2. Homogene Markov-Ketten mit diskreter Zeit - HMK

2.1 Definition: Eine Markov-Kette mit diskreter Zeit (kurz MK) ist ein Stochastischer Prozess X mit $T = IN_0$, abz. Zustandsraum, hier I, und der (diskreten) Markov-Eigenschaft

(ME)
$$P(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = P(X_n = i_n | X_{n-1} = i_{n-1}),$$

falls $P(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) > 0 \quad (n \in \mathbb{N}^*, i_k \in I).$

- **2.2 Folgerung:** Für eine Markov-Kette (mit diskreter Zeit) gilt $(\ell, m, n \in \mathbb{N}^*, i_{\nu}, i, j \in I)$:
 - (a) $P(X_0 = i_0, \dots, X_n = i_n) = P(X_0 = i_0)P(X_1 = i_1 | X_0 = i_0) \dots P(X_n = i_n | X_{n-1} = i_{n-1}) =: (*_{0,n}).$
 - (b) Wenn man die Gegenwart z.Zt. n (genau) kennt, ist die Zukunft von der Vorgeschichte st.u..
 - (c) $P(X_{\ell+m+n}=j|X_{\ell}=i) = \sum_{k\in I} P(X_{\ell+m}=k|X_{\ell}=i)P(X_{\ell+m+n}=j|X_{\ell}+m=k).$

Beweis: (a) L.S. = $P(X_0 = i_0)P(X_1 = i_1 | X_0 = i_0) \dots P(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \stackrel{\text{(ME)}}{=} \text{r.S.},$ (b) Geg. $G := \{X_n = i_n\}$, Verg. $A = \{(X_0, \dots, X_{n-1}) \in A'\}$, Zuk. $B = \{(X_{n+1}, \dots, X_{n+m}) \in B'\}$, $\begin{array}{l} i_n \text{ fest, } \Rightarrow P(B|AG) = \sum_{(i_0,i_1,\ldots,i_{n-1}) \in A'} \sum_{(i_{n+1},\ldots,i_{n+m}) \in B'} (*_{0,n+m}) / \sum_{(i_0,i_1,\ldots,i_{n-1}) \in A'} (*_{0,n}) = \\ = \sum_{(i_{n+1},\ldots,i_{n+m}) \in B'} P(X_{n+1} = i_{n+1} | X_n = i_n) \ldots P(X_{n+m} = i_{n+m} | X_{n+m-1} = i_{n+m-1}), \text{ unabh. von } A, \end{array}$ (c) folgt aus (b) mit $P(X_{\ell+m+n}=j|X_{\ell}=i,X_{\ell}+m=k)=P(X_{\ell+m+n}=j|X_{\ell}+m=k)$.

- 2.3 Bemerkung: Die allg. Markov-Eigenschaft aus Klassif. 3(b) folgt aus (ME) (s. 2.1) mit 2.2(b).
- **2.4 Definition:** Eine MK (X_n) heißt **homogen** (HMK), wenn $\forall i, j \in I, \forall n \text{ mit } P(X_{n-1} = i) > 0$ $P(X_n=j|X_{n-1}=i)=:p_{ij}$ unabh. von n. Es existiere (o.E.) $\forall i$ ein n mit $P(X_{n-1}=i)>0$.
- **2.5 Folgerung:** Sei X eine homogene Markov-Kette, $P(X_0 = i) := p_0(i)$. Dann gilt:
 - (a) $P(X_0 = i_0, \dots, X_n = i_n) = p_0(i_0)p_{i_0i_1}p_{i_1i_2}\dots p_{i_{n-1},i_n}$

 - (b) Die m-Schritt-ÜW $P(X_n+m=j|X_n=i)=:p_{ij}^{(m)}$ sind unabh. von n, falls $P(X_n=i)>0$, (c) Chapman-Kolmogorov-Gleichungen: $p_{ij}^{(n+m)}=\sum_{k\in I}p_{ik}^{(n)}p_{kj}^{(m)},\;n,m\in I\!\!N^*,\;i,j\in I.$
- **2.6 Rekursive Berechnung:** (a) $p_{ij}^{(n)} = \sum_{k \in I} p_{ik} p_{kj}^{(n-1)} = \sum_{k \in I} p_{ik}^{(n-1)} p_{kj}$.
 - (b) $p_n(j) := P(X_n = j) = \sum_{i \in I} p_0(i) p_{ij}^{(n)}, \ p_n(j) = \sum_{i \in I} p_{n-1}(i) p_{ij}.$ (Was ist einfacher für $p_n(j)$?)
- **2.7 Matrix-Darstellung:** $(\sum_{k\in I} p_{ik} p_{kj} \text{ ist Matrix-Produkt!})$ Ist $\mathbf{P} := (p_{ij}), \ \mathbf{P}^{(n)} := (p_{ij})$ und $\mathbf{p}_n := (p_n(i))$ (Zeilen-Vektor), so gilt $\mathbf{P}^{(n+m)} = \mathbf{P}^{(n)} \mathbf{P}^{(m)}$ (Chapman-Kolmogorov) und durch Induktion $\mathbf{P}^{(n)} = \mathbf{P}^n$, ebenso $\mathbf{p}_n = \mathbf{p}_0 \ \mathbf{P}^{(n)} = \mathbf{p}_{n-1} \ \mathbf{P}$.
- **2.8 Bemerkung:** (a) Man benutzt auch abzählbar-unendliche Matrizen (alles ist ≥ 0).
 - (b) Matrizen $\mathbf{P} = (p_{ij})$ mit $p_{ij} \ge 0$ und $\sum_{j \in I} p_{ij} = 1 \ \forall i \in I$ nennt man **stochastische Matrizen**.
 - (c) Sind \mathbf{P} und $\overline{\mathbf{P}}$ stochastische Matrizen, dann auch die Matrix $\mathbf{P}\overline{\mathbf{P}}$ (nachrechnen!).

3. Strukturen von homogenen Markov-Ketten

Beobachtungen des (Grenz-)Verhaltens von \mathbf{p}_n an Beispielen.

1. (Lagerbestand $0, 1, 2, 3$, bei $0, 1$ auffüllen auf $3, P(Nachfrage = 0/1/2/3) = 0.1/0.6/0.2/0.1.)$				
<i>1</i>			$\mathbf{p}'_0 := (.2.0.2.6)$	\mathbf{p}_n und \mathbf{p}'_n
p (.1 .2 .6 .1) p	$\mathbf{o}_1 := (.22.44.30.04)$	bzw.	$\mathbf{p}_1' := (.14.28.50.08)$	konvergieren
$\mathbf{P} := \left(\begin{array}{ccc} .1 & .2 & .6 & .1 \\ .3 & .6 & .1 & .0 \end{array} \right),$	$\mathbf{p}_2 := (.16.32.45.07)$	DZW.	$\mathbf{p}_2' := (.20.40.35.09)$	zum selben
\.1 .2 .6 .1 / p	$\mathbf{p}_{\infty} := (.18.36.40.06)$		$\mathbf{p}'_{\infty} := (.18.36.40.06)$	Grenzwert.
2. (.4.0.6.0) p	$\mathbf{p}_0 := (.2.0.6.2)$		$\mathbf{p}_0' := (.2.0.2.6)$	$\mathbf{p}_n \text{ und } \mathbf{p}'_n$
$\mathbf{P} := \left(egin{array}{ccc} .0 & .6 & .0 & .4 \ .5 & .0 & .5 & .0 \end{array} ight), \mathbf{p}$	$\mathbf{o}_1 := (.38.14.42.06)$	bzw.	$\mathbf{p}_1' := (.18.42.22.18)$	konvergieren zu
$1 \cdot - (.5 \cdot 0 \cdot 5 \cdot 0)'$	$\mathbf{p}_2 := (.36.13.44.07)$		$\mathbf{p}_2' := (.18.38.22.22)$	verschiedenen
\.0.7.0.3 / p	$\mathbf{p}_{\infty} := (.36.13.44.07)$		$\mathbf{p}'_{\infty} := (.18.38.22.22)$	Grenzwerten.
$\frac{1}{3}$, $(0.5.0.5)$ \mathbf{p}_0	$p_0 := (.2 .0 .6 .2)$		$\mathbf{p}_4 := (.36.13.44.07)$	\mathbf{p}_n
$\mathbf{p} := \{ .6 .0 .4 .0 \} \mathbf{p}$	$p_1 := (.04.55.16.25)$		$\mathbf{p}_{\infty} := (.09.51.11.29)$	konvergiert
$\mathbf{P} := \left(egin{array}{ccc} .6 & .0 & .4 & .0 \\ .0 & .75 & .0 & .25 \end{array} \right), \mathbf{p}$	$p_2 := (.38.14.42.06)$		oder	\mathbf{nicht} (zwei
	$p_3 := (.10.51.10.30)$		$\mathbf{p}_{\infty} := (.36.13.44.07)$	Häufungspkte).

Kann man das unterschiedliche Verhalten aus der Struktur der Matrix vorhersagen?