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Mother Problem

(P)



min(y,u)∈Y×U J(y , u) := 1
2‖y − z‖2L2(Ω)

+ α
2 ‖u‖

2
U

s.t.
−∆y = Bu in Ω,

y = 0 on ∂Ω,
and
u ∈ Uad ⊆ U.

(0.1)

Here, Ω ⊂ Rn denotes an open, bounded sufficiently smooth (polyhedral)
domain, Y := H1

0 (Ω), the operator B : U → H−1(Ω) ≡ Y ∗ denotes the (linear,
continuous) control operator, and Uad is assumed to be a closed and convex
subset of the Hilbert space U.
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Example

1 U := L2(Ω), B : L2(Ω)→ H−1(Ω) Injection, ,Uad := {v ∈ L2(Ω); a ≤
v(x) ≤ b a.e. in Ω}, a, b ∈ L∞(Ω).

2 U := H1(Ω), B : H1(Ω)→ H−1(Ω) Injection, ,Uad := {v ∈ L2(Ω); a ≤
v(x) ≤ b a.e. in Ω}, a, b ∈ L∞(Ω).

3 U := Rm, B : Rm → H−1(Ω), Bu :=
m∑

j=1
ujFj , Fj ∈ H−1(Ω) given ,

Uad := {v ∈ Rm ; aj ≤ vj ≤ bj}, a < b.
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We already know that problem (P) admits a unique solution (y , u) ∈ H1
0 (Ω)×U,

and that (P) equivalently can be rewritten as the optimization problem

min
u∈Uad

Ĵ(u) (0.2)

for the reduced functional

Ĵ(u) := J(y(u), u) ≡ J(SBu, u)

over the set Uad, where S : Y ∗ → Y denotes the solution operator associated
with −∆. We further know that the first order necessary (and here also
sufficient) optimality conditions take the form

〈Ĵ′(u), v − u〉U∗,U ≥ 0 for all v ∈ Uad (0.3)
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Here

Ĵ′(u) = α(u, ·)U + B∗S∗(SBu − z) ≡ α(u, ·)U + B∗p,

with p := S∗(SBu − z) ∈ Y ∗∗ denoting the adjoint variable. The function p in
our reflexive setting satisfies

−∆p = y − z in Ω,
p = 0 on ∂Ω.

With the Riesz isomorphism R : U∗ → U and the orthogonal projection
PUad : U → Uad we have that (0.4) is equivalent to

u = PUad

(
u − σ∇Ĵ(u)

)
for all σ > 0, (0.4)

where
∇Ĵ(u) = RĴ′(u)

denotes the gradient of Ĵ(u).
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To discretize (P) we concentrate on Finite Element approaches and make the
following assumptions.

Assumption

Ω ⊂ Rn denotes a polyhedral domain, Ω̄ = ∪nt
j=1T̄j with admissible quasi-uniform

sequences of partitions {Tj}nt
j=1 of Ω, i.e. with hnt := maxj diam Tj and

σnt := minj{sup diam K ; K ⊆ Tj} there holds c ≤ hnt
σnt
≤ C uniformly in nt with

positive constants 0 < c ≤ C <∞ independent of nt. We abbreviate
τh := {Tj}nt

j=1.
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In order to tackle (P) numerically we shall distinguish two different approaches.
The first is called

First discretize, then optimize,

the second

First optimize, then discretize.

It will turn out that both approaches under certain circumstances lead to the
same numerical results. However, from a structural point of view they are
completely different.



Mathematics of PDE constrained optimization
Michael Hinze

8

First discretize, then optimize

All quantities in (P) are discretized a-priori:

replace Y and U by finite dimensional subspaces Yh and Ud ,

the set Uad by some discrete counterpart Ud
ad, and

the functionals, integrals and dualities by appropriate discrete surrogates.
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Finite element space: For k ∈ N

Wh := {v ∈ C0(Ω̄); v|Tj
∈ Pk(Tj ) for all 1 ≤ j ≤ nt} =: 〈φ1, . . . , φng 〉, and

Yh := {v ∈ Wh, v|∂Ω
= 0} =: 〈φ1, . . . , φn〉 ⊆ Y ,

with some 0 < n < ng .

Ansatz for discrete state: yh(x) =
n∑

i=1
yiφi .
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Discrete control space: with u1, . . . , um ∈ U, we set
Ud := 〈u1, . . . , um〉, and

Ud
ad := Pd

Uad
(Ud ), where

Pd
Uad

: U → Uad is a sufficiently smooth (nonlinear) mapping.

With C ⊂ Rm denoting a convex closed set we assume

Ud
ad =

u ∈ U; u =
m∑

j=1

sju j , s ∈ C

 .
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Finally let zh := Qhz =
ng∑
i=1

ziφi , where Qh : L2(Ω)→ Wh denotes a continuous

projection operator.

Now we replace problem (P) by

(P(h,d))


min(yh,ud )∈Yh×Ud J(h,d)(y , u) := 1

2‖yh − zh‖2L2(Ω)
+ α

2 ‖ud‖2U
s.t.
a(yh, vh) = 〈Bud , vh〉Y∗,Y for all vh ∈ Yh,

and
ud ∈ Ud

ad.

(0.5)

Here, we have set a(y , v) :=
∫
Ω

∇y∇vdx.
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Introduce Finite Element matrices:
Stiffness matrix: A := (aij )

n
i,j=1, aij := a(φi , φj ),

mass matrix M := (mij )
ng
i,j=1, mij :=

∫
Ω

φiφjdx, the

control matrix E := (eij )
n,m
i,j=1, eij = 〈Bu j , φi 〉Y∗,Y , and the

control mass matrix F := (fij )m
i,j=1, fij := (u i , u j )U .

Using these quantities allows us to rewrite (P(h,d)) as finite-dimensional
optimization problem:

(P(n,m))


min(y,s)∈Rn×Rm Q(y , s) := 1

2 (y − z)tM(y − z) + α
2 stFs

s.t.
Ay = Es

and
s ∈ C .

(0.6)

Admissibility is characterized by the closed, convex set C ⊂ Rm.
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Since the matrix A is spd, problem (P(n,m)) is equivalent to minimizing the
reduced functional

Q̂(s) := Q(A−1Es, s)

over the set C .

Problem (P(n,m)) admits a unique solution (y(s), s) ∈ Rn × C which is
characterized by the finite dimensional variational inequality

(∇Q̂(s), t − s)Rm ≥ 0 for all t ∈ C , (0.7)

with

∇Q̂(s) = αFs + E tA−tM(A−1Es − z) ≡ αFs + E tp,

where
p := A−tM(A−1Es − z).
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Comparing

∇Q̂(s) = αFs + E tA−tM(A−1Es − z) ≡ αFs + E tp

with

∇Ĵ(u) = αu + RB∗S∗(SBu − z) ≡ αu + RB∗p

from the infinite-dimensional problem, we note that transposition takes the role
of the Riesz isomorphism R,

the matrix F takes the role of the identity in U,

the matrix M takes the role of the identity in L2(Ω),

the matrix E takes the role the control operator B, and

the matrix A−1 that of the solution operator S.

Problem (P(n,m)) now can be solved numerically with the help of appropriate
solution algorithms, which should exploit the structure of the problem. We fix
the following
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Remark
In the First discretize, then optimize approach the discretization of the adjoint
variable p is determined by the test space for the discrete state yh .

In the First optimize, then discretize approach discussed next, this is different.
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First optimize, the discretize

Starting point: the first order necessary optimality conditions for problem (P);

(OS)


−∆y = Bu in Ω,

y = 0 on ∂Ω,
−∆p = y − z in Ω,

p = 0 on ∂Ω,
(αu + RB∗p, v − u)U ≥ 0 for all v ∈ Uad.

(0.8)

Discretize everything related to the state y , the control u, and to
functionals, integrals, and dualities as in the First discretize, then optimize
approach.

In addition, we have the freedom to also select an appropriate discretization
of the adjoint variable p.
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For p we choose continuous Finite Elements of order l on τ , which leads to the
Ansatz

ph(x) =

q∑
i=1

piχi (x),

where
〈χ1, . . . , χq〉 ⊂ Y

denotes the Ansatz space for the adjoint variable.

Matrices:
adjoint stiffness matrix Ã := (ãij )

q
i,j=1, ãij := a(χi , χj ),

the matrix Ẽ := (ẽij )
q,m
i,j=1, ẽij = 〈Bu j , χi 〉Y∗,Y ,

and the matrix T := (tij )
n,q
i,j=1, tij :=

∫
Ω

φiχjdx.
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The discrete analogon to (OS) reads

(OS)(n,q,m)


Ay = Es,
Ãp = T (y − z),

(αFs + Ẽ tp, t − s)Rm ≥ 0 for all t ∈ C .
(0.9)

Since the matrices A and Ã are spd, this system is equivalent to the variational
inequality

(αFs + Ẽ t Ã−1T (A−1Es − z), t − s)Rm ≥ 0 for all t ∈ C . (0.10)
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Examples

1 U := L2(Ω), B : L2(Ω)→ H−1(Ω) Injection, ,Uad := {v ∈ L2(Ω); a ≤
v(x) ≤ b a.e. in Ω}, a, b ∈ L∞(Ω). Further let k = l = 1 (linear Finite
Elements for y and p), Ud := 〈u1, . . . , unt〉, where uk

|Ti
= δki

(k, i = 1, . . . , nt) are piecewise constant functions (i.e. m = nt),

C :=
nt∏
i=1

[ai , bi ], where ai := a(barycenter(Ti )), bi := b(barycenter(Ti )).

2 As in 1., but Ud := 〈φ1, . . . , φng 〉 (i.e. m = ng), C :=
ng∏
i=1

[ai , bi ], where

ai := a(Pi ), bi := b(Pi ), with Pi (i = 1, . . . , ng) denoting the vertices of
the triangulation τ .

3 (Compare Example 1): As in 1., but U := Rm, B : Rm → H−1(Ω), Bu :=
m∑

j=1
ujFj , Fj ∈ H−1(Ω) given ,Uad := {v ∈ Rm ; aj ≤ vj ≤ bj}, a < b,

Ud := 〈e1, . . . , em〉 with ei ∈ Rm (i = 1, . . . ,m) denoting the i−th

unitvector, C :=
ng∏
i=1

[ai , bi ] ≡ Ud .
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Discussion and implications

Choosing the same Ansatz spaces for the state y and the adjoint variable p
in the First optimize, then discretize approach leads to an optimality
condition which is identical to that of the First discretize, then optimize
approach, since then T ≡ M.

Choosing a different approach for p in general leads to a non-symmetric
matrix T , with the consequence that the matrix αF + Ẽ t Ã−1TA−1E no
longer represents a symmetric matrix (and thus no Hessian), and

the expression αFs + Ẽ t Ã−1T (A−1Es − z) in general does not represent a
gradient.

There is up to now no general recipe which approach has to be preferred,
and it should depend on the application and computational resources which
approach to take for tackling the numerical solution of the optimization
problem.

However, the numerical approach taken should to some extent reflect and
preserve the structure which is inherent in the infinite dimensional
optimization problem (P).


