Schwerpunkt Mathematische Statistik und Stochastische Prozesse

Stochastische Prozesse I

Markov-Prozesse

Stochastische Prozesse $(X_t : (\Omega, \mathcal{A}, P) \to (\mathcal{X}, \mathcal{B}), T \text{ geordnet}$

mit Markov-Eigenschaft: $P^{(X_u,u\leq s,X_t)}=P^{(X_u,u\leq s)}\otimes P^{(X_t|X_s=\cdot)}$

$$\Rightarrow$$
 "CH-K" $P^{(X_u|X_s=\cdot)}(x,B) = \int P^{(X_t|X_s=\cdot)}(x,dy) P^{(X_u|X_t=\cdot)}(y,B)$

Kurzform:
$$P_{su}(x,\cdot) = \int P_{st}(x,dy) P_{tu}(y,\cdot) =: P_{st} \circ P_{tu}(x,\cdot), x \in \mathcal{X}$$

Satz: Zu Startverteilung $P^{X_{t_0}} = \mu$ und $(P_{st}, s < t)$ mit CH-K ex. Markov-Prozess (X_t) mit $P^{(X_t|X_s=\cdot)} = P_{st}$ (s < t) (kanonisch).

Homogene MP $(T \subset \mathbb{R})$: $P_{s,s+t} =: P_t$ nur abh. von $t \geq 0$

$$\Rightarrow$$
 "CH-K" $P_{s+t}(x,B) = \int P_s(x,dy)P_t(y,B) = P_s \circ P_t(y,B)$

Markov-Prozesse mit unabhängigen Zuwächsen ($\mathcal{X} = \mathbb{R}^p!$):

$$P_{st}(x, x+B) = P_{st}(x', x'+B) =: Q_{st}(B)$$

Homogene MP mit unabh. Zuw.: $P_t(x, x+B) =: Q_t(B)$

= MP mit unabhängigen und stationären Zuwächsen

$$\Rightarrow$$
 "CH-K" $Q_{s+t}(B) = \int Q_s(dy)Q_t(B-y) = Q_s*Q_t(B)$ (Faltung!)

Definition: Eine Familie $(Q_t, t \ge 0)$ von Verteilungen auf \mathbb{R}^p mit $Q_{s+t} = Q_s * Q_t, s, t \ge 0$ heißt **Faltungshalbgruppe** auf \mathbb{R}^p .

Satz: Zu einer Faltungshalbgruppe $(Q_t, t \ge 0)$ ex. ein MP (X_t) mit unabh. u. stat. Zuwächsen und mit $X_0 = 0$, $P^{(X_{s+t} - X_s)} = Q_t$.

Beispiele von Faltungshalbgruppen:

Beispiel 1: Deterministische Drift: $Q_t = \varepsilon_t, X_t = t$.

Beispiel 2: Poisson-Prozess: $Q_t = \pi(\alpha t)$ (auf $\mathbb{Z}!$).

Beispiel 3: Brownscher Prozess: $Q_t = \mathcal{N}(0,t)$ auf $\mathcal{X} = \mathbb{R}$

bzw.
$$Q_t = \mathcal{N}(0,t) \otimes \mathcal{N}(0,t) \otimes \ldots \otimes \mathcal{N}(0,t)$$
 auf $\mathcal{X} = \mathbb{R}^p$.