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Abstract. We review basic concepts related to rooted trees and their
combinatorics as they are needed for the introduction of several bialge-
bra or Hopf algebra structures on vector space bases of rooted trees. In
view of the applications, we have to distinguish between several notions
of such trees, such as abstract/planar, partially labeled/non-labeled etc.
We present a unifying approach, inspired by the theory of operads. Then
we focus on important operations on trees, such as grafting and cutting
trees, which appear in various examples.

1. Introduction

Rooted trees are examples of combinatorial objects which appear in a
lot of different contexts in mathematics. Their appearance as algebra bases
or vector space bases for various interesting Hopf algebra structures is one
aspect, which still leads to a lot of new research. We mention here the Hopf
algebras of A. Connes and D. Kreimer (cf. [2]), the Hopf algebras of R.
Grossman and R. G. Larson (cf. [5]), the dendriform Hopf algebras of J.-L.
Loday and M. Ronco (cf.[14]), and Hopf algebra structures introduced by
C. Brouder and A. Frabetti (cf. [1]).

The aim of this note is not to delve into Hopf algebras, but to describe
the foundations, i.e. to present an approach to rooted trees useful for the
study of the mentioned Hopf algebras.

Our goal in Section 2 is to put several different types of rooted trees –
planar (ordered), or abstract (unordered), usually partially labeled – under
a common roof, which is inspired by operad theory. In Section 3 we look
at products or operations on trees, which are related to the concatenation
of words. In particular, we look at parenthesized words, which correspond
directly to binary trees. The relevant operations like the grafting product
on trees extend to operations V ⊗ V → V or (V ⊗ . . .⊗ V ) → V , where V
is some vector space spanned by trees or forests of trees. Dually defined are
co-operations on V (into tensor products of V ). In Section 4, we look at the
substitution operation for trees. There are various related operations. We
use a right comb presentation of planar binary trees, and we give an explicit
bijection between planar forests with n−1 vertices and corresponding planar
binary trees with n leaves. Then we concentrate on the concept of cuts, as
it is used for the coproduct of the Connes-Kreimer Hopf algebra. We finish
with some remarks on nonsymmetric operads and the Stasheff polytopes.
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The author thanks the referee for helpful suggestions.

2. Types of rooted trees - an overview

We distinguish between several types of trees. First we recall the notions
of rooted trees and planar rooted trees (compare [21, 22]). We skip the
definition of graphs (see [6]). A naive notion of a graph will suffice. For a
more sophisticated notion, involving half-edges, see [16], §5.3.

2.1. Rooted Trees. A finite connected graph ∅ 6= T = (Ve(T ),Ed(T )) with
a distinguished vertex ρT is called a rooted tree, if the following condition
holds: For every vertex λ ∈ Ve(T ) there is exactly one path connecting λ
and ρT (equivalently, T has no cycles, compare the definition given in the
appendix of [21]).

The vertex ρT is called the root of T . Thinking of the edges as oriented
towards the root, at each vertex there are incoming edges and one outgoing
edge. The standard convention is that the root has no outgoing edges, but
here we add to the root an outgoing edge that is not connected to any further
vertex. If we want to exclude this edge, we speak of the other edges as inner
edges.

If λ and λ′ in Ve(T ) are connected by an edge oriented from λ′ to λ, then
λ is called the father of λ′, and λ′ is called a child of λ.

The vertices with no child are called leaves, and the set of leaves of T is
denoted by Le(T ).

2.2. Example. The following graph is a rooted tree: ◦ ◦
~~~

◦
ooooooo

◦ ◦
~~~

◦

Here we draw the root at the bottom. If the number #Ve(T ) of vertices
of T is at least 2, T is uniquely described by the unordered list of non-empty
rooted trees T1, . . . Tr, r ≥ 1, of the full subtrees whose roots are the childs
of the root ρλ of T (cf. Definition 2.16).

2.3. Planar rooted trees. Let T be a rooted tree. For any given vertex λ
of T , we say that λ is an r-ary vertex, if the number of incoming edges is r.

Binary trees are rooted trees where all vertices are 2-ary, except for the
leaves, which are 0-ary. Analogously, m-ary trees are defined.

For T a rooted tree of any type, we write the set Ve(T ) of vertices as a
disjoint union

⋃
r∈N Ver(T ), where Ver(T ) consists of all r-ary vertices of T .

The elements of Ve∗(T ) =
⋃

r≥1 Ver(T ) = Ve(T )− Le(T ) are called internal
vertices of T .

The height of a vertex λ ∈ Ve(T ) is the number of edges separating it
from ρT . The height of a rooted tree T is the maximum height of its vertices.
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A rooted tree T together with a chosen order of incoming edges at each
vertex is called a planar rooted tree (or ordered rooted tree). In our draw-
ings, this is an ordering from left to right, see Example (2.4).

Planar binary trees and planar m-ary trees are defined as well. One
also considers incomplete planar m-ary trees, defined recursively as follows:
Every such tree is either the empty tree or uniquely determined by the
ordered list of m possibly empty incomplete planar m-ary trees, see Example
(2.5).

Ordinary rooted trees are also called abstract (or unordered) rooted trees
to stress that they are non-planar.

Consequently, we denote by PTree the set of planar rooted trees, and by
ATree the set of abstract rooted trees. Some authors also use the notations
OT := PTree and UT := ATree; OT for ordered trees, UT for unordered
trees.

By AmTree and PmTree we denote the corresponding sets of m-ary (com-
plete) rooted trees, and in the binary case m = 2 we also use the notation
ABTree and PBTree.

2.4. Example. For every vertex of a planar rooted tree, the chosen order
of incoming edges corresponds to an ordering of edges from left to right.
Every drawing of a rooted tree provides us with a planar structure, which
we have to forget when dealing with abstract rooted trees.

The drawings ◦ ◦
~~~

◦
ooooooo

◦ ◦
~~~

◦

◦ ◦
~~~

◦
ooooooo

◦ ◦
iiiiiiiiiii

◦

represent the same abstract rooted tree T (of height 2), but different
planar rooted trees T 1, T 2.

2.5. Example. Examples for binary trees can be drawn as follows:

◦

◦
~~~

◦

◦

◦ ◦ ◦

◦
~~~

◦ ◦

An incomplete binary tree is represented by the following picture:

◦

◦ ◦

◦
~~~

◦
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2.6. Leveled trees. We mention that one can also associate levels to all
vertices of a given rooted tree, to distinguish for example between the rooted
trees

◦ ◦
~~~

◦ ◦
~~~

◦ ◦
ooooooo

◦

◦ ◦
~~~

◦ ◦ ◦
~~~

◦
ooooooo

◦

◦ ◦
~~~

◦ ◦
~~~

◦

~~
~~

~~
~~

◦

◦

Such leveled trees and also incomplete trees are not going to be considered
in the rest of this article.

2.7. Integer sequences. For n, p ∈ N, let

PTreen := {T ∈ PTree : #Ve(T ) = n}

be the set of planar rooted trees with n vertices, and let

PTreep := {T ∈ PTree : #Le(T ) = p}

be the set of planar rooted trees with p leaves.
Furthermore, let

PTreep
n := PTreen ∩ PTreep.

We make the analogous definitions for abstract rooted trees, and also for
the abstract binary and for the planar binary rooted trees.

The number #PTreen of planar rooted trees with n vertices is the n-th
Catalan number

cn =
(2(n− 1))!
n!(n− 1)!

.

The numbers cn, for n = 1, . . . , 11, are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796.

with generating series f(t) =
∑∞

n=1 cntn given by

1−
√

1− 4t

2
.

The numbers cn also count planar binary rooted trees with n leaves.

The numbers an = #ATreen of abstract rooted trees with n vertices, for
n = 1, . . . , 11, are

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842.

The generating series f(t) =
∑∞

n=1 antn fulfills the equation

f(t) =
t∏

n≥1(1− tn)an
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or equivalently the equation

f(t) = t exp
( ∑

k≥1

f(tk)
k

)
(cf. [6]).

The numbers bn = #ABTreen of abstract binary rooted trees with n
leaves, for n = 1, . . . , 11, are

1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451

with generating series f(t) given by (cf. [18]) the equation

f(t) = t +
1
2
f(t)2 +

1
2
f(t2).

The series can thus be written in the form

f(t) = 1−
√

1− f(t2)− 2t

= 1−
√√

1− f(t4)− 2t2 − 2t = . . .

Information on these integer sequences can be found in the On-Line En-
cyclopedia of Integer Sequences [20] (see Sequence A000108 for cn, Sequence
A000081 for an, Sequence A001190 for bn).

2.8. Labeled trees. Let M be a set and T a rooted tree (of a given type).
The set M is considered to be a set of labels (or colors).

Then a labeling of T is a map ν : Ve(T ) → M . The rooted tree T together
with such a labeling is called a labeled rooted tree (of the given type).

2.9. Example. In our drawing, we can put labels at the vertices:
◦4 ◦1

zzz
◦1

mmmmmmmm

◦3 ◦2

zzz
◦3

Here we have used the set M = {1, 2, 3, 4}.

2.10. Admissible labelings. Let M be a labeling ν : Ve(T ) → M as above.
Suppose that M =

⋃
r∈N Mr, where M0,M1,M2, . . . is a given sequence of

sets.
Then the labeling ν is called (M)-admissible, if ν(λ) ∈ Mr for every r-ary

vertex λ (for every r).
The set of planar rooted trees T ∈ PTree with admissible labeling from

(Mr)r∈N is denoted by PTree((Mr)) or simply by PTree(M). Similarly,
ATree(M) is used for abstract rooted trees with (M)-admissible labelings.
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2.11. n-trees. Suppose furthermore that M0 = N and that only such la-
belings are allowed that map the leaves of any rooted tree with n leaves
bijectively on the set {1, 2, . . . , n}. Planar or abstract rooted trees with
such an (M)-admissible labeling are called (planar or abstract) n-trees.

A (planar or abstract) rooted tree T is called reduced, if Ve1(T ) = ∅, i.e.
if there are no 1-ary vertices in T .

The set of planar reduced rooted trees is denoted by PRTree.

2.12. Example. Let M1 = ∅. Then rooted trees (of any type) with an
(M)-admissible labeling are necessarily reduced.

The following drawing represents a planar n-tree with a ∈ M2, b ∈ M3:
◦4 ◦3

zzz
◦1

mmmmmmmm

◦2 •b

zzz
•a

Note that, in our drawing, we used different colors/labels •a, •b, . . . for
internal vertices and ◦1, ◦2, . . . for the leaves.

We can identify the set PTree with the set PTree((Mr = {◦}, r ∈ N)), i.e.
we consider non-labeled rooted trees as trivially labeled trees.

2.13. Example. The following abstract (or planar) rooted tree is not re-
duced: ◦

•

one of its vertices is 1-ary.

The rooted tree

n︷ ︸︸ ︷
◦ ◦

~~~
. . . ◦

hhhhhhhhhhhh

•

, called n-corolla, is reduced for every

n ≥ 2.
A planar binary tree of the form

◦ ◦ . . . ◦

•0

}}
}

•1 . . . •n−1 ◦

is called a right comb of height n. The right comb without labels of height
n is denoted by Rn. One considers left combs as well. As abstract trees, the
right comb and the left comb (of a given height) are equal.

2.14. Reduction map. For any (planar or abstract) rooted tree T , there
exists a unique rooted tree red(T ), called the reduction of T , defined as
follows: Its set of vertices is Ve(T )−Ve1(T ), and for any pair λ, λ′ of vertices
of red(T ) there is an oriented path (or, equivalently, a path not passing the
root) from λ to λ′ in red(T ) if and only if there is such a path in T .
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Induced is a map red : PTree → PRTree and a similar map for abstract
rooted trees. Admissible labelings (of all vertices of arity 6= 1) are preserved.

2.15. Example. Consider the rooted tree ◦1 ◦2 ◦3 ◦4

www

•2 •3

www
•4

kkkkkkkkk

•1

•0

.

Its reduction is ◦3 ◦4

www

◦1 ◦2

www
•4

kkkkkkkkk

•1

.

2.16. Full subtrees. Let T be a planar (or abstract) rooted tree, and let
λ ∈ Ve(T ) be a vertex. The vertex λ determines a subgraph Tλ of T , called
the full subtree of T with root λ, such that: λ ∈ Ve(Tλ), and for every vertex
λ′ ∈ Ve(Tλ) all incoming edges (vertices included) of λ′ in T belong also to
Tλ.

2.17. Example.
The rooted tree ◦

• ◦

•λ

www
◦

is a full subtree of ◦ ◦

• • ◦

•
��

�
•λ ◦

2.18. The empty tree. It is sometimes useful to call the empty graph ∅ a
rooted tree (and to define its height to be −1). It is then formally adjoined
to the sets of trees described above, e.g., we consider the vector space with
basis PTree ∪ {∅} over the field K.

3. Operations of concatenation type

We recall the free objects of the categories of abelian semigroups, (not
necessarily abelian) semigroups, and magmas. Words occur as elements
of these free objects (cf. [19] as a general reference for operations and co-
operations on words).

Elements of the free abelian semi-group WCom(X) over X are commuta-
tive words xν1

i1
xν2

i2
· · ·xνr

ir
, i1 < i2 < . . . < ir, r ≥ 1, νi ∈ N. Adjoining a unit

1 (empty word) we get the free abelian semi-group W 1
Com(X) with unit.

The free semigroup WAs(X) over X or the free monoid W 1
As(X) over X is

equipped with the concatenation W 1
As(X) × W 1

As(X) → W 1
As(X), (v, w) 7→
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v.w denoted by a lower dot. The elements of W 1
As(X) are words w =

w1.w2 . . . wr, wi ∈ X for all i. Here r ∈ N is the length of w.
A magma is just a set M equipped with a binary operation (usually

denoted by · : M × M → M). The elements of the free magma WMag(X)
over X are parenthesized words. We are going to identify these words with
planar binary rooted trees.

3.1. Forests. A commutative word (not necessarily non-empty) of abstract
rooted trees, written as a disjoint union T 1∪T 2∪ . . .∪T r is called a (rooted)
forest.

A word T 1.T 2 . . . T r of planar rooted trees is called a planar (rooted)
forest.

We denote by PForest and AForest the corresponding sets of forests. The
concepts and notations of labeled trees carry over to forests.

One may consider other, less canonical, combinations like abstract forests
of planar rooted trees. If the context is clear, the words abstract and planar
are often omitted.

3.2. Parenthesized strings. There is a correspondence between planar
rooted trees and (irreducible) parenthesized strings. We sketch this corre-
spondence in the general setting of planar rooted trees with (M)-admissible
labeling, where M0 is given by{x1, x2, . . .}, and all other Mr, r ≥ 1 are given
by {y1, y2, . . .}. D. Kreimer’s definition of irreducible parenthesized words
in [11] is completely analogous. Here we make a difference between labels
for the leaves (xi ∈ X) and labels for the internal vertices (yi ∈ Y ), though.

Given a planar rooted tree T with (M)-admissible labeling, we recursively
construct the corresponding parenthesized string.

If T consists of its root ρT , then ρT is a leaf labeled by some xi. The
corresponding parenthesized string is (xi), i.e. an opening bracket followed
by the letter xi followed by a closing bracket.

Else, let ρT be labeled by yi, and let T 1 . . . Tn be the forest of labeled
rooted trees which remains after removing the root with its incoming edges.
Assume that for each Tj , 1 ≤ j ≤ n, we have already constructed the corre-
sponding parenthesized string wj . Then (yi w1 . . . wn) is the parenthesized
string associated to T .

We get a string of letters and balanced brackets such that the leftmost
opening bracket is matched by the rightmost closing bracket (irreducibility)
and such that each letter has exactly one opening bracket on its lefthandside.

It is easy to see that the rooted tree can be reconstructed from its string.
Reducible words are defined by concatenation of irreducible ones, thus

they correspond to forests.
For abstract rooted trees, there is a completely similar construction. The

only difference is that some words have to be identified due to the missing
order of incoming edges.
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3.3. Example. The parenthesized strings (x1), (y1(x2)), (y1(x2)(x3)),
(y1(y2(x3))), and (y1(x2)(x3)(x4)) represent the rooted trees

◦x1

◦x2

•y1

◦x2 ◦x3

rrr
r

•y1

◦x3

•y2

•y1

◦x2 ◦x3

rrr
r

◦x4

iiiiiiiiii

•y1

An empty pair of brackets without label is also allowed. It represents the
empty tree.

3.4. Example. In the following we consider binary trees.
Let M0 = {x1, x2, . . .}, and let M2 be a one element set.
For every pair of brackets, the position of the closing bracket is forced

once the position of the opening bracket is given. Thus one can omit the
brackets and just use a letter c to mark and replace any combination of an
opening bracket followed by the common label of an internal vertex.

For example the binary trees

◦x2

•
vvv

vv
◦x3

◦x2

◦x1 • ◦x3

•
vvv

vv
• ◦x4

can be represented by the strings cx2x3, cx1c
2x2x3x4.

3.5. Malcev representation. Since the free magma generated by a set of
variables X consists of parenthesized strings given by planar binary trees,
we can call the set of planar binary trees with leaves labeled by X the free
magma generated by X. The product · in the free magma is thus given
by a map (T, T ′) 7→ ∨(T, T ′) of planar binary trees (the grafting-operation
defined in the following paragraph, here in the case n = 2).

If a field K is given, we can pass from the free magma generated by X to
the free magma algebra (similarly to passing from semi-groups or groups to
semi-group algebras or group-algebras).

The representation given in Example (3.4) is the Malcev representation of
the free magma algebra over X = {x1, x2, . . .} in the free associative algebra
generated by {c, x1, x2, . . .}. The free magma multiplication · corresponds
to the operation (v, w) 7→ cvw in the free associative algebra.

3.6. Grafting product. Given a forest T 1 . . . Tn of n ≥ 0 planar rooted
trees with an (M)-admissible labeling, together with a label ρ ∈ M , there is
a rooted tree T = ∨ρ(T 1.T 2 . . . Tn) defined by introducing a new n-ary root
and grafting the trees T 1, . . . , Tn onto this new root. The new root gets the
label ρ. The specified order in the forest determines the order of incoming
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edges at ρT . The rooted tree T is called the grafting product of T 1 . . . Tn

over ρ.
If there is no choice for a label ρ (i.e. there is only one label available) we

simply write ∨(T 1 . . . Tn).
Analogously defined is the grafting product for (forests of) abstract rooted

trees. In the literature it is often denoted by B+(T 1 . . . Tn), e.g. in [12].
It is common to identify a unit for these operations with the empty tree

∅. To avoid difficulties with respect to uniqueness, we still do not allow the
members T i of a forest T 1 . . . Tn to be empty. (We allow empty forests,
though.)

3.7. Example. The grafting product ∨(T 1, T 2) of T 1, T 2 from (2.4) is just
◦ ◦

~~~
◦

ooooooo ◦ ◦
~~~

◦
ooooooo

◦ ◦
~~~

◦ ◦
iiiiiiiiiii

◦ ◦
ggggggggggggggg

◦

3.8. Degrafting map. Every planar rooted tree T is the grafting product
of a forest ¬T uniquely determined by T .

In the case of an n-ary root ρ, the forest ¬T consists of the n full subtrees
whose roots are the childs of the root ρ of T . Especially, all rooted trees in
the forest ¬T have heights less than the height of T .

There is a canonical de-grafting map ¬ from labeled non-empty planar
rooted trees to forests of labeled planar rooted trees (given by deleting the
root together with its label). The analogously defined operator on forests of
abstract rooted trees is often denoted by B−.

3.9. Reversed words and mirrored trees. For words w = w1.w2 . . . wn

the reversed word w̄ is defined by wn.wn−1 . . . w1. Similarly, given a planar
rooted tree T , there is a unique rooted tree T̄ recursively defined by

∨(T 1 . . . Tn) = ∨(T̄n . . . T̄ 1),

where ∨(∅) = ∨(∅) and ∅̄ = ∅. In other words, T̄ is obtained by mirroring
T along the root axis.

It holds that
(
T̄

)
= T . The rooted trees T 1 and T 2 from (2.4) are in

correspondence via T 7→ T̄ .

3.10. Splits and deconcatenation. Dually defined to the concatenation
of words is the deconcatenation. Recall that the result of the deconcatena-
tion, applied to a word w of length r, is a sum where each summand is given
by a split of w into a left part w(1) and a right part w(2).

Dually defined to the grafting products on planar rooted trees are splitting
co-operations. We give one example, which occurs in the case of planar
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binary trees as the dual co-operation of the binary grafting operation. It is
studied in [10].

Let T be a planar binary tree with r leaves numbered from left to right
by 1, 2, . . . , r. Let i, 1 ≤ i < r, be an integer. We split the tree T into
two trees T i

(1) and T i
(2) by cutting in between the leaves i and i + 1. More

precisely, the tree T i
(1) is the reduction of the part of T which is on the left

side of the path from leaf i to the root (including the path). The tree T i
(2) is

the reduction of the analogous part on the right side of the path from leaf
i + 1 to the root.

Look at i = 3 and T =

◦x1 ◦x3

• ◦x2 • ◦x4

•
vvv

vv
• ◦x5

Then T 3
(1) = ◦x1

• ◦x2

•
vvv

vv
◦x3

, T 3
(2) = ◦x4

•
vvv

vv
◦x5

The result of the co-operation applied to T is the sum, over all i, of the
summands T i

(1) ⊗ T i
(2).

4. Operations related to the substitution

If one considers a letter which appears in a (commutative or non-commuta-
tive) word as placeholder for a word itself, and substitutes this letter by the
corresponding word, one naturally obtains a new word. Similarly defined is
the following substitution procedure for trees:

4.1. Substitution. Let T 1, T 2 be planar (or abstract) rooted trees and let
b be a leaf of T 1. Then the substitution of T 2 in T 1 at b, denoted by T 1◦bT

2,
is obtained by replacing the leaf b of T 1 by the root of T 2.

4.2. Over and under. Given a planar binary tree T in PBTree or in
PBTree(M0,M2), let α = α(T ) denote the first leaf of T (i.e. the leftmost
leaf in a drawing which puts all leaves on one line).

Let ω = ω(T ) denote the last (i.e. rightmost) leaf of T .
Given a second planar binary tree S, we define

T\S := T ◦ω(T ) S.

The operation \ is called under-operation and was introduced in [14].
Clearly \ is associative and S\T\Z is well-defined.
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The analogous operation ◦α given by T ◦α S = T ◦α(T ) S plays the role of
an associative multiplication in a Hopf algebra defined by C. Brouder and
A. Frabetti (cf. [1]).

The opposite multiplication ◦op
α , defined by ◦op

α (S, T ) := ◦α(T, S), is the
over-operation S/T := T ◦α(T ) S of [14].

Using the mirror-operation T 7→ T̄ , one can express S/T as
(
T̄

)
\
(
S̄

)
.

The tree
◦

consisting of the root serves as a unit for all these operations,

e.g. S\
◦

= S = ◦\S.

4.3. Right comb presentation. Given planar binary trees T 1, . . . , Tn,
n ≥ 1, and a sequence w of n labels from M2, we define

∨→w(T 1 . . . Tn)

to be the planar binary tree which can be obtained from the right comb
Rn of height n as follows: We replace the first leaf α(Rn) by T 1, the second
by T 2 and so on, leaving the (n + 1)-th leaf (i.e. ω(Rn)) unaltered. We just
write ∨→(T 1 . . . Tn) if there is no choice of labels.

We define ∨→(∅) =
◦
. In particular, Rn can then be written as

∨→(
◦
. . .

◦︸ ︷︷ ︸
n

).

for every n.

It is easy to see that the smallest set which contains
◦

and is closed
under ∨→w operations contains all planar binary trees.

For every planar binary tree with (M)-admissible labeling, this right comb
presentation is unique. The left comb presentation is similarly defined. The
right (or left) comb presentation induces a map ϕr (ϕl respectively) from
planar binary trees to planar forests of planar rooted trees (not necessarily
binary) such that

ϕr(
◦
) = ∅, ϕr

(
∨→w1...wn(T 1 . . . Tn)

)
= ∨w1

(
ϕr(T 1)

)
. . . ∨wn

(
ϕr(Tn)

)
4.4. Example. The following planar binary tree

in PBTree11(M2 = {1, . . . , 10})
◦ ◦ ◦

◦ •4 •5 •6 ◦ ◦ ◦ ◦

•2 •3 ◦ •8 •9 •10 ◦

•1

|||
•7 ◦
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can be written in right comb presentation as

∨→1,7

(
∨→2,3

( ◦
,∨→4,5,6(

◦ ◦ ◦
)
)

, ∨→8,9,10(
◦ ◦ ◦

)
)

Its image under ϕr is this forest:
•4 •5

zzz
•6

mmmmmmmm

•2 •3

zzz
•8 •9

zzz
•10

llllllll

•1 •7

4.5. Corollary. Let M = (M0, ∅,M2, ∅, ∅, . . .), where M0 is a one element
set and M2 is arbitrary, and let M̃ be the constant sequence (M2,M2, . . .).

Then the map ϕr (or ϕl) provides a bijection from the set PBTreen(M) of
planar binary trees with (M)-admissible labelings and n leaves onto the set
of planar forests with (overall) n−1 vertices, with (M̃)-admissible labelings.

The number of planar forests with n − 1 vertices and (M̃)-admissible
labelings as well as the number of the corresponding planar binary trees is
given by

cn · (#M2)
n−1

where cn is the n-th Catalan number.
The bijection between non-labeled planar binary trees with n leaves and

non-labeled planar trees with n vertices occurs as a special case (when we
graft the corresponding forest onto a new root).

4.6. Cutting trees. Let T be a (planar or abstract) rooted tree with root
ρ, and C ⊆ Ve(T ). We call C an admissible cut of T , if for every vertex
λ ∈ C all vertices of the full subtree with root λ are also in C. The case
C = ∅ is called the empty cut. The case C = Ve(T ) is called the full cut.

Given such an admissible cut, let RC(T ) be the not necessarily non-empty
tree (with root ρ, if RC(T ) 6= ∅), obtained by removing all vertices of C
(together with their outgoing edges).

From T we can remove (the subgraph) RC(T ) to get a (planar or abstract)
forest C(T ) with set of vertices C.

The pair (C(T ), RC(T )) is called result of the cut C.
An admissible cut of T can also be defined as a non-empty subset of the

set of (inner) edges of T such that for every vertex v ∈ Ve(T ) on the path
to the root there is at most one edge selected, cf. [2]. This definition leads
to the same pair (C(T ), RC(T )) and is in fact equivalent, once we add the
full and empty cut.
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4.7. Example. Let T be the following planar rooted tree: •4

•3 •2

www

•1

We are going to indicate (by ◦) which vertices are selected.
We get RC(T ) = •1 and C(T ) = ◦4

◦3 ◦2

as the result of the admissible cut ◦4

◦3 ◦2

•1

Not an admissible cut is: ◦4

◦3 •2

◦1

4.8. Hopf algebra of Connes and Kreimer. In [11], D. Kreimer discov-
ered a commutative Hopf algebra for the use of renormalization of quantum
field theories. It was further studied by A. Connes and D. Kreimer, cf. [2],
and [3].

The vector space, over a field K, of all abstract forests can be considered
as a commutative polynomial algebra K[ATree], graded with respect to the
canonical degree function induced by

deg T = n = #Ve(T ), for T ∈ ATreen,

and the unit 1 is identified with the empty tree ∅. The Connes-Kreimer
Hopf algebra is obtained when K[ATree] is provided with the coproduct
∆CK, defined on the basis by

B+(T 1 . . . Tn) 7→ B+(T 1 . . . Tn)⊗ ∅+ (·, B+)
(
∆CK(T 1)⊗ . . .⊗∆CK(Tn)

)
.

The graded dual of this commutative Hopf algebra is isomorphic (via a
graded isomorphism) to a noncommutative cocommutative Hopf algebra on
trees introduced by R. Grossman and R. G. Larson (cf. [5]), see [17],[7].

There is an alternative description of the coproduct ∆CK using the con-
cept of admissible cuts (see 4.6). Since any non-full admissible cut of
T = ∨(T 1 . . . Tn) corresponds to n admissible cuts (of T 1, . . . , Tn), it is
not hard to prove by induction that the image of T under ∆CK is given by∑

Cadmissible cut

C(T )⊗RC(T ),
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see [2].
The analogous construction for planar forests of planar trees (instead of

abstract forests of abstract trees) yields a graded Hopf algebra structure
which is isomorphic to the graded Hopf algebra of planar binary trees intro-
duced by J.-L. Loday and M. Ronco in [14], see [8], [4].

4.9. Example. The coproduct ∆CK maps

◦
= ∨(∅) 7→

◦
⊗ ∅+ ∅ ⊗

◦

For f = 2 ◦
◦
−

◦ ◦
we compute that ∆CK(f) is given by

2
(

◦
◦
⊗ ∅+ ∅ ⊗ ◦

◦
+

◦
⊗

◦)
−

◦ ◦
⊗ ∅ − ∅ ⊗

◦ ◦
− 2

◦
⊗

◦

= f ⊗ ∅+ ∅ ⊗ f

For h = 2 ◦�A
◦ ◦

− ◦
◦
◦

− ◦
◦ ◦

we compute that ∆CK(h) is given by

2
(

◦�A
◦ ◦

⊗ ∅+ ∅ ⊗ ◦�A
◦ ◦

+
◦ ◦

⊗
◦

+ 2
◦
⊗ ◦

◦)

− ◦
◦
◦

⊗ ∅ − ∅ ⊗ ◦
◦
◦

−
◦
⊗ ◦

◦
− ◦

◦
⊗

◦

− ◦
◦ ◦

⊗ ∅ − ∅ ⊗ ◦
◦ ◦

−
(

◦
◦

+
◦ ◦ )

⊗
◦
−

◦
⊗
(

◦
◦

+
◦ ◦ )

= h⊗ ∅+ ∅ ⊗ h +
◦
⊗ f − f ⊗

◦

4.10. Free nonsymmetric operads. Let a collection (Mr)r≥2 of sets be
given, and set M0 := {◦},M1 := ∅.

Define, for n ≥ 2, Γ(M)(n) to be the vector space of all linear combina-
tions of reduced planar trees with n leaves equipped with an (M)-admissible

labeling. Let Γ(M)(0) = 0, Γ(M)(1) = K · |, where | :=
◦

is the tree con-
sisting of the root.

The sequence Γ(M) of vector spaces, together with the unit | and compo-
sition maps determined by the ◦i-operations T 1 ◦i T

2 (given by the substitu-
tion of T 2 in T 1 at the i-th leaf, see 4.1) is the free non-Σ operad generated
by the collection M = (Mr)r≥2.

Families of generalized bialgebra structures on algebras over families of
free nonsymmetric operads are considered in [9].
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4.11. Example. Let M2 consist of one generator α, and let Mr = ∅ (r ≥ 3).
Then all elements of Γ(M) are linear combinations of planar binary trees.

For n ≥ 1, we can identify a basis of Γ(M)(n) with the set of (non-labeled)
planar binary trees with n leaves. Especially, dim Γ(M)(n) = cn.

The tree @@ �� corresponds to the binary operation α, and we get ternary
operations α ◦1 α and α ◦2 α as compositions:

◦

• ◦

•
~~~

◦

◦ ◦

•
~~~

• ◦

This is the non-Σ operad Mag of (non-unitary) magma algebras.

4.12. The associahedron. Let the collection M = (Mr)r≥0 be given by
M0 := {◦},M1 := ∅, and Mr a one element set for each r ≥ 2. Then
the generated free nonsymmetric operad Γ(M) is known as the operad of
Stasheff polytopes.

The Stasheff polytope or associahedron Kn+1 is a convex polytope of
dimension n − 1, n ≥ 1, with one vertex for each planar binary tree with
n + 1 leaves. More exactly, Kn+1 is a cell complex in dimension n− 1 with
the elements of PBTreen+1 = PRTreen+1

2n+1 as 0-cells.
The associahedra were created by J. Stasheff [23] to study higher homo-

topies for associativity. If we consider the parenthesized strings (of 3 letters)
given by the two planar binary trees with 3 leaves, we can get from one to
the other by shifting a bracket, in other words (cf. [16], I.1), applying an
associating homotopy h(x, y, z) from x(yz) to (xy)z.

In K4 for example, the five planar binary trees with 4 leaves have to be
arranged in a pentagon

•(ab)(cd)

gggggggggggg
WWWWWWWWWWWW

•((ab)c)d

GG
GG

GG
GG

•a(b(cd))

ww
ww

ww
ww

•(a(bc))d •a((bc)d)

such that each side corresponds to an application of h(x, y, z). These
5 sides can be labeled by the 5 reduced planar trees (with 4 leaves and 2
internal vertices) indicating the associating homotopy. For example, the
edge between (a(bc))d and ((ab)c)d corresponds to the tree

◦ ◦
~~~

◦
ooooooo ◦

tttttttttttt

•

•
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The (n + 1)-corolla represents the top dimensional cell of the polytope
Kn+1.

By definition of the cell complex Kn+1 the cells of dimension k are in
bijection with the elements of PRTreen+1

2n−k+1, for k = 0, . . . , n− 1.

The polytope K2 is a point which corresponds to the unique element @@ ��

of PBTree2 = PRTree2
3, and K3 is an interval.

The facets (i.e. codimension one cells) of Kn+1 are of the form Kr+1 ×
Ks+1, r, s ≥ 1, r + s = n, with label obtained by grafting the s-corolla
to the i-th leaf of the r-corolla, 1 ≤ i ≤ r. One gets inclusion maps ◦i :
Kr+1 ×Ks+1 → Kr+s+1 (cf. [16], I.1.6).

Pentagons and squares are the facets of K5.

In fact, the realization of Kn+1 as a convex polytope was an open problem
at first. Several solutions were given (cf. [24]). A simple realization, given
in [13], associates to each planar binary tree T ∈ PBTreen+1 a coordinate
tuple x(T ) in (a hyperplane of) Rn as follows:

For 1 ≤ i < n + 1 = #Le(T ), the i-th internal vertex of T is the highest
internal vertex which belongs to both the paths from the i-th and the (i+1)-
th leaf to the root.

Consider the subtree with root given by the i-th internal vertex of T , and
let ai be the number of leaves on the left side, bi the number of leaves on
the right side (of the subtree’s root). Then the i-th entry of x(T ) is given
by aibi.

For example, the coordinate tuples we get for K4 are:
•(1,4,1)

ggggggggggg
WWWWWWWWWWW

•(1,2,3)

DDDDDDD
•(3,2,1)

zz
zz

zz
z

•(2,1,3) •(3,1,2)

It is shown in [13], Theorem 1.1, that the convex hull of the points
x(T ), T ∈ PBTreen+1, is a realization of the Stasheff polytope of dimen-
sion n− 1.

It is possible to give an orientation to all the edges of the Stasheff polytope,
see [15]. When 0-cells are represented as parenthesized words, arrows are
directed such that they correspond to shifting a bracket from left ((xx)x) to
right (x(xx)). The induced partial ordering on the set PBTree is called the
Tamari order, cf. [22].
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