Übungen zu Stochastische Prozesse I

Präsenzaufgabenblatt 2:

Besprechung am Montag, 3.11.03

Aufgabe P 2.1:

Satz 3.8 der Vorlesung lautet:

Für alle $j \in K_r(i)$ existiert ein $N(i,j) \in \mathbb{N}^*$ mit $p_{ij}^{(nd_i+r)} > 0 \ \forall n \geq N(i,j)$.

(a) Bestimmen Sie für das folgende Beispiel den minimalen Wert N(0,0):

Es sei
$$I = \{-3, -2, -1, 0, 1, \dots, 6\}$$

und $p_{i,i+1} = 1$ für $i = -3, -2, -1, 1, 2, 3, 4, 5,$
 $p_{6,0} = 1, p_{0,-3} = p_{0,1} = 1/2, \mathbf{p}_0$ beliebig.

(b) Suchen Sie für entsprechende Beispiele mit zwei "Schleifen" und anderen Schleifenlängen nach Formeln oder Abschätzungen für N(i, i).

Aufgabe P 2.2:

Berechnen Sie für Beispiel 5 von Abschnitt 4 der Vorlesung $(I=\{1,2,3\},\ p_{11}=0.2,\ p_{12}=0.4,\ p_{13}=0.4,\ p_{22}=1.0,\ p_{31}=0.4,\ p_{33}=0.6)$ die Größen $f_{31}^{(n)},\ f_{31}^*,\ f_{13}^*,\ m_{31},\ m_{12}$ und m_{32} .

Aufgabe P 1.3:

Bestimmen Sie für die "Irrfahrt" auf \mathbb{N}_0 mit $p_{00}=1$ und $p_{i,i+1}=p,\ p_{i,i-1}=q$ für $i>0\ (0< p<1,\ q:=1-p)$ die Größen f_{i0}^* $(i\in\mathbb{N}_0)$.