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ABSTRACT. The performance of two simple proportional closed-loop control strategies,
and of the instantaneous control method in suppressing vortex shedding and drag of the
cylinder flow by applying wall near Lorentz forces is discussed. Several numerical results
for laminar flow regime are presented.

1. INTRODUCTION

Flow over a bluff body induces drag and lift forces which are undesirable. During the
past 100 years there have been many experimental approaches to control the flow around
a bluff body in order to reduce drag and increase lift forces and retard separation, e.g.
with shaping, blowing/suction, splitter plates, secondary objects and rotation. A com-
prehensive review can be found in e.g. [5].
In the recent past methods from magneto-hydrodynamics have become a more and more
acknowledged in control of conductive fluids by Lorentz forces, cf. [13] and the refer-
ences cited there.

In this work we present several approaches using Lorentz forces, to suppress the forma-
tion of the von Kármán Vortex Street in the cylinder flow, and to decrease drag. We focus
on weakly conductive fluids like sea water and other electrolytes. In this case the Lorentz
force can be modeled as a near wall body force [4] and the flow is governed by the un-
steady incompressible Navier Stokes equations.
As control mechanisms a two-point proportional controller similar to that discussed in
[2] and instantaneous control [7] are considered.

2. MATHEMATICAL MODEL

In the present work we consider control of weakly conductive fluids by Lorentz forces.
The flow is governed by the unsteady incompressible Navier Stokes equations, and the
Lorentz force in this case can be modeled by a near wall distributed force [4], see also the
appendix for a derivation. As mathematical model for the velocity vector y = (y1, y2, y3)
and the pressure p in the two-dimensional flow domain Ω on the time horizon [0, T ] we
take

yt − ν∆y + (y∇)y + ∇p = FL in Q := (0, T ) × Ω ,

−∇ · y = 0 in Q ,(1)
y(0) = y0 in Ω, ,
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supplied with appropriate boundary conditions. Here the Lorentz force is given by

FL(x) = J0B0g(φ)e−
π
a
·dist[x,cylindersurface]~t,

with

g(φ) =







1,
−1,

0,

φ0 ≤ φ ≤ φ1

π + φ0 ≤ φ ≤ π + φ1

else,

and ~t denoting the tangent on the cylinder surface. Here, J0 denotes the current density,
B0 denotes the magnetic induction at the wall and a is the electrode/magnet spacing, see
Fig. 1, where an electrode/magnet arrangement is sketched which produces a tangential
Lorentz force. We note, that by altering this arrangement also near wall Lorentz forces
can be generated [4].
The Lorentz force FL enters into the mathematical model (1) as external force. From the

FIGURE 1. Actuator configuration used for computations.

control point of view it may therefore serve as control variable which allows to tailor the
flow. In the literature several approaches to flow control with distributed and boundary
forces can be found,see [2, 4, 7, 13, 10], and particularly [8] for a comprehensive overview.
In the following sections we study control of the cylinder flow by near wall Lorentz forces
in the laminar regime (Re < 1000). The flow configuration together with a typical mesh
is depicted in Fig. 3. With d denoting the cylinder diameter and U the bulk velocity at
the inflow, the Reynolds number is given by

Re =
U d

ν
,

where ν denotes the constant kinematic viscosity. At the inflow a block profile is pre-
scribed, i.e. y1 = U, y2 = 0, which also is the boundary condition on top and bottom
walls. At the cylinder surface no-slip, and at the outflow boundary do-nothing condi-
tions are prescribed. The solution routine is implemented in FEMLAB and validated
against the numerical results of [11].

Two physically important parameters are the interaction parameter N , which describes
the relation of electromagnetical and inertial forces, and the geometry parameter G. There
holds

N =
J0B0d

ρU2
and G =

a

d
.



ACTIVE CLOSED LOOP CONTROL OF WEAKLY CONDUCTIVE FLUIDS 3

In order to compare calculations with different geometry parameters, the so-called scaled
interaction parameter N · G is used, compare [11].

The control target consists in reducing the drag force FD which is composed of the three
different parts, i.e.

FD = FDf
+ FDp + FDem ,

with

FDf
=

∫

∂cyl.
ρν∂η(y·~t)·η2dS , FDp = −

∫

∂cyl.
p η1·e2dS , FDem = −J0B0

a

π
D(cos φ0−cos φ1) .

Here η = (η1, η2)
t denotes the outward normal on the cylinder surface. The correspond-

ing drag coefficients are given by

CD =
2FD

ρU2D
, CDf

=
2FDf

ρU2D
, CDp =

2FDp

ρU2D
, and CDem =

2FDem

ρU2D

with ρ ≡ 1 denoting the density. The dependence of drag coefficients on the Reynolds
number is depicted in Fig.2.
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FIGURE 2. Dependency of the drag coefficients on the Reynolds Number.

3. CONSTANT LORENTZ FORCE

In Fig. 4, snapshots of numerical simulations with constant forcing at T = 10 are shown.
As can be seen the application of a Lorentz force suppresses the vortex shedding. These
results are in perfect coincidence with the results reported in [11]. This is illustrated in
Fig. 6, where a comparison of the drag coefficients at Re = 200, for G = 0.5, and varying
N is presented.
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FIGURE 3. Mesh used for computations, consisting of 11.000 elements

FIGURE 4. Flow velocities for interaction parameters N = 0 (without
force, top left), 0.8(top right),1.2 (bottom left), and 6 (bottom right)

4. CLOSED LOOP CONTROL

In this section we present two simple closed-loop control strategies which may be re-
garded as a first step to extend the results of [11] towards fully automatic regulation of
flows by near wall Lorentz forces in realistic technical environments. For this purpose
two proportional controllers are introduced in the first instance. With regard to experi-
mental realization the following two-point controller will be investigated in detail.
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FIGURE 5. Evolution of the drag and lift coefficients at Re=200, uncon-
trolled case (top left), constant forcing (top right), two-point controller
(bottom left), proportional controller (bottom right), in the controlled
cases the controller is initialized with on-state at T=0. The interaction pa-
rameter then is givenby N = 0.43.

Two Point Proportional Controller. The first numerically implemented proportional con-
troller requires that the (signed) flow velocity can be measured at two points in the cylin-
der wake close to the surface, namely at an angle of ±10◦ behind the rear stagnation
point. Whenever upstream flow is detected at one of these two points, the electrodes
on the actuators are switched on until the sign of the x1-component of the flow velocity
changes. The design of this controller is inspired by the work of Chen [2]. The interaction
parameter N , and thus the Lorentz force at the on-state is constant.

Proportional Controller. The second implemented proportional controller activates when-
ever a backflow behind the cylinder wall is measured. In contrast to two-point propor-
tional controller the amplitude of the Lorentz force now depends proportionally on the
angle where backflow is detected, (see Fig. 11). The closer to the poles backflow is de-
tected, the larger is the amplitude of the Lorentz force, whose maximal value is deter-
mined by some a-priorily specified interaction parameter N .

Discussion of the proportional controllers. An energy conservation of up to 20% com-
pared to constant forcing can be achieved with the two-point proportional controller for
small interaction parameters (N ≤ 1), see Fig. 10 (left). This can be explained by the
fact that immediately after switching to the on-state the pressure force FDp decreases
significantly. Placement of the measurement points upstream may improve this results,
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FIGURE 6. Dependency of the drag coefficients on the interaction param-
eter at Re=200, Comparison with Grundmann/Posdziechs’ results.
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FIGURE 7. Pressure distribution on the cylinder surface from the front to
the rear stagnation point: uncontrolled case, constant forcing, two point
proportional controller, and proportional controller, N =0.43 in all con-
trolled examples.

as separation is detected earlier. In the thrust region (N > 1.3, not represented) the
two-point proportional controller supplies no more energy conservation. For small in-
teraction parameters (N ≤ 1) the proportional controller is not capable of reducing the
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FIGURE 8. Vorticity distribution on the cylinder surface from the front to
the rear stagnation point: uncontrolled case, constant forcing, two point
proportional controller, and proportional controller, N =0.43 in all con-
trolled examples.

FIGURE 9. View of the upstream flow using the two point proportional
controller at different interaction parameters N = 0.65, 2, 6 (left to right,
downstream flow regions are represented in black)

total drag coefficient further than constant forcing. For interaction parameters between 1
and 1.7 the proportional controller however achieves up to 8% more drag reduction than
constant forcing, see Fig. 10 (right). For even larger values of the interaction parameter
the proportional controller is less efficient than constant forcing. Due to these results and
since the experimental realization of the proportional controller is much more sophis-
ticated than that for the two-point controller further investigations of the proportional
controller are ceased.

In Fig. 8 the vorticity distribution on the surface of the cylinder from the front to the
rear stagnation point is represented. It is apparent that in the comparison to the uncon-
trolled case the vorticity is increased clearly by the application of a Lorentz force. The
proportional controllers and constant forcing supply very similar results here. With the
two-point controller the largest vorticity is produced.
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FIGURE 10. Drag reduction won/lost with the controllers (two-point
proportional controller on the left, proportional controllers on the right)
.

FIGURE 11. Schematic representation of the proportional controller.

The pressure distribution on the cylinder surface is represented in fig. 7. Like for the
vorticity distribution the results for the proportional controller and for constant forcing
are very similar. The two-point controller obtains the largest pressure reduction. This
verifies the results in [2, 3] tendentially.

Finally, we briefly present a mathematical approach to suppress vortex shedding and
decrease drag of the cylinder flow, namely instantaneous control. The method allows
the interpretation as nonlinear closed-loop control strategy, see [7] for a comprehensive
discussion, and all details for the subsequent expositions. In the present situation the
method is capable of proposing form and strength of the Lorentz force that should be
applied to reach the control goal.

5. INSTANTANEOUS CONTROL

To apply instantaneous control to the cylinder flow we in the present work use the fol-
lowing semi-implicit discretization scheme for the Navier-Stokes system (1) with time
step δt: Given yi, ui+1, find yi+1, pi+1 such that

(2) e(yi+1, pi+1, ui+1) = 0 ⇐⇒

(

1
δt

Id − ν∆ ∇
−div 0

)(

yi+1

pi+1

)

=

(

ri

0

)

,

where ri := 1
δt

yi − (yi∇)yi + (Bu)i+1, yi+1 is supplied with appropriate boundary con-
ditions, and y0 coincides with the initial condition. Here we have rewritten the Lorentz
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force FL in (1) as

FL(t, x) = (Bu)(t, x) := u(t)g(φ)e−
π
a

dist(x,cylindersurface)~t,

i.e. the term J0B0 is replaced by a time-dependent amplitude u(t) which will serve as
control input in the control process. We note that (2) for every r ∈ L2(Ω)2 admits a
unique solution y, p (superscripts are dropped), so that y as well as p might be considered
as functions of the amplitude u. Next we denote by J(y, p, u) some performance measure
which allows to relate the control gain (here suppression of vortex shedding and/or drag
reduction) to the state variables y, p and to the control action u.

At time instance ti+1 we now consider the minimization problem

(3) min Ĵ(u) := J(y(u), p(u), u) s.t. e(y, p, u) = 0.

It is well known that the gradient of Ĵ(u) takes the form

(4) Ĵ ′(u) = Ju(y, p, u) − e∗u(y, p, u)(λ, ξ),

where (λ, ξ) solves the so called adjoint system

(5) e∗y(y, p, u)(λ, ξ) = Jy(y, p, u).

Here, ∗ denotes the adjoint of an operator.

The instantaneous control strategy works now as follows. At every time instance ti, given
a control uo, compute a new control un by the steepest descent method, i.e. set

(6) un = uo − sĴ ′(uo),

where s > 0 denotes the gradient step size, and apply un to control the system (2). Then
proceed to the next time slice and repeat the process.

We now apply this procedure to minimize the friction Force FDf
. As cost functional we

therefore choose (η = (η1, η2))

J(y, p, u) :=

∫

∂cyl

ρν∂η(y · ~t)η2dS +
α

2
|u|2.

The first term here measures the quantity of interest, the second term the control cost,
were α > 0 plays the role of a weight. In this case we have

Ĵ ′(u) = αu + B∗λ,

where (λ, ξ) solves (compare (5))
1
δt

λ + ν∆λ + ∇ξ = 0 in Ω,

−div λ = 0 in Ω,

λ1 = η2
2 on ∂cyl,

λ2 = −η1η2 on ∂cyl,

λ = 0 on ∂Ω \ (∂cyl ∪ outflow boundary),
ν∂ηλ = ξη on outflow boundary,

and
B∗λ =

∫

Ω

λg(φ)~tdx.

We note that the adjoint variable λ is independent of y and p and therefore can be com-
puted a-priorily. The update of the control in (6) for s = 1

α
(which is the optimal step size

since the cost functional is linear w.r.t. y and quadratic in u) now reads

un =
α − 1

α
ua −

1

α

∫

Ω

λg(φ)~tdx.
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Finally, we present a numerical example at Re = 100, i.e. ν = 0.001, where we use δt =
0.001 and apply instantaneous control on the horizon [0, 4], i.e. T = 4, with ua ≡ 0, and
choose the fully developed vortex street as initial condition y0. We further set a = 1

10 ,
so that G = 1. The resulting Lorentz force is constant, since un = − 1

α

∫

Ω

λg(φ)~tdx, and

is presented in Fig. 12, right. This amplitude in the present computations corresponds
to an interaction parameter of N = 1.075. Fig. 12, left shows the evolution of the drag
(blue), the friction drag (green) and of the pressure drag (red). Control is switched on
at t = 1. As can be seen, a drag reduction of approximately 20% is achieved. We note
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FIGURE 12. Development of drag in instantaneous control (left), and
constant Lorentz force resulting from instantaneous control (right).

that the interaction parameter is not a-priorily specified. It results from the optimization
approach.

APPENDIX

Simplified Lorentz force, produced by an alternating array of magnets and electrodes.
The magnetic flow density vector B and the electrical potential φ are determined by
Laplace’s equation

∇2φ = 0 ,(7)
∇B = 0 ,(8)

with

J = −σ∇φ .(9)

In order to simplify the solution and produce a force, that does not vary in the flow direc-
tion (x), the the magnetic flow density distribution is assumed to be sinusoidal. Again it
is assumed that Bz = 0, and the induced magnetic field can be neglected. On the surface
of the actuator Dirichlet boundary conditions for B and Neumann boundary conditions
for φ are assumed. The values at the wall (y = 0) are thus

Jy|wall = J0 sin(
π

2a
x) = −σ

∂φ

∂y
|wall ,(10)

By|wall = B0 cos(
π

2a
x) .(11)
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The domain (7)-(9) is a channel with height of 2δ with insulating upper wall (i.e. By=2δ|wall =
0, and Jy=2δ |wall = 0. The current density and flow density distributions are

Jx(x, y) = −
J0

tanh(π
a
δ)

cos(
π

2a
x)[− tanh(

π

a
δ) sinh(

π

2a
y)] ,(12)

Jy(x, y) = −
J0

tanh(π
a
δ)

sin(
π

2a
x)[− tanh(

π

a
δ) cosh(

π

2a
y)] ,(13)

Bx(x, y) = −B0 sin(
π

2a
x)[sinh(

π

2a
y) −

cosh( π
2a

y)

tanh( π
2a

δ)
] ,(14)

By(x, y) = −B0 cos(
π

2a
x)[cosh(

π

2a
y) −

sinh( π
2a

y)

tanh( π
2a

δ)
] .(15)

By taking the cross product of the current density and the magnetic flow density the
resulting strength acts in x direction only, is thus a function of the wall-normal distance
y only

(16) fz = J0B0[sinh(
π

2a
y) −

cosh( π
2a

y)

tanh( π
2a

δ)
] × [cosh(

π

2a
y) −

sinh( π
2a

y)

tanh( π
2a

δ)
] .

For δ
a
→ ∞

(17) fi = δi3J0B0 exp(−
π

a
y) .
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