, 2, 3\}$ und $q_1 = 1, q_2 = 2, q_3 = 3, r_{13} = r_{31} = 0, r_{23} = \frac{3}{4}$.

- (a) Bestimmen Sie die stationäre Verteilung von (X_t) . Skizzieren Sie dazu den ÜR-Graph zu (X_t) und benutzen Sie die Bedingung $\pi_i q_{i,i+1} = \pi_{i+1} q_{i+1,i}, i \in I\!N_0$ (2*) aus H 12.2 (b).
- (b) Bestimmen Sie die stationäre Verteilung von (Z_n) .

Aufgabe P 13.2:

- (a) T_0, T_1, T_2, \ldots seien st.u. ZV mit $T_i \sim \text{Exp}(q_i), q_i = (i+1)(i+2),$ und es sei $\overline{T} := \sum_{i=0}^{\infty} T_i$. Zeigen Sie: $E\overline{T} < \infty$ und $\overline{T} < \infty$ (*P*-f.s.)
- (b) Skizzieren Sie: $X_t(\omega) := 0$ für $0 \le t \le T_0(\omega)$ und $X_t(\omega) := k$ für $T_0(\omega) + \sum_{i=k+1}^{\infty} T_i(\omega) \le t < T_0(\omega) + \sum_{i=k}^{\infty} T_i(\omega)$, $k \in \mathbb{N}$. $(X_t \text{ sei für } t \ge \overline{T} \text{ jeweils durch eine gleiche, aber st.u. Version fortgesetzt.})$
- (c) (d) Welche Werte vermuten Sie für $q_{ij} := p'_{ij}(0)$? $(i, j \in IN_0)$ Ist (dann) (q_{ij}) eine konservative ÜR-Matrix?

Aufgabe P 13.3:

Die ZV X_1, \ldots, X_n seien stoch unabhängig und alle $\mathcal{N}(0, 1)$ -verteilt und $X := (X_1, \ldots, X_n)^T$, A sei eine $m \times n$ -Matrix, \mathbf{b} sei ein m-Vektor.

- (a) Bestimmen Sie für X und $Y := AX + \mathbf{b}$ die Erwartungswerte (-vektoren) und die Kovarianzmatrizen $\mathbf{K}(X) := (Kov(X_i, X_j))$ und $\mathbf{K}(Y)$. Hinweis: $\mathbf{K}(Y) = A\mathbf{K}(X)A^T$. Bemerkung: Die Verteilung von Y heißt n-dimensionale Normalverteilung und wird mit $\mathcal{N}(\mathbf{b}, AA^T)$ bezeichnet.
- (b) Bestimmen Sie die (R-/ λ -)Dichten von X und Y.
- (c) Zeigen Sie, dass aus $K(Y_1, Y_2) = 0$ die stochastische Unabhängigkeit von Y_1 und Y_2 folgt.
- (d) Zeigen Sie, dass Y die gleiche Verteilung wie X besitzt, wenn m=n und $\mathbf{b} = \mathbf{0}$ gilt und A eine Orthonormal-Matrix ist.