4. Rekurrenz und Transienz

Bisher: Erreichbarkeit – ja oder nein? Jetzt: – W(,ja'') = ? – Wann im Mittel? – Wie oft?

Beispiele: 1. Rückstellungen eines Versicherers, $I = IV_0$, $i = 0 = Ruin^* : -W(Ruin^*)? -Wann?$

- 2. Wasserstand eines Staudamms, $I = \{0, 1, ..., r\}: -W(Überlauf)?$, W(,läuft leer)? (Fische!).
- 3. Warteschlangenlänge, $I := IN_0$, $p_0 := p_{i,i+1}, q_i := p_{i,i-1}, r_i := p_{ii}, q_i + r_i + p_i = 1, q_0 = 0$: Wann leer?
- 4. Symmetrische "Irrfahrt" auf $I = \mathbb{Z}$, $p_i = q_i = \frac{1}{2}$: Rückkehrzeit? Entsprechend auf \mathbb{Z}^2 , \mathbb{Z}^3 .
- 5. Einfaches Beispiel: $I = \{1, 2, 3\}$, $p_{11} = .2$, $p_{12} = .4$, $p_{13} = .4$, $p_{22} = 1$, $p_{31} = .4$, $p_{33} = .6$, sonst 0. Wie groß ist die W (f_{ij}^*) , bei Start in i=1 irgendwann nach j=1,2,3 zu kommen? Wie lange wird es im Mittel dauern? Vermutung: $m_{11} = m_{12} = m_{13} = ?$
- **4.1 Definition:** (a) $\tau_j := \inf\{n \in \mathbb{N}^* : X_n = j\}$ heißt **Ersteintrittszeit** (in j) (inf $\emptyset = \infty$), $f_{ij}^{(n)} := P(\tau_j = n | X_0 = i) = P(X_n = j, X_s \neq j, 0 < s < n | X_0 = i)$, die W., erstes j z.Zt. n, $f_{ij}^* := P(\tau_j < \infty | X_0 = i) = P(\exists n > 0 \text{ mit } X_n = j | X_0 = i)$, die W., überhaupt nach j zu kommen, $m_{ij} := E(\tau_j | X_0 = i) = \sum_{n=1}^{\infty} n f_{ij}^{(n)} + \infty (1 f_{ij}^*)$ heißt **mittlere Übergangs-/Rückkehrzeit**. (b) $i \in I$ heißt **rekurrent**, falls $f_{ii}^* = 1$, andernfalls **transient**. Ein rekurrenter Zustand i heißt **positiv rekurrent**, falls $m_{ii} < \infty$, sonst **nullrekurrent**.

Bemerkung: 1. Bei $m_{ii} < \infty$ ist die mittlere Aufenthalts-W. in $i = \frac{1}{m_{ii}} > 0$, daher pos. rek.. 2. Falls $P(X_0 = i) = 0$, sei $P(\ldots X_n \ldots | X_0 = i)$ def. durch $P(\ldots X_{\ell+n} \ldots | X_\ell = i)$.

- **4.2 Berechnung** von $f_{ij}^{(n)}$, f_{ij}^* , m_{ij} :
 (a) $f_{ij}^{(1)} = p_{ij}$, für n > 1: $f_{ij}^{(n)} = \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)}$.
 (b) $f_{ij}^* = \sum_{n=1}^{\infty} f_{ij}^{(n)}$, $f_{ij}^* = p_{ij} + \sum_{k \neq j} p_{ik} f_{kj}^*$.
 (c) $m_{ij} = 1 + \sum_{k \neq j} p_{ik} m_{kj}$.
- **4.3 Folgerung:** (a) $i \rightsquigarrow j \iff f_{ij}^* > 0$ (Beweis?), (b) i transient $\implies m_{ii} = \infty$ (nicht umgek.).

Beispiel 5: $f_{11}^* = 0.6$, $f_{22}^* = 1$, $f_{33}^* = 0.8$, $m_{12} = 5$, $m_{22} = 1$, $m_{31} = 2.5$, $m_{32} = 7.5$, sonst ∞ , also?

Beispiel 4, Symmetrische Irrfahrt auf \mathbb{Z} : $f_{i0}^* = ?$ Für $i \ge 0$ induktiv $f_{i+1,0}^* = f_{10}^* + i(f_{10}^* - 1)$. Daraus $f_{10}^* = 1$, ebenso für i < 0, also auch $f_{00}^* = \frac{1}{2}(f_{10}^* + f_{-1,0}^*) = 1$. Aus $m_{i0} = |i| \, m_{10}$ (warum?) und $m_{10} = 1 + \frac{1}{2}m_{20} = 1 + m_{10}$ folgt $m_{10} = m_{i0} = \infty$.

- **4.4 Definition:** $A_j := \sum_{n=1}^{\infty} 1_{\{X_n = j\}} = \text{Anzahl der Besuche in } j$, dazu Verteilung und Erw.wert: $g_{ij}^{(k)} := P(A_j \ge k | X_0 = i)$, $g_{ij} := P(A_j = \infty | X_0 = i)$, $E_{ij} := E(A_j | X_0 = i)$.
- **4.5 Folgerung:** (a) $g_{ij}^{(1)} = f_{ij}^* \ge g_{ij}^{(k)} \downarrow g_{ij}, \ g_{ij}^{(k)} = f_{ij}^* g_{jj}^{(k-1)} = f_{ij}^* (f_{jj}^*)^{k-1}, \ g_{ij} = f_{ij}^* g_{jj} = f_{ij}^* (f_{jj}^*)^{\infty}.$
- (b) $E_{ij} = \sum_{n=1}^{\infty} p_{ij}^{(n)} = \sum_{k=1}^{\infty} g_{ij}^{(k)} = f_{ij}^* / (1 f_{jj}^*)$, aus $E_{jj} = \infty$ [$< \infty$] folgt $f_{jj}^* = 1$ [$f_{ij}^* = E_{ij} / (1 + E_{jj})$].
- (c) **Rekurrenz-Kriterium:** i rekurrent [transient] $\iff g_{ii} = 1 [0] \iff E_{ii} = \infty [<\infty].$

Beweis zu 4.5: (a1) aus Def., (a2) $g_{ij}^{(k)} = P(A_j \ge k | X_0 = i) = \sum_{n=1}^{\infty} P(\tau_j = n, A_j \ge k | X_0 = i) = \sum_{n=1}^{\infty} P(\tau_j = n | X_0 = i) P(A_j \ge k | \tau_j = n, X_0 = i) \stackrel{?}{=} \sum_{n=1}^{\infty} f_{ij}^{(n)} P(A_j \ge k - 1 | X_0 = j) = \sum_{n=1}^{\infty} f_{ij}^{(n)} g_{jj}^{(k-1)} = f_{ij}^* g_{jj}^{(k-1)} = \dots = f_{ij}^* (f_{jj}^*)^{k-1}$, auch für $k \to \infty$. (b2) mit $EX = \sum_{k=1}^{\infty} P(X \ge k)$ für $X(\Omega) \subset IN_0$, (b3) aus (a), (b4) aus (b3), (c) aus (a),(b).

Bemerkung: 1. Der Beweis an der Stelle (?) folgt aus der "starken Markov-Eigenschaft", d.h. nach dem Ereignis $\{\tau_j = n\}$ (wobei τ_j eine "Stoppzeit" ist) beginnt die HMK neu als (X'_n) , aber mit Start in j (s.u.).

2. $g_{ij} = (0 \text{ oder } 1)$ folgt auch aus dem 0-1-Gesetz, ebenso " $\sum p_{ij}^{(n)} < \infty \Rightarrow g_{ij} = 0$ ", aber die Umkehrung " $\sum p_{ij}^{(n)} = \infty \Rightarrow g_{ij} = 1$ " enthält die Unabhängigkeit der Prozessverläufe zwischen den Besuchen in j.