Übungen zu Stochastische Prozesse II

Aufgabenblatt 4:

Abgabe der Hausaufgaben am Mo 10.05.04

Aufgabe P 4.1 (Präsenzaufgabe):

- (a) Stellen Sie für G = F im arithmetischen Fall $Z(n) := P(V_n = k)$ dar durch eine Erneuerungsgleichung Z(n) = z(n) + f * Z(n) mit (f_n) als Z-Dichte zur Verteilungsfunktion F.
- (b) Zeigen Sie mit (a) $\lim_{n\to\infty} P(V_n = k) = g_F(k) := \frac{1}{\mu} [1 F(k-1)] \ (k \ge 0).$

Aufgabe P 4.2 (Präsenzaufgabe):

Für ein Maß η auf \mathbb{R} mit maßdefinierender Funktion H sei x ein Trägerpunkt von η bzw. H, wenn $H(x+\varepsilon) - H(x-\varepsilon) > 0$ gilt für alle $\varepsilon > 0$.

Der Träger (= Menge aller Trägerpunkte) von η bzw. H sei Tr(H).

- (a) Zeigen Sie: Mit $a \in Tr(H_1)$ und $b \in Tr(H_2)$ gilt auch $a+b \in Tr(H_1 * H_2)$.
- (b) Für eine Verteilungsfunktion F auf $[0, \infty)$ sei $M := \bigcup_{n=0}^{\infty} Tr(F^{n*})$. Zeigen Sie, dass $M \subset Tr(\widetilde{U})$ und dass mit $a, a+h \in M$ (h>0) für $n \ge 1, \ 0 \le m \le n$ auch $na+mh \in M$ gilt. (Skizze!)

Aufgabe H 4.1:

Es sei $(X_t, t \ge 0)$ ein regenerativer Prozess mit abzählbarem Zustandsraum I, nicht-arithmetischem P^{S_1} und $\mu := ES_1 < \infty$.

- (a) Stellen Sie zu $k \in I$ eine Erneuerungsgleichung für $Z_k(t) := P(X_t = k)$ auf.
- (b) Zeigen Sie damit $\pi_k := \lim_{t \to \infty} P(X_t = k) = \frac{1}{\mu} E \int_0^{\infty} 1_{\{X_t = k, S_1 > t\}} dt$. (Setzen Sie dabei voraus, dass vorkommende Integranden dRi sind.
- (c) Welchen Wert hat dann $\overline{\pi}_k := \lim_{T \to \infty} \frac{1}{T} \int_0^T P(X_t = k) dt$?
- (d) Interpretieren Sie π_k , $\overline{\pi}_k$, und die rechte Seite in (b).

Aufgabe H 4.2:

Zeigen Sie unter Verwendung der Bezeichnungen und Ergebnisse aus Aufg. P 4.2 die folgenden Aussagen:

- (a) Für $h < \delta$, $nh \ge a$ gibt es in $[na, \infty) \cap M$ keine Lückenlängen > h und für t > T := na gilt: $U(t+\delta) U(t) > 0$.
- (b) Falls $h_0 := \inf\{|b-a|, \ a, b \in M\} > 0$, dann existieren a und a+h in M mit $h_0 \le h < 2h_0$ und es gilt $[na, na+nh] \cap M = \{na+mh, \ m=0, 1, \ldots, n\}$.
- (c) Mit a, h aus (b) und nh > a folgt $a \in h \cdot \mathbb{N}_0$. (Test mit (n+1) a!)
- (d) Für $c \in Tr(F)$ und a, h aus (b) existieren k und n mit $c+ka \in [na, na+nh]$, und es gilt $c \in h \cdot \mathbb{N}_0$. (Damit ist F arithmetisch.)