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Abstract We consider POD model order reduction (MOR) of integrated circuits
with semiconductors modeled by the transient drift-diffusion equations (DDEs).
Discretization of the DDEs with mixed finite elements in space yields a high di-
mensional DAE. We sketch how POD, and POD combined with discrete empirical
interpolation (DEIM) can be used to reduce the dimension of the model.
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1 Introduction

In this article we investigate a POD-based MOR for semiconductors in electrical
networks. In [8] POD-MOR is proposed to obtain a reduced surrogate model con-
serving as much of the DDEs structure as possible in the reduced order model. This
approach in [7] is extended to parametrized electrical networks using the greedy
sampling proposed in [10]. Advantage of the POD approach are the higher accuracy
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of the model and fewer model parameters. On the other hand, numerical simulations
are more expensive. For a comprehensive overview of the drift-diffusion equations
we refer to [3, 9, 12].

The scaled DDEs are given by

λ Δψ = n− p−C, (1)

−∂t n+νn divJn = R(n, p), (2)

∂t p+νp divJp =−R(n, p), (3)

Jn = ∇n− n∇ψ , (4)

Jp =−∇p− p∇ψ , (5)

with constants λ := εUT
L2q‖C‖∞

, νn := UT μn
L2 and νp := UT μp

L2 , where L denotes a specific

length of the semiconductor, see e.g. [12]. Semiconductors in electrical networks
obtained by a modified nodal analysis are now modeled by the time–discrete version
of (1)-(5), which results in a partial DAE of the form

Problem 1 (full model).

AC
d
dt

qC(A
�
C e(t), t)+ARg(A�

R e(t), t)+AL jL(t)+AV jV (t)+AS jS(t)+AIis(t) = 0, (6)

d
dt

φL( jL(t), t)−A�
L e(t) = 0, (7)

A�
V e(t)− vs(t) = 0, (8)

jS(t)−C1Jn(t)−C2Jp(t)−C3ġψ(t) = 0, (9)⎛
⎜⎜⎜⎜⎜⎜⎝
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0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+AFEM

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ(t)
n(t)
p(t)

gψ(t)
Jn(t)
Jp(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

+F (nh, ph,gh
ψ)− b(e(t)) = 0, (10)

where (9) represents the discretized linear coupling condition (11)

jS,k =
∫

ΓO,k

(Jn + Jp− ε∂t∇ψ) ·ν dσ . (11)

Here, e denotes the node potentials, and jL and jV the currents of inductive and volt-
age source branches, respectively. The electrostatic potential is denoted by ψ(t,x),
the electron and hole concentrations by n(t,x) and p(t,x), and the current densities
by Jn(t,x) and Jp(t,x). q is the elementary charge, ε the dielectricity, μn and μp

are the mobilities of electrons and holes. The temperature is assumed to be constant
which leads to a constant thermal voltageUT . The functionC is the time independent
doping profile. We focus on the Shockley-Read-Hall recombination. Furthermore,
the incidence matrix A = [AR,AC,AL,AV ,AI ] represents the network topology, e.g.
at each non mass node i, ai j = 1 if the branch j leaves node i and ai j = −1 if the
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branch j enters node i and ai j = 0 elsewhere. qC, g and φL are continuously differ-
entiable functions defining the voltage-current relations of the network components.
The continuous functions vs and is are the voltage and current sources. For a basic
example consider the network in Fig. 1.

Further details are given in [7]. The analytical and numerical analysis of systems
of this form is subject to current research, see [2, 6, 13, 15].

Fig. 1 Basic test circuit with
one diode. The network is
described by

AV =
(

1, 0
)�

,

AS =
(−1, 1

)�
,

AR =
(

0, 1
)�

,

g(A�
R e, t) =

1
R

e2(t).

2 Model reduction

We use POD-MOR applied to the DD part (10) to construct a dimension-reduced
surrogate model for (6)-(10). For this purpose we run a simulation of the unreduced
system and collect l snapshots ψ h(tk, ·), nh(tk, ·), ph(tk, ·), gh

ψ(tk, ·), Jh
n(tk, ·), Jh

p(tk, ·)
at time instances tk ∈ {t1, . . . , tl} ⊂ [0,T ]. We use the time instances delivered by
the DAE integrator. The snapshot variant of POD introduced in [14] finds a best
approximation of the space spanned by the snapshots w.r.t. to the considered scalar
product. Since every component of the state vector z := (ψ ,n, p,g ψ ,Jn,Jp) has its
own physical meaning we apply POD MOR to each component separately.

The time-snapshot POD procedure now delivers Galerkin ansatz spaces for ψ , n,
p, gψ , Jn and Jp and we set ψPOD(t) := Uψγψ (t), nPOD(t) := Unγn(t), . . .. The in-
jection matrices Uψ ∈R

N×sψ , Un ∈R
N×sn , . . ., contain the (time independent) POD

basis functions, and the vectors γ(·) the corresponding time-variant coefficients. The
numbers s(·) denote the respective number of POD basis functions included. As-
sembling the POD system yields a reduced model with similar structure as (6)–(10),
see [7] for details. All matrix-matrix multiplications are calculated in an offline-
phase. The nonlinear functional F has to be evaluated online, the arguments have
to be interpreted as functions in space. For the reduction of the nonlinearity we use
DEIM proposed in [4].

3 Numerical implementation and results

The FEM is implemented in C++ based on the finite element library deal.II [1].
The high dimensional DAE is integrated using the DASPK software package [11].
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Fig. 2 Relative error between
reduced and unreduced prob-
lem at the fixed frequency
5 ·109 [Hz].
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Fig. 3 Time consumption
for simulation runs of Fig. 2.
The horizontal line indicates
the time consumption for the
simulation of the original full
system.
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We assume that the differentiation index of the network is 1. Otherwise one should
switch to alternative integrators. The derivative of the nonlinear functional F with
respect to n j(t), p j(t), gψ, j(t) is difficult to compute and thus we calculate the Jaco-
bians by automatic differentiation with the package ADOL-C [16]. We implement
the preconditioning subroutine of DASPK using SuperLU [5].

A basic test circuit with a single 1-dimensional diode is depicted in Fig. 1. The
parameters of the diode are summarized in [7]. The input v s(t) is chosen to be sinu-
soidal with amplitude 5 [V ]. In the sequel the frequency of the voltage source will
be considered as a model parameter.

Fig. 2 validates the POD reduced and the POD-DEIM reduced model at the ref-
erence frequency of 5 ·109 [Hz] w.r.t. the lack of information Δ . It shows that both
reduction techniques perform equally well. The number of POD and DEIM–POD
basis functions s(·) for each variable is chosen such that the indicated approximation
quality is reached, i.e. Δ := Δψ � Δn � Δp � Δgψ � ΔJn � ΔJp .

In Fig. 3 the simulation times are plotted versus the lack of information Δ . The
POD reduced order model does not reduce the simulation times significantly for the
chosen parameters. The reason for this is the dependency on the number of variables
of the unreduced system. Here, the unreduced system contains 1000 finite elements
which yields 12012 unknowns. The POD-DEIM reduced order model behaves very
well and leads to a reduction in simulation time of about 90% without reducing the
accuracy of the reduced model. However, we have to report a minor drawback; not
all tested reduced models converge for large Δ(s) ≥ 3 · 10−5. This is indicated in
the figures by missing squares. This effect is even more pronounced for spatially
two–dimensional semiconductors.
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Fig. 4 The number of re-
quired POD basis function
and DEIM interpolation in-
dices grows only logarith-
mically with the requested
information content.
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Fig. 5 Computation times of
the unreduced and the reduced
order models plotted versus
the number of finite elements.
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In Fig. 4 we plot the corresponding total number of required POD basis functions.
It can be seen that with the number of POD basis functions increasing linearly, the
lack of information tends to zero exponentially. Furthermore, the number of DEIM
interpolation indices behaves in the same way.

In Fig. 5 we investigate the dependence of the reduced models on the number of
finite elements N. One sees that the simulation times of the unreduced model depends
linearly on N. The POD reduced order model still depends on N linearly with a smal-
ler constant. The dependence on N of our DEIM-POD implementation is negligible.

Finally, we in Fig. 6 analyze the behaviour of the models with respect to param-
eter changes. We consider the frequency of the sinusoidal input voltage as model
parameter. The reduced order models are created based on snapshots gathered in a
full simulation at a frequency of 5 · 109[Hz]. We see that the POD model and the
POD-DEIM model behave very similar. The adaptive enlargement of the POD basis
using the residual greedy approach of [10] is discussed in [7].

Summarizing all numerical results we conclude that the significantly faster POD-
DEIM reduction method yields a reduced order model with the same qualitative
behaviour as the reduced model obtained by classical POD-MOR.
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Fig. 6 The reduced models
are compared with the unre-
duced model at various input
frequencies.
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