Ubungen zu Stochastische Prozesse I

Hausaufgabenblatt 7:

Abgabe: Donnerstag, 18. 12. 03

(neuer Hinweis zu (a) Aufgabe H 7.1:

- (a) T_0, T_1, T_2, \ldots seien st.u. ZV mit $T_i \sim \text{Exp}(q_i), q_i = (i+1)(i+2),$ und es sei $\overline{T} := \sum_{i=0}^{\infty} T_i$. Zeigen Sie, dass $\overline{T} < \infty$ P-f.s.
- (b) Skizzieren Sie: $X_t(\omega) := 0$ für $0 \le t \le T_0(\omega)$ und $X_t(\omega) := k$ für $T_0(\omega) + \sum_{i=k+1}^{\infty} T_i(\omega) \le t < T_0(\omega) + \sum_{i=k}^{\infty} T_i(\omega), \quad k \in I\!\!N.$ X_t sei für $t \ge \overline{T}$ jeweils durch eine gleiche, aber st.u. Version fortgesetzt.
- (c) Zeigen Sie $p_{0i}(t) \leq P(T_0 + T_{i+1} \leq t | X_0 = 0)$.
- (d) Berechnen Sie $q_{ij} := p'_{ij}(0)$ für $i, j \in \mathbb{N}_0$ (mit (c) und dem nachfolgenden Hinweis). Ist (q_{ij}) eine konservative ÜR-Matrix?

Hinweise: (a) Berechnen Sie $E\overline{T}$ (evtl. induktiv) und verwenden Sie einen passenden Satz der Vorlesung.

(b) Verwenden Sie ohne Beweis: Ist $X \sim \text{Exp}(\alpha)$ und $Y \sim \text{Exp}(\beta)$, dann gilt $\frac{1}{t}P(X+Y\leq t)\to 0$ für $t\downarrow 0$.

Aufgabe H 7.2:

Es sei Q eine beschränkte konservative Übergangsraten-Matrix über I. Zeigen Sie unter Verwendung der nachfolgend zitierten und später zu beweisenden Aufgabe H 8.1:

 $p(\cdot) := e^{Qt}$ ist eine Standard-Übergangs-Matrixfunktion (mit den Eigenschaften (A), (B), (C), (E)) und besitzt zudem die Eigenschaft (*) $p'_{ij}(0) = q_{ij}, i, j \in I$.

Vorgriff: Aufgabe H 8.1: (zum 8.1.04)

Sei A eine $I \times J$ -Matrix (I, J abz.). Die Norm von A sei $||A|| := \sup_i \sum_i |A_{ij}|$.

(a) Zeigen Sie: $||AB|| \le ||A|| \cdot ||B||$ und $|A_{ij}| \le ||A||$ (zum Aufwärmen).

Für eine $I \times I$ -Matrix A mit $||A|| < \infty$ sei A^k das k-fache Matrixprodukt $(A^0 := E := (\delta_{ij}))$ und $e^A := \sum_{k=0}^{\infty} A^k / k!$ (Existenz s. (b)). Zeigen Sie:

- (b) Für alle $i, j \in I$ ist die Reihe in $(e^A)_{ij}$ absolut konvergent.
- (c) $||e^A|| \le e^{||A||}$ und $e^{cE} = e^c \cdot E, c \in \mathbb{R}$.
- (d) Für $||A|| < \infty$, $||B|| < \infty$ und AB = BA ist $e^{A+B} = e^A \cdot e^B$.
- (e) Falls $A_{ij} \geq 0$, $i, j \in I$ gilt auch $(e^A)_{ij} \geq 0$, $i, j \in I$.
- (f) Für eine ÜR-Matrix (Q-Matrix) mit $\sup_{i \in I} |q_{ii}| =: c < \infty$ gilt: (f1) $||Q|| \le 2c$, (f2) $(Q + cE)_{ij} \ge 0$, $i, j \in I$ und (f3) $(e^{Qt})_{ij} \ge 0$, $i, j \in I$.