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1 Introduction

The solidification process of a GaAs melt in a cylindrical crucible with a diameter of 5 cm is considered. The goal consists in
controlling the shape and evolution of the free boundary (phase interface) using the crucible wall temperature and/or near-wall
Lorentz forces. In particular we intend to achieve a flat free boundary in order to keep the density of dislocations small,
compare e.g. [3].

2 Problem definition
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We consider the depicted crucible Ω = G×H , with th solid phase Ωs, the liquid phase Ωl und the free
boundary Γ.

The solidification process is modelled using the heat equation (1) in the solid phase Ωs and in the
liquid phase Ωl. In the liquid phase additionally flow driven by convection and near-wall Lorentz forces
(3), (4) are considered, where the convection term is modelled using the Boussinesq approximation. The
phase transition is constituted by the Stefan condition (5) and the melting temperature condition (7) at
the free boundary Γ. The Robin-type boundary condition (6) models the heat transfer at the crucible
wall ∂Ω. Altogether one obtains the nonlinear system
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in (0, T ]× Γ, (5)
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∂νννu = ub − u in (0, T ]× ∂Ω, (6)

u = uM in (0, T ]× Γ. (7)

Here, u denotes the temperature, uM the melting temperature, vvv the velocity and p the pressure. The near-wall Lorentz forces
AAA(Ac) depend on the control values Ac and are modelled using the Riga plate configuration presented in [2] and [4]. The
function Ac and the crucible wall temperature ub serve as control variables.

The free boundary is modelled as a graph Γ(t) =
{
(x, f(t, x))T

}
. By f the desired evolution of the free boundary is

denoted. The control goal mathematically is formulated as a pde-constrained optimization problem;

J(f, ub, Ac) :=
1

2T

∫ T

0

∫
G

(
f(t, y)− f(t, y)

)2
dydt = min!

f,ub,Ac

s.t. (1) – (7) .
(P)

The functional J models the objective in our minimization problem, namely the reduction of the error between the free
boundary and the desired free boundary in the mean square sense.

The optimization problem (P) is solved using a adjoint approach, which allows to compute the gradient of the reduced
functional K(ub, Ac) = J

(
f(ub, Ac), ub, Ac

)
in a efficient way. The computational costs for one gradient computation
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consist in solving the forward system (1) – (7) with given Ac, ub and one backward-in-time adjoint system, which contains
the state of the forward system as input data. Utilizing this an efficient gradient method is developed.

For a detailed derivation of the gradient of K and description of the algorithm we refer to [1, 4].

3 Results

We consider a GaAs melt in in a rotational symmetric crucible. The desired free boundary is a moving plane with a velocity
of 5 cm

h .
The figures show the free boundary (black line), the temperature (colored stripes) and the velocity (arrows) at different time

instances, for the uncontrolled problem (right side), with crucible wall temperature control (bottom left), and with near-wall
Lorentz forces control (bottom right).

One clearly sees that tracking of the desired flat free bound-
ary works very well using crucible wall temperature as control
variable. In contrast to the aluminum test problem considered
in [2] the control of the free boundary using near wall Lorentz
forces also works well for the GaAs test problem considered
here. This is due to the significant lower crystallization speed
of GaAs in comparison to aluminium and is described in detail
in [4].

References
[1] M. Hinze, S. Ziegenbalg. Optimal control of the free bound-

ary in a two-phase Stefan problem, J. Comput. Phys. (2006),
doi:10.1016/j.jcp.2006.09.030.

[2] M. Hinze, S. Ziegenbalg. Optimal control of the free boundary
in a two-phase Stefan problem with flow driven by convection,
ZAMM 87, 430–448 (2007).

[3] P. Rudolph, M. Jurisch. Bulk growth of GaAs: An overview, Jour-
nal of crystal growth 198/199, 325–335 (1999).

[4] S. Ziegenbalg. Kontrolle freier Rnder bei der Erstarrung von
Kristallschmelzen, PhD thesis, TU Dresden, Institute of Math-
ematics (2008).

without control

with crucible wall temperature control with near-wall Lorentz force control

Copyright line will be provided by the publisher


