Übungen zu Stochastische Prozesse I

Hausaufgabenblatt 3: Abgabe: Do 17.11.05 (i. d. Vorl. bis 14:20 Uhr)

Aufgabe H 3.1:

Gegeben sei folgende Definition:

Sei (Ω, \mathcal{A}, P) ein W-Raum und $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$. Dann heißt

 $\mathcal{A}_1, \mathcal{A}_2$ stoch. unabhängig bzgl. P

$$:\iff P(A_1 \cap A_2) = P(A_1) \cdot P(A_2) \ \forall \ A_1 \in \mathcal{A}_1, \ A_2 \in \mathcal{A}_2.$$

(a) Zeigen Sie für $X:(\Omega,\mathcal{A})\to(\mathcal{X},\mathcal{B}),\ Y:(\Omega,\mathcal{A})\to(\mathcal{Y},\mathcal{C})$:

X und Y sind stoch. unabhängig $\iff \sigma(X)$ und $\sigma(Y)$ sind stoch. unabhängig.

(b) Die ZV Y_1, Y_2, \ldots seien st.u. und identisch verteilt, es sei $\mathcal{A}_n := \sigma(Y_1, \ldots, Y_n)$ und $X_n := \sum_{k=1}^n Y_k$. Prüfen Sie, ob (b1) X_n , (b2) $X_{n+1} - X_n$ \mathcal{A}_n -adaptiert sind.

Aufgabe H 3.2: (Eigenschaften von Stoppzeiten)

Es sei (Ω, \mathcal{A}, P) ein W-Raum, $T = I N_0$ und $(\mathcal{A}_n, n \in T)$ eine aufsteigende Folge von σ -Algebren (eine Filtration) in \mathcal{A} . Zeigen Sie:

- (a) Eine ZV $\tau : \Omega \to I\!N_0$ ist genau dann eine Stoppzeit bzgl. (A_n) , wenn $\{\tau = n\} \in A_n \ \forall n$.
- (b) Sind τ_1, τ_2 Stoppzeiten bzgl. (A_n) , dann sind auch $\max(\tau_1, \tau_2)$, $\min(\tau_1, \tau_2)$ und $\tau_1 + \tau_2$ Stoppzeiten bzgl. (A_n) .
- (c) Ist $(X_n: (\Omega, \mathcal{A}, P) \to (\mathcal{X}, \mathcal{B}), n \in T)$ ein (\mathcal{A}_n) -adaptierter stoch. Prozess und $B \in \mathcal{B}$, dann ist $\tau_B := \inf\{n \in T, X_n \in B\}$ eine Stoppzeit bzgl. (\mathcal{A}_n) .

Aufgabe H 3.3:

(a) Beweisen Sie die starke Markov-Eigenschaft:

$$P((^{(\tau)}X_n) \in B' | X_{\tau} = i, (X_m^{(\tau)}) \in A')$$

= $P((^{(\tau)}X_n) \in B' | X_{\tau} = i) = P((X_n) \in B' | X_0 = i).$

Hinweis: Betrachten Sie die Werte von τ .

(b) Beweisen Sie mit (a) die folgende Formel:

$$P(X_{\tau}=i_0,X_{\tau+1}=i_1,\ldots,X_{\tau+n}=i_n)=P(X_{\tau}=i_0)p_{i_0i_1}\cdots p_{i_{n-1}i_n}.$$