Übungsaufgaben zur Vorlesung Algebra

Blatt 10

Abgabe: 30.06.2009

(Bitte geben Sie Ihre Lösungen auf nach Aufgaben getrennten Blättern ab.)

Aufgabe 1 (4 Punkte)

Sei R ein kommutativer Ring. Sie:

a) Zeigen Sie, dass durch

($a, b \in R$ assoziiert : \iff es gibt eine Einheit $\epsilon \in R^{\times}$, so dass $b = \epsilon a$) eine Äquivalenzrelation \sim auf R definiert wird.

b) Zeigen Sie: Zwei Nichtnullteiler erzeugen genau dann dasselbe Ideal, wenn $a \sim b$.

Aufgabe 2 (4 Punkte)

Entscheiden Sie, welche der folgenden Polynome $f_i \in (\mathbb{Z}/2\mathbb{Z})[x]$ irreduzibel in $(\mathbb{Z}/2\mathbb{Z})[x]$ sind:

$$f_1 = x^5 + x + 1$$
, $f_2 = x^6 + x^2 + x + 1$, $f_3 = x^5 + x^4 + 1$.

Aufgabe 3 (4 Punkte)

Es seien $f, g \in (\mathbb{Z}/3\mathbb{Z})[x]$ gegeben durch

$$f = x^7 + x^2 + 1$$

$$g = x^9 + x - 1.$$

Man berechne ggT(f,g) und Polynome $p,q\in(\mathbb{Z}/3\mathbb{Z})[x]$ mit

$$pf + qg = ggT(f,g).$$

Aufgabe 4 (4 Punkte)

Sei R faktorieller Ring, K sein Quotientenkörper, $f \in R[x] \subseteq K[x]$ ein normiertes Polynom,

$$f = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$$
 mit $a_i \in R$.

Zeigen Sie, dass für jede Nullstelle $\alpha \in K$ von f gilt: Es ist $\alpha \in R$ und α ist Teiler von a_0 in R. (Hinweis: Folgern Sie dies aus dem 'Lemma von Gauß'.)

Aufgabe 5 (Präsenz)

Entscheiden Sie, welche der folgenden Eigenschaften jeweils für $R = \mathbb{Z}[x]$ bzw. $(\mathbb{Z}/6Z)[x]$ bzw. $\mathbb{Q}[x]$ zutreffen:

- a) R ist Integritätsring.
- b) R ist faktorieller Ring.
- c) R ist euklidischer Ring.
- d) R ist Hauptidealring.
- e) R ist Körper.