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Mother Problem

H 1
ming ey xu I u) = 3lly — 2llZ g + $lull

s.t.
—A = Bu inQ
P Yy 0.1
(F) y =0 on B’Q, (0.1)
and
u € Uy g uU.

Here, Q C R" denotes an open, bounded sufficiently smooth (polyhedral)
domain, Y := H}(Q), the operator B : U — H~1(Q) = Y* denotes the (linear,
continuous) control operator, and U,q is assumed to be a closed and convex
subset of the Hilbert space U.
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Q U :=1%(Q), B: L%(Q) = H~1(Q) Injection, , U,g := {v € L2(R);a <
v(x) < bae. in Q},a,b € L°(Q).

Q U := HY(Q), B: H(Q) — H~1(Q) Injection, , U,q := {v € L2(R);a <
v(x) < bae. in Q},a,b € L°(Q).

m
Q@ U:=R", B:R™ — H~1(Q), Bu:= Y ujFj, F; € H~1(Q) given ,
j=1
Uy :={veER™a <v; < bj},a<b.
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We already know that problem (P) admits a unique solution (y,u) € H}(Q) x U,
and that (P) equivalently can be rewritten as the optimization problem

ulgbr:d J(u) (0.2)

for the reduced functional

J(u) := J(y(u), u) = J(SBu, u)

over the set U,g, where S : Y* — Y denotes the solution operator associated
with —A. We further know that the first order necessary (and here also
sufficient) optimality conditions take the form

(I (u),v — uyyx,y >0 forall v € Upyg (0.3)
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Here

J(u) = a(u,+)y + B*S*(SBu — z) = a(u,-)y + B*p,

with p := S*(SBu — z) € Y** denoting the adjoint variable. The function p in
our reflexive setting satisfies

—Ap
p

y—z inQ,
0 on 9Q.

With the Riesz isomorphism R : U* — U and the orthogonal projection
Py,, : U — Uaq we have that (0.4) is equivalent to

u= Py, (u - avj(u)) for all o > 0, (0.4)

where N N
VJ(u) = RJ (u)

denotes the gradient of J(u).
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To discretize (P) we concentrate on Finite Element approaches and make the
following assumptions.

Q C R" denotes a polyhedral domain, Q = U}'il 7} with admissible quasi-uniform
sequences of partitions { T; J";l of Q, i.e. with hnt := max; diam T; and

ont = minj{sup diam K; K C T;} there holds ¢ < g{ft < C uniformly in nt with
positive constants 0 < ¢ < C < oo independent of nt. We abbreviate

T = {T;}L,
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In order to tackle (P) numerically we shall distinguish two different approaches.
The first is called

First discretize, then optimize,

the second

First optimize, then discretize.

It will turn out that both approaches under certain circumstances lead to the
same numerical results. However, from a structural point of view they are
completely different.
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First discretize, then optimize

All quantities in (P) are discretized a-priori:
@ replace Y and U by finite dimensional subspaces Y}, and Uy,
@ the set U,q by some discrete counterpart Ugd, and

@ the functionals, integrals and dualities by appropriate discrete surrogates.
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Finite element space: For k € N

W, = {v € C°(Q): Vi, € Pu(T;) for all 1 < j < nt} =: ($1,.. ., Png), and

Yhi={v € Wh, vy =0} =: (¢1,...,0n) C Y,

with some 0 < n < ng.

n
Ansatz for discrete state: y,(x) = Y yio;.
i=1
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Discrete control space: with ul,...,u™ € U, we set
® Uy := (u',...,u™), and
° U;’d = Pﬂad(Ud), where
e P,‘_’,ad : U — U,q is a sufficiently smooth (nonlinear) mapping.

With C C R™ denoting a convex closed set we assume

a

m
Udd= uEU;u:Zsjuj,SEC .
j=1
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ng

Finally let z, := Qnz = 5. z;¢;, where Qj, : L2() — W), denotes a continuous
i=1

projection operator.

Now we replace problem (P) by

Mgy, )€Y x Uy J,d) (V> 1) = 3 1Iyn = 2nl132 g) + 5 llually
s.t.
(Pen,a)) a(ynsve) = (Bug,vp)yx,y forallv, € Yy, (0.5)
and
ug € U:d'

Here, we have set a(y, v) := [ VyVvdx.
Q
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Introduce Finite Element matrices:
o Stiffness matrix: A := (a;j)'f',j=1, aj := a(9;, ¢9;),

@ mass matrix M := (m,-j)lf'§=1, mj := [ ¢ipjdx, the
’ Q
o control matrix E := (e,-j);"j'zl, ej = (B, ¢;)y~,y, and the

@ control mass matrix F := (ﬁj)?’j=1, fi == (v, v)y.

Using these quantities allows us to rewrite (P(,4)) as finite-dimensional
optimization problem:

ming, ) crnxrm Q(y,s) = 3(y — 2)'M(y — z) + $s'Fs
s.t.
(Pa,m)§ Ay = Es (0.6)

and
seC.

Admissibility is characterized by the closed, convex set C C R™.
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Since the matrix A is spd, problem (P(,, .,)) is equivalent to minimizing the
reduced functional

Q(s) :== Q(A1Es,s)
over the set C.

Problem (P(,,m)) admits a unique solution (y(s),s) € R" x C which is
characterized by the finite dimensional variational inequality

(VQ(s),t — s)gm >0 forall t € C, (0.7)
with

VQ(s) = aFs + EA"*M(A™1Es — z) = aFs + E'p,

where
p:=A"tM(A"1Es — 2).
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Comparing

VQ(s) = aFs+ E'A"*M(A™'Es — z) = aFs + E'p

with

V1(u) = au + RB*S*(SBu — z) = au + RB*p
from the infinite-dimensional problem, we note that transposition takes the role
of the Riesz isomorphism R,
@ the matrix F takes the role of the identity in U,
@ the matrix M takes the role of the identity in L2(Q),
@ the matrix E takes the role the control operator B, and

@ the matrix A—! that of the solution operator S.

Problem (IP ) now can be solved numerically with the help of appropriate
solution algor|t|)1ms. which should exploit the structure of the problem. We fix
the following
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In the First discretize, then optimize approach the discretization of the adjoint
variable p is determined by the test space for the discrete state yj,.

In the First optimize, then discretize approach discussed next, this is different.
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First optimize, the discretize

Starting point: the first order necessary optimality conditions for problem (P);

—Ay = Bu in Q,
y =0 on 99,
(0S) —Ap = y—z inQ, (0.8)
p = 0 on 99,
(au+ RB*p,v —u)y > 0 for all v € Uyg.

@ Discretize everything related to the state y, the control u, and to
functionals, integrals, and dualities as in the First discretize, then optimize
approach.

@ In addition, we have the freedom to also select an appropriate discretization
of the adjoint variable p.
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For p we choose continuous Finite Elements of order / on 7, which leads to the
Ansatz

q
Pr(x) = Y pixi(x),

i=1

where
(Xl""sXq) cY
denotes the Ansatz space for the adjoint variable.

Matrices:
@ adjoint stiffness matrix A := (iij):?,jﬂ, a; = a(xi, x;j)

@ the matrix E := (éu):’,;’:l' & = (BW, xi)y*,y,

o and the matrix T := (t,j);"jq_l, ti == [ pixjdx.
T Q
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The discrete analogon to (OS) reads

Ay = Es,
(@S)(,,,q,m) . Ap = T(y — Z), (0.9)
(aFs + Etp,t —s)gm > Oforall t € C.

Since the matrices A and A are spd, this system is equivalent to the variational
inequality

(aFs + EtA~'T(A~'Es — z),t — s)gm >0 forall t € C. (0.10)
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SEMIES

QO U :=1%(Q), B: L%(Q) — H~1(Q) Injection, , U, := {v € L?(Q);a <
v(x) < b a.e. in Q},a,b € L°(Q). Further let k = | = 1 (linear Finite
Elements for y and p), Uy := (ul,..., u™), where ulkr_ = O4i
(k,i =1,...,nt) are piecewise constant functions (i.e. m = nt),

t
C:= ]n_[ [ai, b;], where a; := a(barycenter(T;)), b; := b(barycenter(T;)).
i=1

ng
Q@ Asin 1., but Uy := (p1,...,Png) (i.e. m = ng), C := [][a;, b;], where

=
a; := a(P;), b; := b(P;), with P; (i =1,...,ng) denoting the vertices of
the triangulation 7.

© (Compare Example 1): Asin 1., but U :=R™, B:R™ — H~1(Q), Bu :=
m
> ujFj, Fj € H71(Q) given , Uyg := {v € R™;3; < v; < bj},a < b,
j=1
Uy := (e1,...,em) with e € R™ (i = 1,..., m) denoting the i—th

ng
unitvector, C := [][a;, bj] = Uy.
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Discussion and implications

@ Choosing the same Ansatz spaces for the state y and the adjoint variable p
in the First optimize, then discretize approach leads to an optimality
condition which is identical to that of the First discretize, then optimize
approach, since then T = M.

@ Choosing a different approach for p in general leads to a non-symmetric
matrix T, with the consequence that the matrix aF + EtA~1TA—1E no
longer represents a symmetric matrix (and thus no Hessian), and

@ the expression aFs + EtA—1 T(A—LEs — z) in general does not represent a
gradient.

@ There is up to now no general recipe which approach has to be preferred,
and it should depend on the application and computational resources which
approach to take for tackling the numerical solution of the optimization
problem.

@ However, the numerical approach taken should to some extent reflect and
preserve the structure which is inherent in the infinite dimensional
optimization problem (P).



