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CHAPTER 1

Newton’s method for smooth systems

In many practical applications one has to find a zero of a system of
nonlinear equations:

(1) Given F : Rn → R
n, find x∗ ∈ R

n such that F (x∗) = 0.

Throughout this first section we assume that F is (at least) once continu-
ously differentiable. This is our requirement for calling F (x) = 0 a smooth
system. Our aim is to derive Newton’s method for solving (1), discuss its
requirements and local as well as some aspects of its global convergence
characteristics. Further, this section also serves the purpose of highlight-
ing characteristics of Newton’s method and of pointing to assumptions and
techniques which cannot be used in the case where F is not differentiable in
the classical sense. The latter situation, however, is the one we will be most
interested in later on.

The traditional approach for defining Newton’s method for solving (1)
is based on replacing the complicated nonlinear map F by its linearization
about a given estimate xk ∈ R

n of x∗:

(2) F (xk + d) ≈ F (xk) +∇F (xk)d =: mk(xk + d), d ∈ R
n,

where∇F : Rn → R
n×n denotes the Jacobi-matrix of F . Now we replace the

complicated problem (1) by solving a sequence of simpler problems. In fact,
with the aim of improving the current estimate xk one computes dk ∈ R

n

such that

(3) mk(xk + dk) = 0.

Obviously, this step is only well-defined if ∇F (xk) is non-singular. Our
improved estimate is set to be

(4) xk+1 := xk + dk.

This allows to define our basic Newton algorithm.

Algorithm 1 (Newton’s method for smooth systems.).
Given F : Rn → R

n continuously differentiable and x0 ∈ R
n, k := 0:

(1) Unless a stopping rule is satisfied, solve (for dk)

∇F (xk)dk = −F (xk).
(2) Set xk+1 := xk + dk, k := k + 1, and go to (1).
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4 1. NEWTON’S METHOD FOR SMOOTH SYSTEMS

For Algorithm 1 to be well-defined we have to guarantee that, for each k,
∇F (xk) is invertible. This is addressed in Lemma 1.1 below. Concerning an
appropriate stopping rule for numerical realizations we only mention that a
criterion like

‖F (xk)‖ ≤ ǫFrel‖F (x0)‖+ ǫFabs,

‖dk‖ ≤ ǫdrel‖x0‖+ ǫdabs,

with sufficiently small positive tolerances ǫzrel, ǫ
z
abs, z ∈ {d, F}, is suitable.

Already now we emphasize that it will turn out that, unless xk is already
sufficiently close to x∗, we might not be allowed to take the full step along dk.
Rather we have to reduce the step size for obtaining a convergent method.
In this case (4) is replaced by

(5) xk+1 = xk + αkdk,

where αk ∈ (0, 1] is a suitable chosen step size. We will specify appropriate
selection criteria later.

1. Local convergence of Newton’s method

In this section we are interested in studying local convergence properties
of Newton’s method (Algorithm 1). Here, the term local refers to the fact
that the results only hold true if x0 is chosen sufficiently close to x∗. The
results discussed here may be already well-known to the reader. Thus, let
us point out that we are merely interested in the technique of proof for later
reference.

Let B(x, r) = {y ∈ R
n : ‖y−x‖ < r} denote the open ball of radius r > 0

about x. We start by addressing the non-singularity issue in connection with
∇F . We write ∇F (x)−1 for (∇F (x))−1.

Lemma 1.1. Let F : Rn → R
n be continuously differentiable in the open

set D ⊂ R
n with ∇F Lipschitz continuous in D (with constant L > 0). Let

z ∈ D be fixed, and assume that ∇F (z)−1 exists. Further assume that there
exists β > 0 such that ‖∇F (z)−1‖ ≤ β. Then for all x ∈ B(z, η), with
0 < η < c

Lβ and 0 < c < 1 fixed, ∇F (x) is nonsingular and satisfies

‖∇F (x)−1‖ ≤ β

1− c
.

The proof makes use of (91) of Theorem A.1.

Remark 1.1. If we require ∇F to be only Hölder continuous with expo-
nent γ (instead of Lipschitz), with 0 < γ < 1 and L > 0 still denoting the
constant, then the assertion of Lemma 1.1 holds true for x ∈ B(z, η) with

0 < η < ( c
Lβ )

1/γ with 0 < c < 1 fixed.

Now we can prove the local convergence result for Algorithm 1.
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Theorem 1.1. Let F : Rn → R
n be continuously differentiable in an

open convex set D ⊂ R
n. Assume that there exist x∗ ∈ R

n and r, β > 0
such that B(x∗, r) ⊂ D, F (x∗) = 0, ∇F (x∗)−1 exists with ‖∇F (x∗)−1‖ ≤
β, and ∇F Lipschitz continuous with constant L on B(x∗, r). Then there
exists ǫ > 0 such that for all x0 ∈ B(x∗, ǫ) the sequence {xk} generated by
Algorithm 1 is well-defined, converges to x∗, and satisfies

(6) ‖xk+1 − x∗‖ ≤ Lβ

2(1− c)
‖xk − x∗‖2, k = 0, 1, 2, . . . ,

for some fixed 0 < c ≤ 2
3 .

Proof. The proof is by induction. For 0 < c ≤ 2
3 fixed, let

ǫ = min

{

r,
c

Lβ

}

.

Then Lemma 1.1 with z := x∗ and x := x0 yields that ∇F (x0) is nonsingular
and satisfies

‖∇F (x0)−1‖ ≤ β

1− c
.

Therefore, x1 is well-defined and satisfies

x1 − x∗ = x0 − x∗ −∇F (x0)−1F (x0)

= x0 − x∗ −∇F (x0)−1(F (x0)− F (x∗))

= ∇F (x0)−1 (F (x∗)− F (x0)−∇F (x0)(x∗ − x0)) .

Application of Theorem A.2 yields

‖x1 − x∗‖ ≤ ‖∇F (x0)−1‖ ‖F (x∗)− F (x0)−∇F (x0)(x∗ − x0)‖

≤ Lβ

2(1− c)
‖x0 − x∗‖2

which proves (6) for k = 0. Since ‖x0 − x∗‖ ≤ c
Lβ we have

‖x1 − x∗‖ ≤ c

2(1− c)
‖x0 − x∗‖ ≤ ‖x0 − x∗‖ ≤ ǫ.

The proof of the induction step proceeds identically. �

Again, we may reduce the Lipschitz continuity of ∇F to Hölder continuity.

Remark 1.2. If ∇F is assumed to be only Hölder continuous with ex-
ponent γ, with 0 < γ < 1 and L still denoting the constant, then we obtain
the estimate

(7) ‖xk+1 − x∗‖ ≤ Lβ

2(1− c)
‖xk − x∗‖1+γ , k = 0, 1, 2, . . . .

This essentially means that {xk} approaches x∗ at a slower rate as in the
case of ∇F being Lipschitz.
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2. Convergence rates

The remark concerning the convergence speed is made more precise in
this section.

Definition 1.1.

(a) Let {xk} ⊂ R
n denote a sequence with limit x∗ ∈ R

n, and let
p ∈ [1,+∞). Then

Qp{xk} :=







lim supk→∞
‖xk+1−x∗‖
‖xk−x∗‖p

, if xk 6= x∗ ∀k ≥ k0,

0, if xk = x∗ ∀k ≥ k0,
+∞, else,

for some k0 ∈ N, is called the quotient factor (Q-factor) of {xk}.
(b) The quantity

OQ{xk} := inf{p ∈ [1,+∞) : Qp{xk} = +∞}

is called the Q-order of {xk}.

We now collect several important properties.

Remark 1.3.

(1) The Q-factor depends on the used norms, the Q-order does not!
(2) There always exists a value p0 ∈ [1,+∞) such that

Qp{xk} =

{

0 for p ∈[1, p0),
+∞ for p ∈(p0,+∞).

(3) The Q-orders 1 and 2 are of special interest. We call

Q1{xk} = 0 Q-superlinear convergence
0 < Q1{xk} < 1 Q-linear convergence
Q2{xk} = 0 Q-superquadratic convergence

0 < Q2{xk} < +∞ Q-quadratic convergence

With this definition we see that Theorem 1.1 proves Newton’s method,
i.e. Algorithm 1, to converge locally at a Q-quadratic rate. In the case where
∇F is assumed to be only Hölder continuous with exponent γ, Newton’s
method converges locally at a superlinear rate. The Q-order is 1 + γ.

For checking the Q-convergence of a sequence, criteria like

(8) ‖xk − x∗‖ ≤ ǫ

are unrealistic since they require knowledge of the solution x∗. The following
result allows to replace (8) by the practicable criterion

(9) ‖xk+1 − xk‖ ≤ ǫ.
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Theorem 1.2. An arbitrary sequence {xk} ⊂ R
n with limk xk = x∗

satisfies
∣

∣

∣

∣

1− ‖xk+1 − xk‖
‖xk − x∗‖

∣

∣

∣

∣

≤ ‖xk+1 − x∗‖
‖xk − x∗‖

if xk 6= x∗.

If {xk} converges Q-superlinearly to x∗ and xk 6= x∗ for k ≥ k0, then

lim
k→∞

‖xk+1 − xk‖
‖xk − x∗‖

= 1.

Besides the Q-convergence, the R-convergence is of interest.

Definition 1.2.

(a) Let {xk} ⊂ R
n denote a sequence with limit x∗ ∈ R

n, and let
p ∈ [1,+∞). Then

Rp{xk} :=

{

lim supk→∞ ‖xk − x∗‖1/k, if p= 1,

lim supk→∞ ‖xk − x∗‖1/pk , if p> 1

is called root (convergence) factor (R-factor) of {xk}.
(b) The quantity

OR{xk} := inf{p ∈ [1,+∞) : Rp{xk} = 1}
is called the R-order of {xk}.

Remark 1.4.

(1) In contrast to the Q-factor, the R-factor is independent of the norm.
(2) There always exists a value p0 ∈ [1,+∞) such that

Rp{xk} =

{

0 for p ∈[1, p0),
1 for p ∈(p0,+∞).

(3) The Q and R quantities are related as follows:

OQ{xk} ≤ OR{xk} and R1{xk} ≤ Q1{xk}.
Very often it is convenient to use the Landau symbols O and O for de-

scribing the convergence behavior of a sequence.

Definition 1.3. Let f, g : Rn → R
m and x∗ ∈ R

n be given. We write

(a) f(x) = O(g(x)) for x → x∗ iff there exists a uniform constant
λ > 0 and a neighborhood U of x∗ such that for all x ∈ U \ {x∗} it
holds that

‖f(x)‖ ≤ λ‖g(x)‖.
(b) f(x) = O(g(x)) for x→ x∗ iff for all ǫ > 0 there exists a neighbor-

hood U of x∗ such that for all x ∈ U \ {x∗} it holds that

‖f(x)‖ ≤ ǫ‖g(x)‖.
Remark 1.5. For limk xk = x∗, the sequence {xk} converges to x∗ (at

least)

(1) Q-superlinearly if ‖xk+1 − x∗‖ = O(‖xk − x∗‖);
(2) Q-quadratically if ‖xk+1 − x∗‖ = O(‖xk − x∗‖2).
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The R-convergence plays a role in the important Newton-Kantorovich
result.

Theorem 1.3 (Kantorovich). Let r > 0, x0 ∈ R
n, F : R

n → R
n,

and assume that F is continuously differentiable in B(x0, r). Assume for a
vector norm and the induced operator (matrix) norm that ∇F is Lipschitz
continuous on B(x0, r) with constant L and with ∇F (x0) nonsingular, and
that there exist constants β, η such that

‖∇F (x0)−1‖ ≤ β, ‖∇F (x0)−1F (x0)‖ ≤ η.

Define γr = βL, α = γrη. If α ≤ 1
2 and r ≥ r0 = (1 −

√
1− 2α)/γr, then

the sequence {xk} produced by Algorithm 1 is well-defined and converges to
x∗, a unique zero of F in the closure of B(x0, r0). If α < 1

2 , then x∗ is the

unique zero of F in B(x0, r1), where r1 = min{r, (1 +
√
1− 2α)/γr} and

(10) ‖xk − x∗‖ ≤ (2α)2
k η

α
, k = 0, 1, . . .

Notice that from (10) we conclude that the sequence {xk} converges
R-quadratically to x∗.

3. Global convergence

As announced earlier, unless one is able to find a good initial guess x0,
one needs a suitable globalization strategy for Newton’s method to conver-
gence. Here global convergence means that we are free to choose x0. Since
our overall emphasis is on local convergence, we present this material only
for completeness. Many extensions are possible.

In order to obtain a convergent method, rather than accepting the full
Newton step, i.e., setting

xk+1 = xk + dk,

where dk solves
∇F (xk)dk = −F (xk),

one has to determine a step size (damping parameter) αk ∈ (0, 1] and set

xk+1 = xk + αkdk.

There are many different techniques for picking αk. We highlight one of
them: Given dk, let αk denote the first element of the sequence {ωl}∞l=0,
ω ∈ (0, 1) fixed, such that

(11) ‖F (xk + ωldk)‖ ≤ (1− νωl)‖F (xk)‖,
where ν ∈ (0, 1) denotes a fixed parameter. The condition (11) is called a
sufficient decrease condition. The particular realization considered here is
known as Armijo step size rule. A condition such as

‖F (xk + αkdk)‖ < ‖F (xk)‖
instead of (11) may cause {xk} to stagnate at a non-zero x̄, and it is, thus,
not suitable for proving convergence.
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4. Newton’s method and unconstrained minimization

In many applications the nonlinear mapping F is the gradient mapping
of a scalar-valued function f : Rn → R. Then, typically the aim is to find
x∗ such that f is (locally) minimized. Here x∗ is called a (strict) local
minimizer of f if there exists r > 0 such that f(x) ≥ f(x∗) (f(x) > f(x∗))
for all x ∈ B(x, r). We have

Theorem 1.4. Let f : Rn → R be continuously differentiable in an open
convex set D ⊂ R

n. Then x ∈ D can be a local minimizer of f only if
∇f(x) = 0.

Obviously, also local maximizers, which are defined analogously to local
minimizers by just reverting the inequality signs, satisfy ∇f(x) = 0. There-
fore we need an additional criterion to decide whether a point is a local
minimizer or not.

Theorem 1.5. Let f : Rn → R be twice continuously differentiable in
the open convex set D ⊂ R

n, and assume that there exists x ∈ D such that
∇f(x) = 0. If ∇2f(x) is positive definite1, then x is a local minimizer of f .
If ∇2f(x) is Lipschitz continuous at x, then x can be a local minimizer of f
only if ∇2f(x) is positive semidefinite.

To achieve the link to the task of finding the zero of a nonlinear system,
we set, for f twice continuously differentiable,

F (x) = ∇f(x) and ∇F (x) = ∇2f(x).

Now let us assume that x∗ is a local minimizer of f which satisfies the sec-
ond order sufficient condition, i.e., ∇2f(x∗) is positive definite. Then by
continuity we have that there exists r > 0 such that ∇2f(x) is positive def-
inite for x ∈ B(x∗, r) as well. For our local convergence regime of Newton’s
method we assume that x0 ∈ B(x∗, r). Then dk with ∇F (xk)dk = −F (xk)
satisfies

(12) d⊤k ∇f(xk) = d⊤k F (xk) = −d⊤k∇F (xk)dk = −d⊤k∇2f(xk)dk < 0,

if dk 6= 0. In general, a direction d satisfying

d⊤∇f(x) < 0

is called a descent direction of f at x. In our case, it guarantees that there
exists αk > 0 such that

(13) f(xk + αkdk) ≤ f(xk) + ναk∇f(xk)⊤dk,
with 0 < ν < 1 fixed. Now (13) can be used instead of (11) for determining
a suitable step size. Condition (13) is also called Armijo condition.

1A matrixM ∈ R
n×n is positive definite iff there exists ǫ > 0 such that d⊤Md ≥ ǫ‖d‖2

for all d ∈ R
n. For M positive semidefinite we have ǫ ≥ 0.
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Maintaining (13) when using Newton’s method for minimizing a function
f guarantees that

f(x∗) ≤ f(x0).

Observe that the descent property hinges on the positive-definiteness of∇2f .
For poor initial choices x0 this positive definiteness cannot be guaranteed in
general. Then, in order to achieve global convergence to a local minimizer,
one either has to combine (13) with a possible positive definite modification
of the Hessian of f (e.g., quasi-Newton techniques), or one employs a trust
region approach. For details see, e.g., [12].



CHAPTER 2

Generalized Newton methods. The finite

dimensional case

Very often the nonlinear mapping F : Rn → R
n is not necessarily dif-

ferentiable in the classical (Fréchet) sense. This is fact coins the name
”nonsmooth” in connection with analytical (nonsmooth analysis) as well as
numerical issues (nonsmooth or generalized Newton’s method). Of course,
one is still interested in computing x∗ such that F (x∗) = 0. Also, one
would like to use a Newton-type approach due to its favorable convergence
properties for smooth F . Hence, the following questions arise naturally:

• How does a generalization of the classical differential look like and
what are its properties?

• Is it possible to use this generalized derivative for defining a gener-
alized Newton procedure?

• What about the local convergence speed of this generalized Newton
method?

1. Generalized differentials and generalized Newton methods

The construction of a generalized differential of a (in the classical sense)
nondifferentiable function goes back to [11] and it is based on Rademacher’s
theorem.

Theorem 2.1 (Rademacher). Suppose F : Rn → R
m is locally Lipschitz

continuous. Then F is almost everywhere differentiable.

Now let DF ⊂ R
n denote the set of points at which F is differentiable.

Our aim is now to introduce several objects from nonsmooth analysis which
provide generalizations of the classical differentiability concept.

We start by defining the B-subdifferential, the generalized Jacobian, and
the C-subdifferential of F . Here ”B” stands for ”Bouligand”, who introduced
the concept.

Definition 2.1. Let F : U ⊆ R
n → R

m, with U open, be locally Lips-
chitz continuous at x ∈ U .

(a) The set

∂BF (x) := {G ∈ R
n×m : ∃{xk} ⊂ DF with xk → x,∇F (xk) → G}

is called B-subdifferential of F at x.

11
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(b) Clarke’s generalized Jacobian is defined as

∂F (x) = co(∂BF (x)),

where co denotes the convex hull.
(c) The set

∂CF (x) = ∂F1(x)× . . .× ∂Fm(x)

is called Qi’s C-subdifferential.

In the case m = 1, ∂F (x) is called the generalized gradient. Next we
study properties of the respective generalized derivative.

Theorem 2.2. Let U ⊂ R
n be open and F : U → R

m be locally Lipschitz
continuous. Then for x ∈ U there holds:

(a) ∂BF (x) is nonempty and compact.
(b) ∂F (x) and ∂CF (x) are nonempty, compact, and convex.
(c) The set-valued mappings ∂BF , ∂F , and ∂CF are locally bounded

and upper semicontinuous1.
(d) The following inclusions hold true:

∂BF (x) ⊂ ∂F (x) ⊂ ∂CF (x).

(e) If F is continuously differentiable in a neighborhood of x, then

∂CF (x) = ∂F (x) = ∂BF (x) = {∇F (x)}.
The upper semicontinuity has an important implication which will be

used later when generalizing Lemma 1.1.

Remark 2.1. The upper semicontinuity of ∂BF , ∂F , and ∂CF implies
that for xk → x, Gk ∈ ∂F (xk) and Gk → G, then G ∈ ∂F (x); analogously
for ∂BF and ∂CF . This fact is also referred to as closedness of ∂BF , ∂F ,
and ∂CF , respectively, at x.

The generalized Jacobian (gradient) satisfies a mean-value property.

Theorem 2.3. Let U ⊂ R
n be convex and open, and let F : U → R

m be
locally Lipschitz continuous. Then, for any x, y ∈ U ,

F (y)− F (x) ∈ co (∂F ([x, y])(y − x)) ,

where [x, y] represents the line segment joining x and y, and the right hand
side denotes the convex hull of all points of the form G(u)(y−x) with G(u) ∈
∂F (u) for some point u in [x, y].

In applications typically F is obtained as the composition of mappings.
Therefore, for computing the generalized derivative of F we have to study
the chain rule in the context of the generalized derivative.

1A set-valued mapping Θ is upper semicontinuous if for every ǫ > 0 there exists a
δ > 0 such that, for all y ∈ B(x, δ),

Θ(y) ⊆ Θ(x) +B(0, ǫ).
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Theorem 2.4. Let U ⊂ R
n and V ⊂ R

l be nonempty open sets, let
g : U → V be locally Lipschitz continuous at x ∈ U , and let h :W → R

m be
locally Lipschitz continuous at g(x). Then, F = h ◦ g is locally Lipschitz at
x and for all v ∈ R

n it holds that

∂F (x)v ⊂ co (∂h(g(x))∂g(x)v)

= co {GhGgv : Gh ∈ ∂h(g(x)), Gg ∈ ∂g(x)} .
If, in addition, h is continuously differentiable near g(x), then, for all v ∈
R
n,

∂F (x)v = ∇h(g(x))∂g(x)v.
If h is real-valued (i.e., if m = 1), then in both chain rules the vector v can
be omitted.

Sometimes, one has to deal with the special case where h(y) = e⊤i y = yi,
where ei denotes the ith unit vector, and g = F . Then we have

Corollary 2.1. Let U ⊂ R
n be open, and let F : U → R

m be locally
Lipschitz at x ∈ U . Then

∂Fi(x) = e⊤i ∂F (x) = {Gi,• : Gi,• is the ith row of some G ∈ ∂F (x)}.
In the case m = 1, Clarke’s generalized gradient can be characterized by

a generalized directional derivative.

Definition 2.2. Let F : U ⊂ R
n → R be locally Lipschitz on the open

set U . The generalized directional derivative of F at x ∈ U in direction
d ∈ R

n is given by

F ◦(x; d) := lim sup
y → x
t ↓ 0

F (y + td)− F (y)

t
.

Note that due to the lim sup in the above definition of the generalized
directional derivative is well-defined and finite (the latter due to the local
Lipschitz property of F ). It holds that

(14) ∂F (x) = {ξ ∈ R
n : ξ⊤d ≤ F ◦(x; d) ∀d ∈ R

n}.
We have the following properties of F ◦.

Proposition 2.1. Let F : U ⊂ R
n → R be locally Lipschitz on the open

set U . Then the following statements hold true.

(i) For every x ∈ U , F ◦(x; ·) is Lipschitz continuous, positively homo-
geneous, and sublinear.

(ii) For every (x, d) ∈ U × R
n we have

F ◦(x; d) = max{ξ⊤d : ξ ∈ ∂F (x)}.
(iii) F ◦ : U × R

n → R is upper semicontinuous.

Next we introduce the notion of a directional derivative of F .
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Definition 2.3. Let F : U ⊂ R
n → R

m be locally Lipschitz on the open
set U . We call F ′(x, d) defined by

F ′(x, d) = lim
t↓0

F (x+ td)− F (x)

t

the directional derivative of F at x in direction d.

For m = 1, we have for (x, d) ∈ U × R
n

F ′(x; d) ≤ F ◦(x; d)

provided the object on the left hand side exists.

Definition 2.4. Let F : U ⊂ R
n → R be locally Lipschitz on the open

set U . F is said to be C(larke)-regular at x ∈ U iff

(i) f is directionally differentiable at x, and
(ii) g◦(x; d) = g′(x; d) for all d ∈ R

n.

We summarize a few calculus rules in the following theorem. Further
calculus rules can be found in [11].

Theorem 2.5. Let Fi : R
n → R, i = 1, . . . ,m, be a family of Lipschitz

functions at x.

(i) For any coefficients ai we have

∂

(

m
∑

i=1

aiFi

)

⊆
m
∑

i=1

ai∂Fi(x)

with equality holding if all functions are C-regular at x and the a′is
are non-negative.

(ii) ∂(F1F2)(x) ⊆ F2(x)∂F1(x) + F1(x)∂F2(x) with equality holding if
F1 and F2 are C-regular at x and min(F1(x), F2(x)) ≥ 0.

(iii) If g2(x) 6= 0, then

∂

(

F1

F2

)

(x) ⊆ F2(x)∂F1(x)− F1(x)∂F2(x)

F 2
2 (x)

with equality holding if F1 and −F2 are C-regular at x, F1(x) ≥ 0,
and F2(x) > 0.

(iv) For F (x) = max{Fi(x) : i = 1, . . . ,m} it holds that

∂F (x) ⊆ co{∂Fi(x) : i ∈ A(x)},
where A(x) := {i : Fi(x) = F (x)}. Equality holds if all Fi are
C-regular at x.

Before we start our discussion of semismoothness of a mapping F , we
state two more results from nonsmooth analysis. The first result, Theo-
rem 2.6, represents an implicit function theorem for locally Lipschitz con-
tinuous functions. The second result, Theorem 2.7, is a generalization of the
inverse function theorem. For the implicit function theorem we introduce
the following projection: For a function F : Rn × R

p → R
n of two variables
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x ∈ R
n and y ∈ R

p, we denote by Πx∂F (x, y) the set of n × n matrices G
for which there exists a n×p matrix H such that [GH] belongs to ∂F (x, y).

Theorem 2.6. Let F : Rn×R
p → R

n be Lipschitz continuous in a neigh-
borhood of a point (x̄, ȳ) ∈ R

n × R
p for which F (x̄, ȳ) = 0. Assume that all

matrices in Πx∂F (x̄, ȳ) are nonsingular. Then there exist open neighbor-
hoods Vx̄ and Vȳ of x̄ and ȳ, respectively, such that, for every y ∈ Vȳ, the
equation F (x, y) = 0 has a unique solution x ≡ f(y) ∈ Vx̄, f(ȳ) = x̄, and
the map f : Vx̄ → Vȳ is Lipschitz continuous.

The generalized inverse function theorem is stated next.

Theorem 2.7. Let F : U ⊆ R
n → R

n be locally Lipschitz at x ∈ Ω. If
the generalized Jacobian ∂F (x) is nonsingular, then F is a locally Lipschitz
homeomorphism at x.

Let us point out that while the nonsingularity of the Jacobian is nec-
essary and sufficient for continuously differentiable mappings, Theorem 2.7
only gives a sufficient condition for F to be a locally Lipschitz homeomor-
phism.

Since we introduced ∂F as a generalization of ∇F in the case where F
is not (continuously) differentiable, we may attempt to define a generalized
version of our local Newton method, Algorithm 1.

Algorithm 2 (Newton’s method for nonsmooth systems.).
Given F : Rn → R

n locally Lipschitz continuous and x0 ∈ R
n, k := 0:

(1) Unless a stopping rule is satisfied, solve

G(xk)dk = −F (xk)
for dk, where G(xk) is an arbitrary element of ∂F (xk).

(2) Set xk+1 := xk + dk, k = k + 1, and go to (1).

As in the case of Algorithm 1, one has to guarantee the nonsingularity
of G(xk). Note that now this is a more involved task: (i) The generalized
Jacobian ∂F can be set-valued; (ii) we cannot argue that ‖G(y) − G(x)‖
becomes small as y approaches x.

Note further that we more or less only copied Algorithm 1 without recall-
ing its motivation. Remember, our key motivation for defining Algorithm 1
was (3), where we argued that locally the linearization m(xk+d) of F about
xk gives a reasonably good approximation of F . This need not be the case
for F being only locally Lipschitz. Consequently the question arises: ”What
type of convergence do we expect”? Without requiring further properties of
F , at best one can only expect Q-linear convergence of Algorithm 2 (pre-
sumed that the iteration is well-defined) if convergence at all.

We finish this section by proving that nonsingularity of the generalized
Jacobian at x allows to argue nonsingularity of the generalized Jacobians in
a sufficiently small neighborhood of x.
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Theorem 2.8. If ∂F (x) is nonsingular, i.e., all G ∈ ∂F (x) are non-
singular, then there exists β, r > 0 such that, for any y ∈ B(x, r) and any
G(y) ∈ ∂F (y), G(y) is nonsingular and satisfies

‖G(y)−1‖ ≤ β.

Proof. Assume that the conclusion is not true. Then there exists a
sequence xk → x, Gk ∈ ∂F (xk) such that either all Gk are singular or
‖G−1

k ‖ → +∞. By Theorem 2.2 (c) there exists a subsequence {xk(l)} such
that Gk(l) → G. Then G must be singular. From the upper semicontinuity
of ∂F we obtain G ∈ ∂F (x) which is a contradiction to the nonsingularity
of ∂F (x). �

In general, this result is not enough for proving well-definedness of the
generalized Newton iteration, Algorithm 2. In fact, without further assump-
tions on F it cannot be guaranteed that xk+1 ∈ B(x∗, ǫ) when xk ∈ B(x∗, ǫ),
where x∗ satisfies F (x∗) = 0 and ǫ > 0 is sufficiently small (compare our
local convergence result, Theorem 1.1, in the smooth case).

2. Semismoothness and semismooth Newton methods

In this section we narrow the class of generalized differentiable functions
such that we finally obtain well-definedness and local superlinear conver-
gence of the generalized version of Newtons’ method, i.e., Algorithm 2.

Definition 2.5. Let U ⊂ R
n be nonempty and open. The function

F : U → R
m is semismooth at x ∈ U , if it is locally Lipschitz at x and if

(15) lim
G ∈ ∂F (x+ td̃)

d̃→ d, t ↓ 0

Gd̃

exists for all d ∈ R
n. If F is semismooth at all x ∈ U , we call F semismooth

(on U).

The concept of semismoothness of a function was introduced in [26] and
extended in [29]. The characterization of semismoothness in Definition 2.5 is
cumbersome to handle; especially in connection with the generalized Newton
method. The following theorem provides equivalent characterizations which
are more convenient.

Theorem 2.9. Let F : U → R
m be defined on the open set U ⊂ R

n.
Then, for x ∈ U , the following statements are equivalent:

(a) F is semismooth at x.
(b) F is locally Lipschitz continuous at x, F ′(x; ·) exists, and, for any

G ∈ ∂F (x+ d),

‖Gd− F ′(x, d)‖ = O(‖d‖) as d→ 0.
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(c) F is locally Lipschitz continuous at x, F ′(x; ·) exists, and, for any
G ∈ ∂F (x+ d),

‖F (x+ d)− F (x)−Gd‖ = O(‖d‖) as d→ 0.

Assertion (c) of Theorem 2.9 is particularly useful when proving local
superlinear convergence of Newton’s method. We also mention that semis-
moothness is closed under scalar multiplication, summation, and composi-
tion. Further a vector-valued function F is semismooth iff its component
functions are semismooth.

Theorem 2.10. Let U ⊂ R
n be open. If F : U → R

m is continuously
differentiable in a neighborhood of x ∈ U , then F is semismooth at x.

Examples for semismooth functions are:

• F : Rn → R, x 7→ ‖x‖2ℓ2 .
• φFB : R2 → R, x 7→ x1+x2−‖x‖ℓ2 . This function is called Fischer-
Burmeister function. It has the following nice property:

(16) a ≥ 0, b ≥ 0, ab = 0 ⇔ φFB(a, b) = 0.

• Another semismooth function satisfying a relation like (16) is φmax :
R
2 → R, x 7→ x1 −max{x1 − cx2, 0} with c > 0 arbitrarily fixed.

For semismooth functions F we can prove the following local convergence
result for the generalized Newton method, Algorithm 2. Whenever F is
semismooth we call Algorithm 2 the semismooth Newton method.

Theorem 2.11 (local convergence). Suppose that x∗ ∈ R
n satisfies

F (x∗) = 0, F is locally Lipschitz continuous and semismooth at x∗, and
∂F (x∗) is nonsingular. Then there exists ǫ > 0 such that for x0 ∈ B(x∗, ǫ)
the sequence {xk} generated by the semismooth Newton method (Algorithm 2)
is well-defined, converges to x∗, and satisfies

‖xk+1 − x∗‖ = O(‖xk − x∗‖), as k → +∞.

Proof. First observe that there exists r > 0 such that ∂F (x) is nonsin-
gular for any x ∈ B(x∗, r) by Theorem 2.8. Let β > 0 denote the bound on
‖G(x)−1‖ for all x ∈ B(x∗, r), and choose ǫ ≤ r. The rest of the proof is by
induction. We have, for some G(x0) ∈ ∂F (x0),

x1 − x∗ = x0 − x∗ −G(x0)
−1F (x0)

= G(x0)
−1 (F (x∗)− F (x0)−G(x0)(x∗ − x0))

Due to the semismoothness of F at x∗, for arbitrary 0 < η ≤ c
β , with

0 < c < 1 fixed, there exists r̃ > 0 such that

‖F (x∗)− F (x0)−G(x0)(x∗ − x0)‖ ≤ η‖x0 − x∗‖
for x0 ∈ B(x∗, r̃). By possibly reducing ǫ such that ǫ ≤ min{r, r̃} we obtain

‖x1 − x∗‖ ≤ βη‖x0 − x∗‖ ≤ c‖x0 − x∗‖ < ‖x0 − x∗‖.
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Thus, if x0 ∈ B(x∗, ǫ) then x1 ∈ B(x∗, ǫ) as well. The induction step is
similar. From this we also obtain xk → x∗ since 0 < c < 1. But then, due
to the semismoothness of F at x∗, we find

‖xk+1 − x∗‖ ≤ β‖F (x∗)− F (xk)−G(xk)(x∗ − xk)‖ = O(‖xk − x∗‖)
as k → ∞. �

In other words, the semismooth Newton method converges locally at a Q-
superlinear rate. We can sharpen this result by requiring F to be semis-
mooth of order γ.

Definition 2.6. Let F : U → R
n be defined on the open set U ⊂ R

n.
Then, for 0 < γ ≤ 1, F is called γ-order semismooth at x ∈ U if F is locally
Lipschitz at x, F ′(x, ·) exists, and, for any G ∈ ∂F (x+ d),

‖Gd − F ′(x, d)‖ = O(‖d‖1+γ) as d→ 0.

If F is γ-order semismooth at all x ∈ U , then we call F γ-order semismooth
(on U).

We have a similar characterization to Theorem 2.9 (c).

Theorem 2.12. Let F : U → R
m be defined on the open set U ⊂ R

n.
Then, for x ∈ U and 0 < γ ≤ 1, the following statements are equivalent:

(a) F is γ-order semismooth at x.
(b) F is locally Lipschitz continuous at x, F ′(x, ·) exists, and, for any

G ∈ ∂F (x+ d) there holds

‖F (x+ d)− F (x)−Gd‖ = O(‖d‖1+γ) as d→ 0.

Similar to before, we can connect γ-order semismoothness to continuity
of the derivative of F .

Theorem 2.13. Let U ⊂ R
n be open. If F : U → R

m is continuously dif-
ferentiable in a neighborhood of x ∈ U with γ-Hölder continuous derivative,
0 < γ ≤ 1, then F is γ-order semismooth at x.

Our examples of semismooth functions in fact turn out to be 1-order
semismooth.

The local convergence result for the semismooth Newton algorithm now
reads as follows.

Theorem 2.14 (local convergence, γ-order semismoothness). Suppose
that x∗ ∈ R

n satisfies F (x∗) = 0, F is locally Lipschitz continuous and γ-
order semismooth at x∗, with 0 < γ ≤ 1, and ∂F (x∗) is nonsingular. Then
there exists ǫ > 0 such that for x0 ∈ B(x∗, ǫ) the sequence {xk} generated
by the semismooth Newton method (Algorithm 2) is well-defined, converges
to x∗, and satisfies

‖xk+1 − x∗‖ = O(‖xk − x∗‖1+γ), as k → ∞.
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Note that for γ ∈ (0, 1) we obtain locally Q-superlinear convergence with
Q-order 1 + γ. If γ = 1, then we obtain a locally Q-quadratic convergence
rate.

Finally, we point out that a result inspired by the Kantorovich theorem,
Theorem 1.3, is available.

Theorem 2.15 (global convergence). Suppose that F is locally Lipschitz
continuous and semismooth on U0, the closure of B(x0, r). Also suppose
that for any G(x) ∈ ∂F (x), x ∈ U0, G(x) is nonsingular, and, with y ∈ U0,

‖G(x)−1‖ ≤ β, ‖G(x)(y − x)− F ′(x; y − x)‖ ≤ L‖y − x‖,
‖F (y)− F (x)− F ′(x; y − x)‖ ≤ η‖y − x‖,

where α = β(L+η) < 1 and β‖F (x0)‖ ≤ r(1−α). Then the iterates {xk} of
the semismooth Newton algorithm, Algorithm 2, remain in U0 and converge
to the unique solution x∗ of F (x) = 0 in U0. Moreover, there holds

‖xk − x∗‖ ≤ α

1− α
‖xk − xk−1‖, k = 1, 2, . . .

Notice the difference to the Kantorovich theorem. Now, the requirement
α < 1, which induces the smallness of L and η, cannot be achieved by locality
arguments. Rather it represents a limitation on F . For instance, small L is
obtained if the diameter of ∂F (x) is small for all x ∈ U0.

3. Inexact semismooth Newton methods

In practice, the exact solution of the Newton system G(xk)dk = −F (xk)
is often expensive (e.g. when the system F (x) = 0 results from discretizing
a (system of) partial differential equation(s)). In this case one seeks to solve
the system only approximately. The following algorithm realizes inexact
step computations.

Algorithm 3 (Inexact Newton’s method for nonsmooth systems.).
Given F : Rn → R

n locally Lipschitz continuous, a sequence {ηk} of non-
negative scalars, x0 ∈ R

n, k := 0:

(1) Unless a stopping rule is satisfied, compute dk such that

G(xk)dk = −F (xk) + rk,

where G(xk) is an arbitrary element of ∂F (xk) and rk satisfies

‖rk‖ ≤ ηk‖G(xk)‖.
(2) Set xk+1 := xk + dk, k = k + 1, and go to (1).

One can prove the following convergence result.

Theorem 2.16. Suppose that x∗ ∈ R
n satisfies F (x∗) = 0, F is lo-

cally Lipschitz continuous and semismooth at x∗, and ∂F (x∗) is nonsingu-
lar. Then there exists a positive number η̄ > 0 such that, if ηk ≤ η̄ for all
k ∈ N, then there exists ǫ > 0 such that for x0 ∈ B(x∗, ǫ) the sequence {xk}
generated by the semismooth Newton method (Algorithm 2) is well-defined
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and converges q-linearly to x∗. If furthermore ηk ↓ 0, then the convergence
rate is q-superlinear.



CHAPTER 3

Generalized differentiability and semismoothness

in infinite dimensions

The notion of generalize derivatives, which we introduced for functions
on R

n, may be readily extended to mappings F : U ⊂ X → R, where X
denotes a Banach space and U a subset of X. Assuming that F is locally
Lipschitz at x, the definition of the generalized directional derivative of F
at x in Definition 2.2 immediately extends to the Banach space case. Also,
the properties stated in Proposition 2.1 remain valid for F defined over
a Banach space X. Note, however, that Proposition 2.1(ii) requires some
modification as the generalized derivatives need to be defined differently. For
this purpose observe first that Rademacher’s Theorem cannot be extended
readily to infinite dimensional Banach spaces. Hence, the definition of the
generalized derivative needs to be re-visited. When X is a (finite or infinite
dimensional) Banach space one may rely on the following construction:

• First of all we write 〈ξ, d〉Rn := ξ⊤d, where 〈·, ·〉Rn denotes the
duality pairing in R

n, i.e., upon identifying ξ with its dual we have
〈ξ, ·〉Rn = ξ⊤·. In this sense, we generalize and use the duality
pairing 〈·, ·〉X∗ ,X whenever F : U ⊂ X → R. Here X∗ denotes the
dual space of X.

• Based on (14) and the Hahn-Banach Theorem, which states that
any positively homogeneous and subadditive functional on X (such
as F ◦) majorizes some linear functional on X (with the latter being
an element of X∗). Thus, when F is locally Lipschitz at x and due
to the generalization of Proposition 2.1, there exists at least one
element ξ ∈ X∗ such that

F ◦(x; d) ≥ 〈ξ, d〉X∗,X ∀d ∈ X.

• Based on this, (14) can be extended to F defined on a general
Banach space X, i.e.,

∂F (x) := {ξ ∈ X∗ : 〈ξ, d〉X∗ ,X ≤ F ◦(x; d) ∀d ∈ X} .
In the extension of Proposition 2.2(b) the compactness property has to be
replaced by weak∗-compactness of ∂F (x) as a subset of X∗ and ‖ξ‖X∗ ≤ L
for all ξ ∈ ∂F (x), where L > 0 denotes the local Lipschitz constant of F
at x. Note that the weak∗-compactness is a direct consequence of Alaoglu’s
Theorem, which states that the closed unit ball of the dual space of a normed
vector space is compact in the weak∗ topology. The upper semicontinuity of

21
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∂F usually requires that X is finite dimensional. The notion of C-regularity
of F and the calculus rules readily carry over to F defined on a Banach
space X.

In optimization, convex functions play a special role since local minimiz-
ers of convex functions are also global minimizers and first order optimality
conditions are both, necessary and sufficient. Now, let U be an open convex
subset of X and F : U → R̄ := R ∪ {+∞} be convex, i.e., for all u, v ∈ U
and µ ∈ [0, 1] we have

F (µu+ (1− µ)v) ≤ µF (u) + (1− µ)F (v).

Proposition 3.1. Let F be bounded from above on some neighborhood
of a point in U . Then F is locally Lipschitz at x for any x ∈ U .

The fact that tangent (hyper)planes support the graph of a convex func-
tion from below immediately yields the following definition.

Definition 3.1. Let F : U ⊂ X → R̄ be a convex function. Then the
subdifferential of F at x ∈ U is given by

∂F (x) = {ξ ∈ X∗ : F (x) + 〈ξ, y − x〉X∗,X ≤ F (y) ∀y ∈ U}.
The next result guarantees that there is no ambiguity between the subd-

ifferential as defined above and the earlier notion of a generalized derivative
of a locally Lipschitz mapping.

Proposition 3.2. Let F be convex on U and locally Lipschitz at x,
then F ◦(x; d) = F ′(x; d) for all d and the generalized derivative of F at x
coincides with the subdifferential of F at x.

A convex function is called proper if it is not identically +∞. The
domain of the convex function F : U → R̄ is given by dom(F ) := {x ∈
U : F (x) < +∞}. We end this section by stating a chain rule for convex
functions. Below L(X,Y ) denotes the space of continuous linear operators
between the Banach spaces X and Y . For Λ ∈ L(X,Y ), Λ∗ ∈ L(Y ∗,X∗)
denotes the dual operator of Λ.

Theorem 3.1. Let X and Y denote Banach spaces, let F1 : X → R̄

and F2 : Y → R̄ be proper, lower semicontinuous, convex functions, and let
Λ ∈ L(X,Y ). Suppose that 0 ∈ int(Λdom(F1) − dom(F2)). Then we have
that

∂ (F1 + F2 ◦ Λ) (x) = ∂F1(x) + Λ∗∂F2(Λx).

1. Semismooth Newton methods in function space

Our aim is now to generalize the semismoothness concept to operator
equations in function space. First note that the notion of semismoothness in
R
n (see Definition 2.5) is based on Clarke’s generalized Jacobian. The latter

object, in turn, is based on Rademacher’s theorem, Theorem 2.1. Unfortu-
nately, Rademacher’s theorem has no analogue in the infinite dimensional
function space setting. Thus, the whole construction for proving locally
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superlinear convergence of our generalized Newton method fails. At this
point, the reader may question the importance of studying Newton methods
in infinite dimensional spaces, since every numerical realization only makes
sense if we are able to discretize the problem. Then, after discretization, the

problem is finite dimensional, and finding xh∗ ∈ R
nh

such that F h(xh) = 0

with F h : Rn
h → R

nh
can serve as a prototype. Here we use superscript h to

indicate that the nonlinear system arises as a discretization (with parameter
h) of a general operator equation. For instance, in the case where F involves
(nonlinear partial) differential equations, one may interpret h as the mesh
size of the finite element or finite difference discretization. Now, once the

problem can be written as an equation between R
nh

the methods and tech-
niques of the previous chapter apply. However, by this approach the infinite
dimensional properties of the problem are covered up and further numerical
analysis is hardly possible. On the other hand, if we know that there exists
a well-defined semismooth Newton method in function space, then this can
be the basis for further investigations such as the proof of mesh indepen-
dence of Newton’s method. By the latter notion we refer to the fact that,
for sufficiently small mesh sizes h, either the number of iterations of the
discretized method is essentially constant w.r.t. h, or that the discretized
method achieves essentially the same convergence rate independently of h.
In general this need not be the case. A detailed discussion along these lines
would go far beyond the scope of this presentation. We refer the interested
reader to [18].

Studying the proof of Theorem 2.11 we can see that the characterization
in Theorem 2.9 (c) is crucial. The idea is now to use this notion as the
defining property for generalized derivatives of mappings between Banach
spaces (finite as well as infinite dimensional ones). Consequently, we would
automatically obtain semismoothness and locally superlinear convergence of
the corresponding semismooth Newton method. For the following discussion
let X,Z denote Banach spaces.

Definition 3.2. The mapping F : D ⊂ X → Z is generalized (or
Newton) differentiable on the open set U ⊂ D if there exists a family of
mappings G : U → L(X,Z) such that

(17) lim
d→0

1

‖d‖‖F (x+ d)− F (x)−G(x+ d)d‖ = 0.

for every x ∈ U .

Here L(X,Z) denotes the set of continuous linear operators from X to
Z. We refer to such an operator G as a generalized (or Newton) derivative
of F . Note that G need not be unique. However it is unique if F is Fréchet
differentiable. Equation (17) resembles Theorem 2.9 (c).

Next we consider the problem

(18) Find x∗ ∈ X : F (x∗) = 0.
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Based on Definition 3.2 we define the following semismooth Newton algo-
rithm.

Algorithm 4 (Newton’s method for semismooth operator equations.).
Given F : D → Y generalized differentiable in U ⊂ D, and x0 ∈ U , k := 0:

(1) Unless a stopping rule is satisfied, solve

G(xk)dk = −F (xk)
for dk, where G(xk) is an arbitrary generalized derivative of F at
xk.

(2) Set xk+1 = xk + dk, k = k + 1, and go to (1).

We immediately obtain the following local convergence result.

Theorem 3.2. Suppose that x∗ is a solution to F (x) = 0, and that F
is Newton differentiable in an open neighborhood U containing x∗, G(x) is
nonsingular for all x ∈ U and {‖G(x)−1‖ : x ∈ U} is bounded. Then the
Newton iteration

xk+1 = xk −G(xk)
−1F (xk),

i.e., Algorithm 4, is well-defined and converges superlinearly to x∗ provided
that ‖x0 − x∗‖ is sufficiently small.

The proof technique of Theorem 3.2 is identical to the one of Theo-
rem 2.11. Details can be found in [13]. Related concepts were introduced
and analysed in [10, 36].



CHAPTER 4

Applications

1. A class of finite dimensional complementarity problems

We start by considering complementarity problems of the form

(19)

{

Ay + λ = f,
y ≤ ψ, λ ≥ 0, (λ, y − ψ) = 0 ,

where (·, ·) denotes the inner product in R
n, A is an n× n-valued P-matrix

and f , ψ ∈ R
n.

Definition 4.1. A n× n-matrix is called a P-matrix if all its principal
minors are positive.

It is well-known [5] that A is a P-matrix if and only if all real eigenvalues
of A and of its principal submatrices are positive. Here B is called a principal
submatrix of A if it arises from A by deletion of rows and columns from the
same index set J ⊂ {1, . . . , n}.

The assumption that A is a P-matrix guarantees the existence of a unique
solution (y∗, λ∗) ∈ R

n × R
n of (19) [5]. In case A is symmetric positive

definite (19) is the optimality system for

(P)







min J(y) =
1

2
(y,Ay)− (f, y)

subject to y ≤ ψ.

Note that the complementarity system given by the second line in (19) can
equivalently be expressed as

(20) C(y, λ) = 0, where C(y, λ) = λ−max(0, λ + c(y − ψ)),

for each c > 0. Here the max–operation is understood component-wise.
Consequently (19) is equivalent to

(21)

{

Ay + λ = f
C(y, λ) = 0.

Applying a semismooth Newton step to (21) gives the following algorithm,
which we shall frequently call the primal-dual active set stratey. From now
on the iteration counter k is denoted as a superscript since we frequently
will use subscripts for components of vectors.

Algorithm 5.

(i) Initialize y0, λ0. Set k = 0.

25
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(ii) Set Ik = {i : λki + c(yk − ψ)i ≤ 0}, Ak = {i : λki + c(yk − ψ)i > 0}.
(iii) Solve

Ayk+1 + λk+1 = f

yk+1 = ψ on Ak, λ
k+1 = 0 on Ik.

(iv) Stop, or set k = k + 1 and return to (ii).

Above we utilize yk+1 = ψ on Ak to stand for yk+1
i = ψi for i ∈ Ak. We

call Ak the estimate of the active set A∗ = {i : y∗i = ψi} and Ik the estimate
of the inactive set I∗ = {i : y∗i < ψi}. Hence the name of the algorithm.

Let us now argue that the above algorithm can be interpreted as a semi-
smooth Newton method. For this purpose it will be convenient to arrange
the coordinates in such a way that the active and inactive ones occur in
consecutive order. This leads to the block matrix representation of A as

A =

(

AIk AIkAk

AAkIk AAk

)

,

where AIk = AIkIk and analogously for AAk
. Analogously the vector y

is partitioned according to y = (yIk , yAk
) and similarly for f and ψ. In

Section 2 we shall argue that v → max(0, v) from R
n → R

n is generalized
differentiable in the sense of Definition 3.2 with a particular generalized
derivative given by the diagonal matrix Gm(v) with diagonal elements

Gm(v)ii =

{

1 if vi > 0,
0 if vi ≤ 0.

Here we use the subscriptm to indicate particular choices for the generalized
derivative of the max-function. Note that Gm is also an element of the
generalized Jacobian of the max-function. Semismooth Newton methods for
generalized Jacobians in Clarke’s sense were considered e.g. in [29].

The choice Gm suggests a semi-smooth Newton step of the form

(22)









AIk AIkAk
IIk 0

AAkIk AAk
0 IAk

0 0 IIk 0
0 −cIAk

0 0

















δyIk
δyAk

δλIk
δλAk









=−









(Ayk + λk − f)Ik
(Ayk + λk − f)Ak

λkIk
−c(yk − ψ)Ak









where IIk and IAk
are identity matrices of dimensions card(Ik) and card(Ak).

The third equation in (22) implies that

(23) λk+1
Ik

= λkIk + δλIk = 0

and the last one yields

(24) yk+1
Ak

= ψAk
.

Equations (23) and (24) coincide with the conditions in the second line of
step (iii) in the primal-dual active set algorithm. The first two equations in
(22) are equivalent to Ayk+1 + λk+1 = f , which is the first equation in step
(iii).
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Combining these observations we can conclude that the semi-smooth
Newton update based on (22) is equivalent to the primal-dual active set
strategy.

We also note that the system (22) is solvable since the first equation in
(22) together with (23) gives

(A δy)Ik + (A yk)Ik = fIk ,

and consequently by (24)

(25) AIk y
k+1
Ik

= fIk −AIkAk
ψAk

.

Since A is a P-matrix AIk is regular and (25) determines yk+1
Ik

. The second

equation in (22) is equivalent to

(26) λk+1
Ak

= fAk
− (Ayk+1)Ak

.

In Section 3 we shall consider (P) in the space L2(Ω). Again one can
show that the semi-smooth Newton update and the primal-dual active set
strategy coincide.

2. Convergence analysis: the finite dimensional case

This section is devoted to local as well as global convergence analysis of
the semismooth Newton algorithm to solve

(27)

{

Ay + λ = f
λ−max(0, λ+ c(y − ψ)) = 0,

where f ∈ R
n, ψ ∈ R

n, A ∈ R
n×n is a P-matrix and the max-operation is

understood component-wise. To discuss generalized differentiability of the
max-function we define for an arbitrarily fixed δ ∈ R

n the matrix-valued
function Gm : Rn → R

n×n by

(28) Gm(y) = diag (g1(y1), · · · , gn(yn)),
where gi : R → R is given by

gi(z) =







0 if z < 0 ,
1 if z > 0 ,
δi if z = 0 .

Lemma 4.1. The mapping y → max(0, y) from R
n to R

n is generalized
differentiable on R

n and Gm defined in (28) is a particular element of the
generalized derivative for every δ ∈ R

n.

Let us now turn to the convergence analysis of the semi-smooth Newton
method for (27). Note that the choice Gm for in Section 1 corresponds to
a generalized derivative with δ = 0. In view of (23)–(26), for k ≥ 1 the
Newton update (22) is equivalent to

(29)

(

AIk 0
AAkIk IAk

)(

δyIk
δλAk

)

= −
(

AIkAk
δyAk

+ δλIk
AAk

δyAk

)
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and

(30) δλi = −λki , i ∈ Ik, and δyi = ψi − yki , i ∈ Ak.

Let us introduce F : Rn × R
n → R

n × R
n by

F (y, λ) =

(

Ay + λ− f
λ−max(0, λ+ c(y − ψ))

)

,

and note that (27) is equivalent to F (y, λ) = 0. As a consequence of Lemma
4.1 the mapping F is generalized differentiable and the system matrix of (22)
is an element of the generalized derivative for F with the particular choice
Gm for the max-function. We henceforth denote the generalized derivative
of F by GF .

Let (y∗, λ∗) denote the unique solution to (27) and x0 = (y0, λ0) the
initial values of the iteration. From Theorem 3.2 we deduce the following
fact:

Theorem 4.1. Algorithm 5 converges superlinearly to x∗ = (y∗, λ∗),
provided that ‖x0 − x∗‖ is sufficiently small.

The boundedness requirement of (GF )
−1 according to Theorem 3.2 can

be derived analogously to the infinite dimensional case; see the proof of
Theorem 4.6.

We also observe that if the iterates xk = (yk, λk) converge to x∗ =
(y∗, λ∗) then they converge in finitely many steps. In fact, there are only
finitely many choices of active/inactive sets and if the algorithm would de-
termine the same sets twice then this contradicts convergence of xk to x∗.

Let us address global convergence next. In the following two results
sufficient conditions for convergence for arbitrary initial data x0 = (y0, λ0)
are given. We recall that A is referred to as M-matrix, if it is nonsingular,
(mij) ≤ 0, for i 6= j, and M−1 ≥ 0. Our notion of an M-matrix coincides
with that of nonsingular M-matrices as defined in [5].

Theorem 4.2. Assume that A is a M-matrix. Then xk → x∗ for arbi-
trary initial data. Moreover, y∗ ≤ yk+1 ≤ yk for all k ≥ 1 and yk ≤ ψ for
all k ≥ 2.

Proof. The assumption that A is a M-matrix implies that for every index
partition I and A we have A−1

I ≥ 0 and A−1
I AIA ≤ 0, see [5, p. 134]. Let

us first show the monotonicity property of the y-component. Observe that
for every k ≥ 1 the complementarity property

(31) λki = 0 or yki = ψi , for all i, and k ≥ 1 ,

holds. For i ∈ Ak we have λ
k
i+c(y

k
i −ψi) > 0 and hence by (31) either λki = 0,

which implies yki > ψi, or λ
k
i > 0, which implies yki = ψi. Consequently

yk ≥ ψ = yk+1 on Ak and δyAk
= ψAk

− ykAk
≤ 0. For i ∈ Ik we have

λki + c(yki − ψi) ≤ 0 which implies δλIk ≥ 0 by (22) and (31). Since δyIk =
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−A−1
Ik
AIkAk

δyAk
− A−1

Ik
δλIk by (29) it follows that δyIk ≤ 0. Therefore

yk+1 ≤ yk for every k ≥ 1.
Next we show that yk is feasible for all k ≥ 2. Due to the monotonicity

of yk it suffices to show that y2 ≤ ψ. Let V = {i : y1i > ψi}. For i ∈ V
we have λ1i = 0 by (31), and hence λ1i + c(y1i − ψi) > 0 and i ∈ A1. Since
y2 = ψ on A1 and y2 ≤ y1 it follows that y2 ≤ ψ.

To verify that y∗ ≤ yk for all k ≥ 1 note that

fIk−1
= λ∗Ik−1

+AIk−1
y∗Ik−1

+AIk−1Ak−1
y∗Ak−1

= AIk−1
ykIk−1

+AIk−1Ak−1
ψAk−1

.

It follows that

AIk−1

(

ykIk−1
− y∗Ik−1

)

= λ∗Ik−1
+AIk−1Ak−1

(

y∗Ak−1
− ψAk−1

)

.

Since λ∗Ik−1
≥ 0 and y∗Ak−1

≤ ψAk−1
the M-matrix properties of A imply

that ykIk−1
≥ y∗Ik−1

for all k ≥ 1.

Turning to the feasibility of λk assume that for a pair of indices (k̄, i),

k̄ ≥ 1, we have λk̄i < 0. Then necessarily i ∈ Ak̄−1, y
k̄
i = ψi, and λ

k̄
i + c(y

k̄
i −

ψi) < 0. It follows that i ∈ Ik̄, λk̄+1
i = 0, and λk̄+1

i + c(yk̄+1
i − ψi) ≤ 0,

since yk+1
i ≤ ψi, k ≥ 1. Consequently i ∈ Ik̄+1 and by induction i ∈ Ik

for all k ≥ k̄ + 1. Thus, whenever a coordinate of λk becomes negative at
iteration k̄, it is zero from iteration k̄ + 1 onwards, and the corresponding
primal coordinate is feasible. Due to finite-dimensionality of Rn it follows
that there exists ko such that λk ≥ 0 for all k ≥ ko.

Monotonicity of yk and y∗ ≤ yk ≤ ψ for k ≥ 2 imply the existence
of ȳ such that lim yk = ȳ ≤ ψ. Since λk = Ayk + f ≥ 0 for all k ≥ ko,
there exists λ̄ such that limλk = λ̄ ≥ 0. Together with (31) it follows that
(ȳ, λ̄) = (y∗, λ∗). �

Remark 4.1. Concerning the applicability of Theorem 4.2 we recall that
many discretizations of second order differential operators give rise to M-
matrices.

For a rectangular matrix B ∈ R
n×m we denote by ‖ · ‖1 the subordi-

nate matrix norm when both R
n and R

m are endowed with the 1-norms.
Moreover, B+ denotes the n × m-matrix containing the positive parts of
the elements of B. The following result can be applied to discretizations of
constrained optimal control problems. We refer to the end of Section 3 for
a discussion of the conditions of the following Theorem 4.3 in the case of
control constrained optimal control problems.

Theorem 4.3. If A is a P-matrix and for every partitioning of the
index set into disjoint subsets I and A we have ‖(A−1

I AIA)+‖1 < 1 and
∑

i∈I(A
−1
I yI)i ≥ 0 for yI ≥ 0, then limk→∞ xk = x∗.
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Proof. From (29) we have

(yk+1 − ψ)Ik = (yk − ψ)Ik +A−1
Ik
AIkAk

(yk − ψ)Ak
+A−1

Ik
λkIk

and upon summation over the inactive indices
∑

Ik

(yk+1
i − ψi) =

∑

Ik

(yki − ψi) +
∑

Ik

(

A−1
Ik
AIkAk

(yk − ψ)Ak

)

i

+
∑

Ik

(A−1
Ik
λkIk)i

(32)

Adding the obvious equality
∑

Ak

(yk+1
i − ψi)−

∑

Ak

(yki − ψi) = −
∑

Ak

(yki − ψi)

to (32) implies

(33)

n
∑

i=1

(yk+1
i − yki ) ≤ −

∑

Ak

(yki − ψi) +
∑

Ik

(A−1
Ik
AIkAk

(yk − ψ)Ak
)i .

Here we used the fact λkIk = −δλIk ≤ 0, established in the proof of Theo-

rem 4.2. There it was also argued that ykAk
≥ ψAk

. Hence it follows that

(34)

n
∑

i=1

(yk+1
i − yki ) ≤ −‖yk−ψ‖1,Ak

+‖(A−1
Ik
AIkAk

)+‖1 ‖yk−ψ‖1,Ak
< 0 ,

unless yk+1 = yk. Consequently

yk → M(yk) =
n
∑

i=1

yki

acts as a merit function for the algorithm. Since there are only finitely
many possible choices for active/inactive sets there exists an iteration in-

dex k̄ such that Ik̄ = Ik̄+1. Moreover, (yk̄+1, λk̄+1) is solution to (27).

In fact, in view of (iii) of the algorithm it suffices to show that yk̄+1 and

λk̄+1 are feasible. This follows from the fact that due to Ik̄ = Ik̄+1 we have

c(yk̄+1
i −ψi) = λk̄+1

i +c(yk̄+1
i −ψi) ≤ 0 for i ∈ Ik̄ and λk̄+1

i +c(yk̄+1
i −ψi) > 0

for i ∈ Ak̄. Thus the algorithm converges in finitely many steps. �

Remark 4.2. Let us note as a corollary to the proof of Theorem 4.3 that
in case A is a M-matrix then M(yk) =

∑n
i=1 y

k
i is always a merit function.

In fact, in this case the conditions of Theorem 4.3 are obviously satisfied.

A perturbation result: We now discuss the primal-dual active set
strategy for the case where the matrix A can be expressed as an additive
perturbation of an M-matrix.
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Theorem 4.4. Assume that A =M +K with M an M-matrix and with
K an n×n-matrix. Then, if ‖K‖1 is sufficiently small, (27) admits a unique
solution x∗ = (y∗, λ∗), the primal-dual active set algorithm is well-defined
and limk→∞ xk = x∗.

Proof. Recall that as a consequence of the assumption that M is a M-
matrix all principal submatrices of M are nonsingular M-matrices as well
[5]. Let S denote the set of all subsets of {1, . . . , n}, and define

ρ = sup
I∈S

‖M−1
I KI‖1 .

Let K be chosen such that ρ < 1
2 . For every subset I ∈ S the inverse of AI

exists and can be expressed as

A−1
I = (II +

∞
∑

i=1

(

−M−1
I KI)

i
)

M−1
I .

As a consequence the algorithm is well-defined. Proceeding as in the proof
of Theorem 4.3 we arrive at

n
∑

i=1

(yk+1
i − yki ) = −

∑

i∈A

(yki − ψi) +
∑

i∈I

(

A−1
I AIA(y

k − ψ)A

)

i

+
∑

i∈I

(A−1
I λkI)i ,

(35)

where λki ≤ 0 for i ∈ I and yki ≥ ψi for i ∈ A. Here and below we drop the

index k with Ik and Ak. Setting g = −A−1
I λkI ∈ R

|I| and since ρ < 1
2 we

find

∑

i∈I

gi ≥ ‖M−1
I λkI‖1 −

∞
∑

i=1

‖M−1
I KI‖i1‖M−1

I λkI‖1

≥ 1− 2ρ

1− ρ
‖M−1λkI‖1 ≥ 0 ,

and consequently by (35)
n
∑

i=1

(yk+1
i − yki ) ≤ −

∑

i∈A

(yki − ψi) +
∑

i∈I

(A−1
I AIA(y

k − ψ)A)i .

Note that A−1
I AIA ≤M−1

I KIA−M−1
I KI(M+K)−1

I AIA. Here we have

used (M +K)−1
I −M−1

I = −M−1
I KI(M +K)−1

I and M−1
I MIA ≤ 0. Since

yk ≥ ψ on A, it follows that ‖K‖1 can be chosen sufficiently small such that
∑n

i=1(y
k+1
i − yki ) < 0 unless yk+1 = yk, and hence

yk 7→ M(yk) =
n
∑

i=1

yki

is a merit function for the algorithm. The proof is now completed in the
same manner as that of Theorem 4.3. �
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The assumptions of Theorem 4.4 do not require A to be a P-matrix. From
its conclusions existence of a solution to (27) for arbitrary f follows. This
is equivalent to the fact that A is a P-matrix [5, Theorem 10.2.15]. Hence,
it follows that Theorem 4.4 represents a sufficient condition for A to be a
P-matrix.

Observe further that the M-matrix property is not stable under arbi-
trarily small perturbations since off-diagonal elements may become positive.
This implies certain limitations of the applicability of Theorem 4.2. Theo-
rem 4.4 guarantees that convergence of the primal-dual active set strategy
for arbitrary initial data is preserved for sufficiently small perturbations K
of an M-matrix. Therefore, Theorem 4.4 is also of interest in connection
with numerical implementations of the primal-dual active set algorithm.

Finally, we shall point out that Theorems 4.2–4.4 establish global con-
vergence of the primal-dual active set strategy or, equivalently, semi-smooth
Newton method without the necessity of a line search. The rate of conver-
gence is locally superlinear. Moreover, it can be observed from (22) that

if Ik = Ik′ for k 6= k′, then yk = yk
′

and λk = λk
′

. Hence, in case of
convergence no cycling of the algorithm is possible, and termination at the
solution of (19) occurs after finitely many steps.

3. The infinite dimensional case

In this section we first analyze the notion of generalized differentiability
of the max-operation between various function spaces. Then we turn to the
investigation of convergence of semi-smooth Newton methods applied to (P).
We close the section with a numerical example for superlinear convergence.

Let X denote a space of functions defined over a bounded domain or
manifold Ω ⊂ R

n with Lipschitzian boundary ∂Ω, and let max(0, y) stand
for the point-wise maximum operation between 0 and y ∈ X. Let δ ∈ R be
fixed arbitrarily. We introduce candidates for slanting functions Gm of the
form

(36) Gm(y)(x) =







1 if y(x) > 0 ,
0 if y(x) < 0 ,
δ if y(x) = 0 ,

where y ∈ X.

Theorem 4.5.

(i) Gm can in general not serve as a slanting function for max(0, ·) :
Lp(Ω) → Lp(Ω), for 1 ≤ p ≤ ∞.

(ii) The mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞ is
slantly differentiable on Lq(Ω) and Gm is a slanting function.

Proof. (i) It suffices to consider the one dimensional case Ω = (−1, 1) ⊂
R. We show that property (17) does not hold at y(x) = −|x|. Let us define
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hn(x) =
1
n on (− 1

n ,
1
n) and hn(x) = 0 otherwise. Then

∫ 1

−1
|max(0, y + hn)(x)−max(0, y)(x) − (Gm(y + hn)(hn)) (x)|p dx

=

∫

{x:y(x)+hn(x)>0}
|y(x)|pdx =

∫ 1
n

− 1
n

|y(x)|pdx =
2

p+ 1

(

1

n

)p+1

,

and ‖hn‖Lp = p
√

2/np+1. Consequently,

lim
n→∞

1
‖hn‖Lp

‖max(0, y + hn)−max(0, y) −Gm(y + hn)hn‖Lp = p

√

1
p+1 6= 0 ,

and hence (17) is not satisfied at y for any p ∈ [1,∞).
To consider the case p = ∞ we choose Ω = (0, 1) and show that (17) is

not satisfied at y(x) = x. For this purpose define for n = 2, . . .

hn(x) =











−(1 + 1
n)x on (0, 1n ] ,

(1 + 1
n)x− 2

n(1 +
1
n) on ( 1n ,

2
n ] ,

0 on ( 2n , 1] .

Observe that En = {x : y(x) + hn(x) < 0} ⊃ (0, 1n ]. Therefore

lim
n→∞

1
‖hn‖L∞([0,1])

‖max(0, y + hn)−max(0, y) −Gm(y + hn)hn‖L∞([0,1])

= lim
n→∞

n2

n+1‖y‖L∞(En) ≥ lim
n→∞

n
n+1 = 1

and hence (17) cannot be satisfied.
(ii) Let δ ∈ R be fixed arbitrarily and y, h ∈ Lq(Ω), and set

Dy,h(x) = max(0, y(x) + h(x))−max(0, y(x)) −Gm(y + h)(x)h(x) .

A short computation shows that

(37) |Dy,h(x)|







≤ |y(x)| if (y(x) + h(x))y(x) < 0 ,
≤ (1 + |δ|) |y(x)| if y(x) + h(x) = 0 ,
= 0 otherwise.

For later use we note that from Hölder’s inequality we obtain for 1 ≤ p <
q ≤ ∞

‖w‖Lp ≤ |Ω|r‖w‖Lq , with r =

{

q−p
pq if q <∞ ,

1
p if q = ∞ .

From (37) it follows that only

Ω0(h) = {x ∈ Ω : y(x) 6= 0, y(x)(y(x) + h(x)) ≤ 0}
requires further investigation. For ǫ > 0 we define subsets of Ω0(h) by

Ωǫ(h) = {x ∈ Ω : |y(x)| ≥ ǫ, y(x)(y(x) + h(x)) ≤ 0} .
Note that |y(x)| ≥ ǫ a.e. on Ωǫ(h) and therefore

‖h‖Lq(Ω) ≥ ǫ|Ωǫ(h)|1/q , for q <∞ .
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It follows that

(38) lim
‖h‖Lq(Ω)→0

|Ωǫ(h)| = 0 for every fixed ǫ > 0 .

For ǫ > 0 we further define sets

Ωǫ(y) = {x ∈ Ω : 0 < |y(x)| ≤ ǫ} ⊂ {x : y(x) 6= 0} .
Note that Ωǫ(y) ⊂ Ωǫ

′

(y) whenever 0 < ǫ ≤ ǫ′ and
⋂

ǫ>0Ω
ǫ(y) = ∅. As a

consequence

(39) lim
ǫ→0+

|Ωǫ(y)| = 0 .

From (37) we find

1

‖h‖Lq

‖Dy,h‖Lp ≤ 1 + |δ|
‖h‖Lq

(

∫

Ω0(h)
|y(x)|pdx

)1/p

≤ 1 + |δ|
‖h‖Lq

[

(

∫

Ωǫ(h)
|y(x)|pdx

)1/p

+

(

∫

Ω0(h)\Ωǫ(h)
|y(x)|pdx

)1/p
]

≤ 1 + |δ|
‖h‖Lq

[

|Ωǫ(h)|(q−p)/(qp)
(

∫

Ωǫ(h)
|y(x)|qdx

)1/q

+

|Ωǫ(y)|(q−p)/(qp)
(

∫

Ω0(h)\Ωǫ(h)
|y(x)|qdx

)1/q
]

≤ (1 + |δ|)
(

|Ωǫ(h)|(q−p)/(qp) + |Ωǫ(y)(q−p)/(qp)|
)

.

Choose η > 0 arbitrarily and note that by (39) there exists ǭ > 0 such that
(1 + |δ|)|Ωǭ(y)|(q−p)/(qp) < η. Consequently

1

‖h‖Lq

‖Dy,h‖Lp ≤ (1 + |δ|)|Ωǭ(h)|(q−p)/(qp) + η

and by (38)

lim
‖h‖Lq→0

1

‖h‖Lq

‖Dy,h‖Lp ≤ η .

Since η > 0 is arbitrary the claim holds for 1 ≤ p < q <∞.
The case q = ∞ follows from the result for 1 ≤ p < q <∞. �

We refer to [36] for a related investigation of the two-norm problem involved
in Proposition 4.5 in the case of superposition operators. An example in [36]
proves the necessity of the norm-gap for the case in which the complemen-
tarity condition is expressed by means of the Fischer-Burmeister functional.

We now turn to (P) posed in L2(Ω). For convenience we repeat the
problem formulation

(P)







min J(y) =
1

2
(y,Ay)− (f, y)

subject to y ≤ ψ,
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where (·, ·) now denotes the inner product in L2(Ω), f and ψ ∈ L2(Ω),
A ∈ L(L2(Ω)) is selfadjoint and

(H1) (Ay, y) ≥ γ‖y‖2 ,
for some γ > 0 independent of y ∈ L2(Ω). There exists a unique solution
y∗ to (P) and a Lagrange multiplier λ∗ ∈ L2(Ω), such that (y∗, λ∗) is the
unique solution to

(40)

{

Ay∗ + λ∗ = f,
C(y∗, λ∗) = 0,

where C(y, λ) = λ −max(0, λ + c(y − ψ)), with the max–operation defined
point-wise a.e. and c > 0 fixed. The algorithm is analogous to the finite
dimensional case. We repeat it for convenient reference:

Algorithm 6.

(i) Choose y0, λ0 in L2(Ω). Set k = 0.
(ii) Set Ak = {x : λk(x) + c(yk(x)− ψ(x)) > 0} and Ik = Ω\Ak.
(iii) Solve

Ayk+1 + λk+1 = f
yk+1 = ψ on Ak, λ

k+1 = 0 on Ik.
(iv) Stop, or set k = k + 1 and return to (ii).

Under our assumptions on A, f and ψ it is simple to argue the solvability
of the system in step (iii) of the above algorithm.

For the semi-smooth Newton step we can refer back to Section 1. At
iteration level k with (yk, λk) ∈ L2(Ω) × L2(Ω) given, it is of the form
(22) where now δyIk denotes the restriction of δy (defined on Ω) to Ik and
analogously for the remaining terms. Moreover AIkAk

= E∗
Ik
A EAk

, where

EAk
denotes the extension-by-zero operator for L2(Ak) to L

2(Ω)–functions,
and its adjoint E∗

Ak
is the restriction of L2(Ω)–functions to L2(Ak), and

similarly for EIk and E∗
Ik
. Moreover AAkIk = E∗

Ak
A EIk , AIk = E∗

Ik
A EIk

and AAk
= E∗

Ak
A EAk

. It can be argued precisely as in Section 1 that
the above primal-dual active set strategy, i.e., Algorithm 6, and the semi-
smooth Newton updates coincide, provided that the generalized derivative
of the max-function is taken according to

(41) Gm(u)(x) =

{

1 if u(x) > 0
0 if u(x) ≤ 0,

which we henceforth assume.
Proposition 4.5 together with Theorem 3.2 suggest that the semi-smooth

Newton algorithm applied to (40) may not converge in general. We therefore
restrict our attention to operators A of the form

(H2) A = C + βI, with C ∈ L(L2(Ω), Lq(Ω)), where β > 0, q > 2.

We show next that a large class of optimal control problems with control
constraints can be expressed in the form (P) with (H2) satisfied.



36 4. APPLICATIONS

Example 4.1. We consider the optimal control problem

(42)











minimize 1
2‖y − z‖2L2 +

β
2 ‖u‖2L2

subject to −∆y = u in Ω, y = 0 on ∂Ω ,
u ≤ ψ, u ∈ L2(Ω) ,

where z ∈ L2(Ω), ψ ∈ Lq(Ω), and β > 0. Let B ∈ L(H1
o (Ω),H

−1(Ω))
denote the operator −∆ with homogeneous Dirichlet boundary conditions.
Then (42) can equivalently be expressed as

(43)

{

minimize 1
2‖B−1u− z‖2L2 +

β
2 ‖u‖2L2

subject to u ≤ ψ, u ∈ L2(Ω) .

In this case A ∈ L(L2(Ω)) turns out to be Au = B−1JB−1u+ βu, where J
is the embedding of H1

o (Ω) into H
−1(Ω), and f = B−1z. Condition (H2) is

obviously satisfied.
In (42) we considered the distributed control case. A related boundary

control problem is given by

(44)











minimize 1
2‖y − z‖2L2(Ω) +

β
2 ‖u‖2L2(∂Ω)

subject to −∆y + y = 0 in Ω, ∂y
∂n = u on ∂Ω ,

u ≤ ψ, u ∈ L2(∂Ω) ,

where n denotes the unit outer normal to Ω along ∂Ω. This problem is again
a special case of (P) with A ∈ L(L2(∂Ω)) given by Au = B−∗JB−1u + βu

where B−1 ∈ L(H−1/2(Ω),H1(Ω)) denotes the solution operator to

−∆y + y = 0 in Ω, ∂y
∂n = u on ∂Ω ,

and f = B−∗z. Moreover, C = B−∗JB−1
|L2(Ω)

∈ L(L2(∂Ω),H1/2(∂Ω)) with

J the embedding of H1/2(Ω) into H−1/2(∂Ω) and hence (H2) is satisfied as
a consequence of the Sobolev embedding theorem.

For the sake of illustration it is also worthwhile to specify (23)–(26),
which were found to be equivalent to the Newton-update (22) for the case of
optimal control problems. We restrict ourselves to the case of the distributed
control problem (42). Then (23)–(26) can be expressed as
(45)



















λk+1
Ik

= 0, uk+1
Ak

= ψAk
,

E∗
Ik

[

(B−2 + βI)EIku
k+1
Ik

−B−1z + (B−2 + βI)EAk
ψAk

]

= 0 ,

E∗
Ak

[

λk+1 +B−2uk+1 + βuk+1 −B−1z
]

= 0 ,
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where we set B−2 = B−1JB−1. Setting pk+1 = B−1z − B−2uk+1, a short
computation shows that (45) is equivalent to

(46)























−∆yk+1 = uk+1 in Ω , yk+1 = 0 on ∂Ω ,

−∆pk+1 = z − yk+1 in Ω , pk+1 = 0 on ∂Ω ,

pk+1 = βuk+1 + λk+1 in Ω ,

uk+1 = ψ in Ak , λ
k+1 = 0 in Ik .

This is the system in the primal variables (y, u) and adjoint variables (p, λ),
previously implemented in [2] for testing the algorithm.

Our main intention is to consider control constrained problems as in
Example 4.1. To prove convergence under assumptions (H1), (H2) we utilize
a reduced algorithm which we explain next.

The operators EI and EA denote the extension by zero and their ad-
joints are restrictions to I and A, respectively. The optimality system (40)
does not depend on the choice of c > 0. Moreover, from the discussion in
Section 1 the primal-dual active set strategy is independent of c > 0 af-
ter the initialization phase. For the specific choice c = β system (40) can
equivalently be expressed as

βy∗ − βψ +max(0, Cy∗ − f + βψ) = 0 ,(47)

λ∗ = f − Cy∗ − βy∗ .(48)

We shall argue in the proof of Theorem 4.6 below that the primal-dual active
set method in L2(Ω) for (y, λ) is equivalent to the following algorithm for the
reduced system (47)– (48), which will be shown to converge superlinearly.

Algorithm 7 (Reduced algorithm).

(i) Choose y0 ∈ L2(Ω) and set k = 0.
(ii) Set Ak = {x : (f − Cyk − βψ)(x) > 0}, Ik = Ω \ Ak.
(iii) Solve

βyIk + (C(EIkyIk + EAk
ψAk

))Ik = fIk

and set yk+1 = EIkyIk +EAk
ψAk

.
(iv) Stop, or set k = k + 1 and return to (ii).

Theorem 4.6. Assume that (H1), (H2) hold and that ψ and f are in
Lq(Ω). Then the primal-dual active set strategy or equivalently the semi-
smooth Newton method converge superlinearly if ‖y0 − y∗‖ is sufficiently
small and λ0 = β(y0 − ψ).

Proof. Let yk, k ≥ 1, denote the iterates of the reduced algorithm and
define

λk+1 =

{

0 on Ik ,
(f − Cyk+1 − βψ)Ak

on Ak ,
for k = 0, 1, . . . ,
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We obtain λk+β(yk−ψ) = f−Cyk−βψ for k = 1, 2, . . ., and hence the active
sets Ak, the iterates yk+1 produced by the reduced algorithm and by the
algorithm in the two variables (yk+1, λk+1) coincide for k = 1, 2, . . ., provided
the initialization strategies coincide. This, however, is the case since due to
our choice of λ0 and β = c we have λ0 + β(y0 − ψ) = f − Cy0 − βψ and
hence the active sets coincide for k = 0 as well.

To prove convergence of the reduced algorithm we utilize Theorem 3.2
with F : L2(Ω) → L2(Ω) given by F (y) = βy − βψ +max(0, Cy − f + βψ).
From Proposition 4.5(ii) it follows that F is slantly differentiable. In fact,
the relevant difference quotient for the nonlinear term in F is

1

‖Ch‖Lq

∥

∥max(0, Cy − f + βψ + Ch)−max(0, Cy − f + βψ)−

Gm(Cy − f + βψ + Ch)(Ch)
∥

∥

L2

‖Ch‖Lq

‖h‖L2

,

which converges to 0 for ‖h‖L2 → 0. Here

Gm(Cy − f + βψ + Ch)(x) =

{

1 if (C(y + h)− f + βψ)(x) ≥ 0 ,
0 if (C(y + h)− f + βψ)(x) < 0 ,

so that in particular δ of (36) was set equal to 1 which corresponds to the
’≤’ sign in the definition of Ik. A slanting function GF of F at y in direction
h is therefore given by

GF (y + h) = βI +Gm(Cy − f + βψ + Ch)C .

It remains to argue that GF (z) ∈ L(L2(Ω)) has a bounded inverse. Since
for arbitrary z ∈ L2(Ω), h ∈ L2(Ω)

GF (z)h =

(

βII + CI CIA

0 βIA

) (

hI
hA

)

,

where I = {x : (Cz− f + βψ)(x) ≥ 0} and A = {x : (Cz− f + βψ)(x) < 0}
it follows from (H1) that GF (z)

−1 ∈ L(L2(Ω)). Above we denoted CI =
E∗

ICEI and CIA = E∗
ICEA. �

Let us also comment on the discretized version of (42). To be specific we
consider a two dimensional domain Ω endowed with a uniform rectangular
grid, with ∆h denoting the five-point-star discretization of ∆, and functions
z, ψ, y, u discretized by means of grid functions at the nodal points. Numer-
ical results including convergence considerations for this case were reported
in [3] and [2]. Let us consider to which extent Theorems 4.2–4.4 provide
new insight on confirming convergence, which was observed numerically in
practically all examples. Theorem 4.2 is not applicable since Ah = βI+∆−2

h

is not an M-Matrix. Theorem 4.4 is applicable with M = βI and K = ∆−2
h ,

and asserts convergence if β is sufficiently large. We also tested numerically
the applicability of Theorem 4.3 and found that for Ω = (0, 1)2 the norm
condition was satisfied in all cases we tested with grid-size h ∈ [10−2, 10−1]
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and β ≥ 10−4, whereas the cone condition
∑

i∈I(A
−1
I yI)i ≥ 0 for yI ≥ 0

was satisfied only for β ≥ 10−2, for the same range of grid-sizes. Still the
function yk → M(yk) utilized in the proof of Theorem 4.4 behaved as a
merit function for the wider range of β ≥ 10−3. Note that the norm and
cone condition of Theorem 4.4 only involve the system matrix A, whereas
M(yk) also depends on the specific choice of f and ψ.

Remark 4.3. Throughout the paper we used the function C defined in
(20) as a complementarity function. Another popular choice of complemen-
tarity function is given by the Fischer-Burmeister function

CFB(y, λ) =
√

y2 + λ2 − (y + λ) .

Note that CFB(0, λ) =
√
λ2−λ = 2max(0,−λ), and hence by Proposition 4.5

the natural choices for generalized derivatives do not satisfy property (17).

Remark 4.4. Condition (H2) can be considered as yet another inci-
dence, where a two norm concept for the analysis of optimal control prob-
lems is essential. It utilizes the fact that the control-to-solution mapping
of the differential equation is a smoothing operation. Two norm concepts
where used for second order sufficient optimality conditions and the analysis
of SQP-methods in [24, 19], for example, and also for semi-smooth Newton
methods in [36].

In view of the fact that (P) consist of a quadratic cost functional with
affine constraints the question arises whether superlinear convergence coin-
cides with one step convergence after the active/inactive sets are identified
by the algorithm. The following example illustrates the fact that this is not
the case.

Example 4.2. We consider Example 4.1 with the specific choices

z(x1, x2) = sin(5x1) + cos(4x2), ψ ≡ 0, β = 10−5, and Ω = (0, 1)2.

A finite difference based discretization of (42) with a uniform grid of mesh
size h = 1

100 and the standard five point star discretization of the Laplace
operator was used. The primal-dual active set strategy with initialization
given by solving the unconstrained problem and setting λ0h = 0, was used.
The exact discretized solution (u∗h, λ

∗
h, y

∗
h) was attained in 8 iterations. In

Table 1 we present the values for

qku =
|ukh − u∗h|
|uk−1
h − u∗h|

, qkλ =
|λkh − λ∗h|
|λk−1
h − λ∗h|

,

where the norms are discrete L2-norms. Clearly these quantities indicate
superlinear convergence of ukh and λkh.
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k 1 2 3 4 5 6 7

qku 1.0288 0.8354 0.6837 0.4772 0.2451 0.0795 0.0043

qkλ 0.6130 0.5997 0.4611 0.3015 0.1363 0.0399 0.0026

Table 1.



CHAPTER 5

Moreau-Yosida path-following for problems with

low multiplier regularity

In the late 1980s and early 1990s a number of research efforts focused
on the existence of Lagrange multipliers for pointwise state constraints in
optimal control of partial differential equations (PDEs); see, for instance,
[7] in the case of zero-order state constraints, i.e. ϕ ≤ y ≤ ψ, and [8] for
constraints on the gradient of y such as |∇y| ≤ ψ, as well as the references
therein. Here, y denotes the state of an underlying (system of) partial differ-
ential equation(s) and ϕ,ψ represent suitably chosen bounds. While [7, 8]
focus on second order linear elliptic differential equations and tracking-type
objective functionals, subsequent work such as, e.g., [30, 31] considered
parabolic PDEs and/or various types of nonlinearities. Moreover, investi-
gations of second order optimality conditions in the presence of pointwise
state constraints can be found in [32] and the references therein. In many of
these papers, for guaranteeing the existence of multipliers it is common to
rely on the Slater constraint qualification, which requires that the feasible
set contains an interior point.

Concerning the development of numerical solution algorithms for PDE-
constrained optimization problems subject to pointwise state constraints
significant advances were obtained only in comparatively recent work. In
[21, 14, 15], for instance, Moreau-Yosida-based inexact primal-dual path-
following techniques are proposed and analysed, and in [25, 28, 35] Lavrentiev-
regularization is considered which replaces y ≤ ψ by the mixed constrained
ǫu+y ≤ ψ with u denoting the control variable and ǫ > 0 a small regulariza-
tion parameter. In [16, 17] a technique based on shape sensitivity and level
set methods is introduced. These works do not consider the case of combined
control and state constraints and the case of pointwise constraints on the
gradient of the state. Concerning the optimal control of ordinary differential
equations with control as well as state constraints we mention [6, 23] and
references given there. Control problems governed by PDEs with states and
controls subject to pointwise constraints can be found, e.g., in [1, 9, 22, 27]
and the refreneces therein.

In the present paper we investigate the case where point-wise constraints
on the control and the state variable appear simultaneously and indepen-
dently, i.e. not linked as in the mixed case, which implies a certain extra
regularity of the Lagrange multipliers. First- and second-order state con-
straints are admitted. To obtain efficient numerical methods, regularization

41
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of the state-constraints is required. Here we investigate the Moreau-Yosida
technique which turns out to be very flexible with respect to various types
of pointwise state constraints and can combined with pointwise constraints
on the control variable, which need not be regularized. This flexibility
makes it an ideal candidate for a unifying approach to a wide range of
PDE-constrained minimization problems subject to pointwise constraints
of controls and states with respect to both, the proof of existence of La-
grange multipliers and the design of algorithms. Concerning the latter we
show in this paper that for the numerical solution of the associated sub-
problems semismooth Newton solvers are available which allow a function
space analysis and converge locally at a q-superlinear rate. In addition, the
path-following technique of [14] (see also [15]) provides an update tool for
the regularization parameter leading to efficient inexact path-following iter-
ations. Further, for the proof of existence of multipliers the Moreau-Yosida
approach is based on a constraint qualification which is weaker than the usu-
ally invoked Slater condition. In [27] such a condition is used for point-wise
zero-order state constraints.

The remainder of the paper is organized as follows. In section 1 we intro-
duce the underlying rather general problem class, a constraint qualification
of range-space-type and the Moreau-Yosida regularized problem. Moreover,
the existence of multipliers for the unregularized problem is guaranteed and
an associated first order optimality characterization is derived. Section 2 is
concerned with the semismooth Newton method for solving the regularized
problems. It turns out that for a certain subclass of the underlying general
problem a lifting step is necessary in order to bridge an L2-Lr-norm gap
with r > 2. The gap occurs due to the fact that the natural function space
for the regularization is L2 whereas the existence of multipliers requires Lr-
regularity of the associated control variable. Here ”lifting” refers to the fact
that the standard semismooth Newton iteration has to be equipped with
an additional step lifting the Newton updated from L2 to Lr; see [36] for
a related concept. Lifting, in the context of the present paper is used for
pointwise zero-order state constraints if the spatial dimension is larger than
three, and for pointwise constraints on the gradient. Section 3 ends the
paper by a report on numerical test. The appendix contains a chain rule
result for the composition of two Newton differentiable functions, which is
of interest in its own right.

1. Moreau-Yosida regularization and first order optimality

In this section we derive, in a rather general setting and under a weak
constraint qualification, first order optimality conditions for the problem

(P)

{

minimize J(y, u) = J1(y) +
α
2 |u− ud|2L2(Ω̃)

subject to Ay = EΩ̃u, u ∈ Cu, y ∈ Cy,
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where the control domain Ω̃ is an open subset of Ω, and the constraints on
the control variable u and the state variable y are defined by

Cu = {u ∈ L2(Ω̃) : ϕ ≤ u ≤ ϕ̄ a.e. in Ω̃}, Cy = {y ∈W : |Gy| ≤ ψ in Ω}.
Here A ∈ L(W,L) with W and L reflexive Banach spaces of functions de-
fined on the bounded domain Ω ⊂ R

d, satisfying Lr(Ω) ⊂ L, with dense
embedding, 2 ≤ r <∞ and

(49) 〈v1, v2〉L∗,L = (v1, v2)Lr′(Ω),Lr(Ω) for all v1 ∈ L∗, v2 ∈ Lr(Ω),

with 1
r + 1

r′ = 1. Further EΩ̃ : Lr(Ω̃) → Lr(Ω) is the extension-by-zero

operator with adjoint E∗
Ω̃
, the restriction to Ω̃ operator. The quantifiers

characterising the constraint sets Cu and Cy satisfy G ∈ L(W, C(Ω̄)l) for
some 1 ≤ l ≤ d,

(50) ϕ, ϕ̄ ∈ L2(r−1)(Ω̃), and ψ ∈ C(Ω̄), 0 < ψ ≤ ψ, for some ψ ∈ R,

| · | denotes the Euclidean-norm in R
l and the inequalities are interpreted in

the pointwise almost everywhere (a.e.) sense. The minor extra regularity

that is assumed by requiring that ϕ, ϕ̄ ∈ L2(r−1)(Ω̃) rather than ϕ, ϕ̄ ∈
L2(Ω̃) will be used in two ways: First the intermediate extra regularity

ϕ, ϕ̄ ∈ Lr(Ω̃) is used for the sake of consistency with assumption (H4)

below and, secondly, the L2(r−1)(Ω̃) bound on the admissible controls will
be required for passing to the limit in a sequence of approximating problems
to (P) in Theorem 5.1 below.

The cost-functional is supposed to satisfy

(51)
J1 ∈ C1,1(W,R) is convex and yn ⇀ y in W implies that

J1(yn) → J1(y) and J
′
1(yn)⇀ J ′

1(y) in W
∗.

Here and below ’→’ and ’⇀’ indicate strong and weak convergence, respec-
tively. Moreover we fix

(52) α > 0 and ud ∈ L2(Ω̃).

In addition to the above technical assumptions we require the following
hypotheses:

(H1) There exists a feasible point for the constraints in (P).

(H2) A : W → L is a homeomorphism.

(H3) G :W → C(Ω̄)l is a compact linear operator.

(H4)










There exists a bounded set M ⊂ Cy × Cu ⊂W × Lr(Ω̃) such that

0 ∈ int{Ay − EΩ̃u : (y, u) ∈M} ⊂ Lr(Ω),where the interior is taken

with respect to Lr(Ω).
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Conditions (H1) and (H2) are needed for existence of a solution to (P) and
the hypotheses (H3)–(H4) are used to establish an optimality system. In
particular, (H4) guarantees the existence of a Lagrange multiplier, or an
adjoint state, associated with the equality constraint. Condition (H4) is
weaker than Slater-type conditions. This can be argued as in [27, pp. 113-
122]; see also [33]. In fact, let (ȳ, ū) ∈W × Lr(Ω) satisfy

(53) A ȳ = EΩ̃ ū, ϕ ≤ ū ≤ ϕ̄, |Gȳ(x)| < ψ(x) for all x ∈ Ω̄.

For ρ > 0 and |η|Lr(Ω) ≤ ρ let yη denote the solution to

Ayη = EΩ̃ū+ η.

Then

|yη − ȳ|W ≤ ρ ‖A−1‖L(Lr(Ω),W ).

Hence, if ρ is sufficiently small, then yη ∈ Cy and the set

M = {(yη, ū) : η ∈ Lr(Ω), |η|Lr(Ω) ≤ ρ}
serves the purpose required by condition (H4). Differently from the Slater
condition (53) condition (H4) operates in the range space of the operator
A. Note also that when arguing that (53) implies (H4) the freedom to vary
u ∈ Cu was not used. For the analysis of the proposed algorithm it will be
convenient to introduce the operator B = GA−1EΩ̃. Conditions (H2) and

(H3) imply that B ∈ L(Lr(Ω̃), C(Ω̄)l). The compactness assumption in (H3)
is needed to pass to the limit in an appropriately defined approximation to
problem (P).

To argue existence for (P), note that any minimizing sequence {(un, y(un))}
is bounded in Lr(Ω̃)×W by the properties of Cu and (H2). The properties
of Cu as well as Cy, strict convexity of J together with a subsequential limit
argument guarantee the existence of a unique solution (y∗, u∗) of (P).

More general state constraints of the form

Cy = {ỹ ∈W : |(Gỹ)(x)− g(x)| ≤ ψ for all x ∈ Ω̄}
for some g ∈ C(Ω̄)l can be treated as well. In fact, if there exists ỹg ∈W with
Gyg = g and Ayg ∈ Lr(Ω), then the shift y := ỹ − yg brings us back to the
framework considered in (P) with a state equation of the form Ay = u−Ayg,
i.e., an affine term must be admitted and in (H4) the expression Ay − EΩ̃u
must be replaced by Ay − EΩ̃u−Ayg.

Before we establish first order optimality, let us mention two problem
classes which are covered by our definition of Cy in (P):

Example 5.1 (Pointwise zero-order state constraints). Let A denote the
second order linear elliptic partial differential operator

Ay = −
d
∑

i,j=1

∂xj (aij∂xiy) + a0y
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with C0,δ(Ω̄)-coefficients aij , i, j = 1, . . . , d, for some δ ∈ (0, 1], which satisfy
∑d

i,j=1 aij(x)ξiξj ≥ κ|ξ|2 for almost all x ∈ Ω and for all ξ ∈ R
d, and a0 ∈

L∞(Ω) with a0 ≥ 0 a.e. in Ω. Here we have κ > 0. The domain Ω is assumed
to be either polyhedral and convex or to have a C1,δ-boundary Γ and to be
locally on one side of Γ. We choose W = W 1,p

0 (Ω), L = W−1,p(Ω), p > d,
and G = id, which implies l = 1. Then

|Gy| ≤ ψ in Ω ⇐⇒ −ψ ≤ y ≤ ψ in Ω,

which is the case of zero order pointwise state constraints. Since p > d,
condition (H3) is satisfied. Moreover, A : W → W−1,p(Ω) is a homeomor-
phism [34, p.179] so that in particular (H2) holds. Moreover there exists a
constant C such that

|u|L ≤ C|u|L2(Ω̃), for all u ∈ L2(Ω̃),

provided that 2 ≤ dp
dp−d−p . Consequently we can take r = 2. Here we

use the fact that W
1, p

p−1 (Ω) embeds continuously into L2(Ω), provided that

2 ≤ dp
dp−d−p , and hence L2(Ω) ⊂W−1,p(Ω). Note that 2 ≤ dp

dp−d−p combined

with d < p can only hold for d ≤ 3.
In case Γ is sufficiently regular so that A is a homeomorphism from

H2(Ω)∩H1
0 (Ω) → L2(Ω), we can take W = H2(Ω)∩H1

0 (Ω), L = L2(Ω) and
r = 2. In this case again (H2) and (H3) are satisfied if d ≤ 3. �

Example 5.2 (Pointwise first-order state constraints). Let A be as in
(i) but with C0,1(Ω̄)-coefficients aij , and let Ω have a C1,1-boundary. Choose

W =W 2,r(Ω)∩W 1,r
0 (Ω), L = Lr(Ω), r > d and, for example, G = ∇, which

yields l = d. Then

Cy = {y ∈W : |∇y(x)| ≤ ψ(x) for all x ∈ Ω̄},
and (H2) and (H3) are satisfied due to the compact embedding of W 2,r(Ω)
into C1(Ω̄) if r > d.

An alternative treatment of pointwise first-order state constraints can
be found in [8].

If, on the other hand, G = id, as in Example 1, then it suffices to choose
r ≥ max(d2 , 2) for (H2) and (H3) to hold. �

We emphasize here that our notion of zero- and first-order state con-
straints does not correspond to the concept used in optimal control of ordi-
nary differential equations. Rather, it refers to the order of the derivatives
involved in the pointwise state constraints.

For deriving a first order optimality system for (P) we introduce the
regularized problem

(Pγ)

{

minimize J1(y) +
α
2 |u− ud|2L2(Ω̃)

+ γ
2 |(|Gy| − ψ)+|2L2(Ω)

subject to Ay = EΩ̃u, u ∈ Cu,
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where γ > 0 and (·)+ = max(0, ·) in the pointwise almost everywhere sense.
In the following sections we shall see that (Pγ) is also useful for devising
efficient numerical solution algorithms.

Let (yγ , uγ) ∈ W × Lr(Ω̃) denote the unique solution of (Pγ). Utilizing
standard surjectivity techniques and (H2) we can argue the existence of
Lagrange multipliers

(pγ , µ̄γ , µγ) ∈ L∗ × Lr
′

(Ω̃)× Lr
′

(Ω̃),

with 1
r +

1
r′ = 1, such that











































































Ayγ = EΩ̃uγ ,

A∗pγ +G∗λγ = −J ′
1(yγ),

α(uγ − ud)− E∗
Ω̃
pγ + µ̄γ − µ

γ
= 0,

µ̄γ ≥ 0, uγ ≤ ϕ̄, µ̄γ(uγ − ϕ̄) = 0,

µ
γ
≤ 0, uγ ≥ ϕ, µ

γ
(uγ − ϕ) = 0,

λγ = γ(|Gyγ | − ψ)+qγ ,

qγ(x) ∈







{

Gyγ
|Gyγ |

(x)
}

if |Gyγ(x)| > 0,

B̄(0, 1)l else,

(OSγ)

where B̄(0, 1)l denotes the closed unit ball in R
l. Above, A∗ ∈ L(L∗,W ∗) is

the adjoint of A andG∗ denotes the adjoint of G as operator in L(W,L2(Ω)l).
Note that the expression for λγ needs to be interpreted pointwise for every
x ∈ Ω and λγ(x) = 0 if |(Gyγ)(x)| − ψ(x) ≤ 0. In particular this implies

that λγ is uniquely defined for every x ∈ Ω. Moreover, we have λγ ∈ L2(Ω)l,

in fact λγ ∈ C(Ω)l. The adjoint equation, which is the second equation in
(Pγ), must be interpreted as

(54) 〈pγ , Aυ〉L∗ ,L + (λγ , Gυ)L2(Ω) = −〈J ′
1(yγ), υ〉W ∗,W for any υ ∈W,

i.e., in the very weak sense. For later use we introduce the scalar factor of
λγ defined by

(55) λsγ :=
γ

|Gyγ |
(|Gyγ | − ψ)+ on {|Gyγ | > 0} and λsγ := 0 else.

This implies that

λγ = λsγ Gyγ .

The boundedness of the primal and dual variables is established next.

Lemma 5.1. Let (H1)–(H4) hold. Then the family

{(yγ , uγ , pγ , µ̄γ − µ
γ
, λsγ)}γ≥1

is bounded in W × Lr(Ω̃)× Lr
′

(Ω)× Lr
′

(Ω̃)× L1(Ω).
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Proof. Since uγ ∈ Cu for all γ ≥ 1 we have by (H2) that

{(yγ , uγ)}γ≥1 is bounded in W × Lr(Ω̃).

By (H3) the family {Gyγ}γ≥1 is bounded in C(Ω̄)l as well. Henceforth let C
denote a generic constant independent of γ ≥ 1. Let (y, u) ∈M be arbitrary.
By (OSγ)

(56) 〈pγ , A(yγ − y)〉L∗,L + (λγ , G(yγ − y))L2(Ω) = −〈J ′
1(yγ), yγ − y〉W ∗,W

and

(λγ , G(yγ − y))L2(Ω) = γ((|Gyγ | − ψ)+ qγ , Gyγ −Gy)L2(Ω)

= γ

∫

Ω
(|Gyγ | − ψ)+(|Gyγ | − ψ) + γ

∫

Ω
(|Gyγ | − ψ)+(ψ − qγ ·Gy)

≥ γ

∫

Ω

∣

∣(|Gyγ | − ψ)+
∣

∣

2
+ γ

∫

Ω
(|Gyγ | − ψ)+(ψ − |Gy|)

≥ γ
∣

∣(|Gyγ | − ψ)+
∣

∣

2

L2(Ω)
.

Therefore

〈pγ , A(yγ − y)〉L∗,L + γ
∣

∣(|Gyγ | − ψ)+
∣

∣

2

L2(Ω)
≤ −〈J ′

1(yγ), yγ − y〉W ∗,W

and

(57) 〈pγ ,−Ay + EΩ̃u〉L∗,L + γ
∣

∣(|Gyγ | − ψ)+
∣

∣

2

L2(Ω)

≤ −〈J ′
1(yγ), yγ − y〉W ∗,W + (pγ , EΩ̃(u− uγ))Lr′ (Ω),Lr(Ω).

The first term on the right hand side is bounded since {yγ}γ≥1 is bounded
in W and J1 ∈ C1,1(W,R), and the second term satisfies
(

pγ , EΩ̃(u− uγ)
)

Lr′(Ω),Lr(Ω)
=
(

α(uγ − ud) + µ̄γ − µ
γ
, u− uγ

)

Lr′(Ω̃),Lr(Ω̃)

≤ C + (µ̄γ , u− ϕ̄+ ϕ̄− uγ)L2(Ω̃) − (µ
γ
, u− ϕ+ ϕ− uγ)L2(Ω̃) ≤ C.

Inserting these estimates into (57) and utilizing (H4) and (49) we have the
existence of a constant C independent of γ such that

{|pγ |Lr′ (Ω)}γ≥1 is bounded.

Integrating the third equation of (OSγ) over {x : µ̄γ(x) > 0} we deduce

that {µ̄γ}γ≥1 is bounded in Lr
′

(Ω̃). Similarly {µ
γ
}γ≥1 is bounded in Lr

′

(Ω̃).

Finally we turn to estimate the scalar factor λsγ . We have
∫

Ω
λsγ =

∫

Ω

γ

|Gyγ |
(

|Gyγ | − ψ
)+ ≤

∫

Ω

γ

ψ2

(

|Gyγ | − ψ
)+ |Gyγ |

= − 1

ψ2 (pγ , Ayγ)Lr′ (Ω),Lr(Ω) −
1

ψ2 〈J ′(yγ), yγ〉W ∗,W ≤ C,

where we used that λsγ = 0 on {|Gyγ | ≤ ψ} and |Ayγ |Lr(Ω) = |EΩ̃uγ |Lr(Ω) ≤
C. Hence, {λsγ}γ≥1 is bounded in L1(Ω). �



48 5. MOREAU-YOSIDA PATH-FOLLOWING

The preceding lemma implies that there exists

(y∗, u∗, p∗, µ̄∗, µ∗, λ
s
∗) ∈W ×Lr(Ω̃)×Lr′(Ω̃)×Lr′(Ω̃)×Lr′(Ω̃)×M(Ω̄) =: X,

where M(Ω̄) are the regular Borel measures on Ω̄, such that on subsequence

(yγ , uγ , pγ , µ̄γ , µγ , λ
s
γ)⇀ (y∗, u∗, p∗, µ̄∗, µ∗, λ

s
∗) in X,

which, for the λs-component, means that
∫

Ω
λsγυ →

∫

Ω
λs∗υ for all υ ∈ C(Ω̄).

By (H3) this implies that

Gyγ → Gy∗ in C(Ω̄)l

and hence
∫

Ω
λγυ → 〈λs∗ (Gy∗), υ〉M,C(Ω̄)l for all υ ∈ Cl(Ω̄)l.

Passing to the limit in the second equation of (OSγ) we find

(p∗, Aυ)Lr′ (Ω),Lr(Ω) = −〈λs∗ (Gy∗), Gυ〉Ml(Ω̄),Cl(Ω̄) − 〈J ′
1(y∗), υ〉W ∗,W

for all υ ∈ DA, where DA = {v ∈ W : Av ∈ Lr(Ω)} and 〈·, ·〉Ml(Ω̄),Cl(Ω̄)

denotes the duality pairing between C(Ω̄)l and M(Ω̄)l, the space of regular
vector-valued Borel-measures on Ω̄. Since DA is dense in W and since the
right hand side uniquely defines a continuous linear functional on W a den-
sity argument implies that p∗ can be uniquely extended to an element in L∗,
and the left hand side can be replaced by 〈p∗, Aυ〉L∗,L, for all υ ∈W .

We can now pass to the limit in the first three equations of (OSγ) to
obtain

Ay∗ = EΩ̃u∗ in Lr
′

(Ω),

(58)

〈p∗, Aυ〉L∗,L + 〈λs∗ (Gy∗), Gυ〉Ml(Ω̄),Cl(Ω̄) = −〈J ′
1(y∗), υ〉W ∗,W for all υ ∈W,

(59)

α(u∗ − ud)− E∗
Ω̃
p∗ + (µ̄∗ − µ

∗
) = 0 in Lr

′

(Ω).

(60)

Standard arguments yield

(61) µ
∗
≥ 0, µ̄∗ ≥ 0, ϕ ≤ u∗ ≤ ϕ̄ a.e. in Ω̃.

Note that
(62)

J1(yγ)+
α

2
|uγ−ud|2L2(Ω̃)

+
γ

2

∣

∣(|Gyγ |−ψ)+
∣

∣

2

L2(Ω)
≤ J1(y

∗)+
α

2
|u∗−ud|2L2(Ω̃)

.
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This implies that |Gy∗(x)| ≤ ψ(x) for all x ∈ Ω, and hence (y∗, u∗) is feasible.
Moreover by (51)

J1(y∗)+
α

2
|u∗ − ud|2L2(Ω̃)

≤ lim
γ→∞

J1(yγ) + lim supγ→∞

α

2
|uγ − ud|2L2(Ω̃)

(63)

≤ J1(y
∗) +

α

2
|u∗ − ud|2L2(Ω̃).

Since (y∗, u∗) is feasible and the solution of (P) is unique, it follows that
(y∗, u∗) = (y∗, u∗). Moreover, from (63) and weak lower semi-continuity of

norms we have that limγ→∞ uγ = u∗ in L2(Ω̃). From uγ ∈ Cu for all γ, and

u∗ ∈ Cu, with Cu ⊂ L2(r−1)(Ω̃) by (50), together with Hölder’s inequality
we obtain

|uγ − u∗|Lr(Ω̃) ≤ |uγ − u∗|1/r
L2(Ω̃)

|uγ − u∗|(r−1)/r

L2(r−1)(Ω̃)
≤ C|uγ − u∗|1/r

L2(Ω̃)

γ→∞−→ 0

with some positive constant C. This yields the strong convergence of uγ in

Lr(Ω̃).
Complementary slackness of u∗, µ̄∗ and µ

∗
, i.e.,

(64) µ̄∗(u∗ − ϕ̄) = 0, µ
∗
(u∗ − ϕ) = 0 a.e. in Ω̃

now follows from the forth and fifth equation of (OSγ), respectively, the weak

convergence of (µ̄γ , µγ) to (µ̄∗, µ∗) in L
r′(Ω̃)2 and the strong convergence of

uγ to u∗ in Lr(Ω̃).
Let y ∈ Cy. Then

∫

Ω λ
s
γ(|Gy| − ψ) ≤ 0 and hence
∫

Ω
λs∗(|G(y)| − ψ) ≤ 0.

Moreover,
∫

Ω λ
s
∗ϕ ≥ 0 for all ϕ ∈ C(Ω̄) with ϕ ≥ 0.

For every accumulation point λs∗, the corresponding adjoint variable p∗
and Lagrange multipliers µ̄∗, µ̄∗ are unique. In fact, since y∗ = y∗ is unique,
the difference δp of two accumulation points of pγ satisfies

(δp,Aυ) = 0 for all υ ∈W,

and since A is a homeomorphism we have that δp = 0.
From (60) we deduce that

µ̄∗ = (E∗
Ω̃
p∗ − α(u∗ − ud))

+, µ
∗
= (E∗

Ω̃
p∗ − α(u∗ − ud))

−,

where (·)− = min(0, ·) in the pointwise almost everywhere sense.
We summarize our above findings in the following theorem which pro-

vides necessary and sufficient first order optimality conditions for (P).

Theorem 5.1. Let (49)–(52) and (H1)–(H4) hold. Then there exists

(p∗, µ̄∗, µ∗, λ
s
∗) ∈ L∗ × Lr

′

(Ω̃)× Lr
′

(Ω̃)×M(Ω̄)
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such that

Ay∗ = EΩ̃u
∗ in Lr(Ω),

A∗p∗ +G∗(λs∗Gy
∗) = −J ′

1(y
∗) in W ∗,

α(u∗ − ud)− E∗
Ω̃
p∗ + (µ̄∗ − µ

∗
) = 0 in Lr

′

(Ω̃),

µ̄∗ ≥ 0, u∗ ≤ ϕ̄, µ̄∗(u
∗ − ϕ̄) = 0 a.e. in Ω̃,

µ
∗
≥ 0, u∗ ≥ ϕ, µ

∗
(u∗ − ϕ) = 0 a.e. in Ω̃,

and
∫

Ω λ
s
∗ϕ ≥ 0 for all ϕ ∈ C(Ω̄) with ϕ ≥ 0. Further (pγ , µ̄γ , µγ) converges

weakly in Lr
′

(Ω)×Lr′(Ω̃)×Lr′(Ω̃) (along a subsequence) to (p∗, µ̄∗, µ∗), 〈λ
s
γ , υ〉 →

〈λs∗, υ〉 (along a subsequence) for all υ ∈ C(Ω̄), and (yγ , uγ) → (y∗, u∗)

strongly in W × Lr(Ω̃) as γ → ∞.

We briefly revisit the examples 5.1 and 5.2 in order to discuss the struc-
ture of the respective adjoint equation.

Example 5.1 (revisited). For the case of pointwise zero-order state con-

straints with W =W 1,p
0 (Ω) the adjoint equation in variational form is given

by

〈p∗, Av〉W 1,p′

0 (Ω),W−1,p(Ω)
+ 〈λs∗y∗, v〉M(Ω̄),C(Ω̄) = −〈J ′

1(u
∗), v〉W ∗,W

for all v ∈W .

Example 5.2 (revisited). Returning to pointwise gradient constraints
expressed by |∇y(x)| ≤ ψ(x) the adjoint equation can be expressed as

〈p∗, Av〉Lr′ (Ω),Lr(Ω) + 〈λs∗∇y∗,∇v〉M(Ω̄)l,C(Ω̄)l = −〈J ′
1(u

∗), v〉W ∗,W

for all v ∈W =W 2,r(Ω) ∩W 1,r
0 (Ω).

Remark 5.1. Condition (H4) is quite general and also allows the case
ψ = 0 on parts of Ω. Here we only briefly consider a special case of such a
situation. Let Ω̃ = Ω, r = 2, L = L2(Ω),W = H2(Ω)∩H1

0 (Ω) and G = I, i.e.
we consider zero-order state constraints without constraints on the controls,
in dimensions d ≤ 3. We assume that A : W → L2(Ω) is a homeomorphism
and that (50) is replaced by

(2.2’) 0 ≤ ψ, ψ ∈ C(Ω̄).
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In this case (H1), (H2), and (H4) are trivially satisfied and Cy = {y ∈ W :
|y| ≤ ψ in Ω}. The optimality system is given by



















































Ayγ = uγ ,

A∗pγ + λγ = −J ′
1(yγ),

α(uγ − ud)− pγ = 0,

λγ = γ(|yγ | − ψ)+qγ ,

qγ(x) ∈







{

yγ
|yγ |

(x)
}

if |yγ(x)| > 0,

B̄(0, 1) else,

(OS′γ)

with (yγ , uγ , pγ , λγ) ∈ W × L2(Ω) × L2(Ω) × L2(Ω). As in Lemma 5.1 we
argue, using (H4), that {(yγ , uγ , pγ)}γ≥1 is bounded in W × L2(Ω) ×W ∗.
Since we do not assume that ψ > 0 we argue differently than before to

obtain a bound on {λγ}γ≥1. In fact the second equation in (OS′γ) im-
plies that {λγ}γ≥1 is bounded in W ∗. Hence there exists (y∗, u∗, p∗, λ∗) ∈
W × L2(Ω)× L2(Ω)×W ∗, such that (yγ , uγ) → (y∗, u∗) in W × L2(Ω) and
(pγ , λγ) ⇀ (p∗, λ∗) weakly in L2(Ω) ×W ∗, as γ → ∞. Differently from the
case with state and control constraints, we have convergence of the whole
sequence, rather than subsequential convergence of (pγ , λγ) in this case. In
fact, the third equation in (OS′γ) implies the convergence of pγ , and the
second equation the convergence of λγ . Passing to the limit as γ → ∞ we
obtain from (OS′γ)















Ay∗ = u∗,

A∗p∗ + λ∗ = −J ′
1(y

∗),

α(u∗ − ud)− p∗ = 0.

,(OS′)

and λ∗ has the additional properties as the limit of elements λγ . For example,

if ψ ≥ ψ > 0 on a subset Ω̂ ⊂ Ω and y∗ is inactive on Ω̂, then λ∗ = 0 as

functional on continuous functions with compact support in Ω̂.

2. Semismooth Newton method

As mentioned earlier, (Pγ) is appealing as it can be solved with super-
linearly convergent numerical methods. Combined with a suitable update
strategy for γ, an overall solution algorithm for (P) is obtained. Here we
analyse in detail the superlinear solution process of (Pγ), for a fixed value γ.
The constants in this section therefore depend on γ. For the path-following
strategy with respect to γ one may proceed as in [14, 15].

2.1. Newton differentiability/semismoothness. In [13], see also
[10], for a mapping F : X → Y, with X and Y Banach spaces, a generalized
derivative is introduced in such a way that q-superlinear convergence of the
Newton algorithm can be guaranteed without requiring that F is Frechet
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differentiable. In fact, F is called Newton (or slant) differentiable in an
open set U ⊂ X if there exists a family of generalized derivatives GF (x) ∈
L(X ,Y), x ∈ U, such that

(65) lim
|h|X→0

|h|−1
X |F (x+ h)− F (x)−GF (x+ h)h|Y = 0 for every x ∈ U.

Note that F need not be Frechet-differentiable in order to have the property
(65). In general, there exists a set of Newton derivatives at x which be-
comes a singleton whenever F is Frechet-differentiable at x. We also point
out that (65) resembles the concept of semismoothness of a mapping which
was introduced in [26] for scalar-valued functionals on R

n and extended to
the vector-valued case in [29]. The concept of semi-smoothness in finite
dimensions, however, is linked to Rademacher’s theorem, which states, that
locally Lipschitz continuous functions are almost everywhere differentiable.
This concept is not available in infinite dimensions. But property (65) quan-
tifies one of the essential ingredients for the Newton method to be locally
superlinearly convergent. Consequently it is becoming customary now to re-
fer to the Newton method, in infinite dimensions, as a semismooth Newton
method, if (65) holds. As usual the Newton method for finding x∗ ∈ X such
that F (x∗) = 0 consists in the iteration:

Algorithm 8 (Semismooth Newton method).

(i) Choose x0 ∈ X .
(ii) Unless some stopping rule is satisfied, perform the update step

(66) xk+1 = xk −GF (x
k)−1F (xk) for k = 0, 1 . . . .

This iteration is locally q-superlinearliy convergent to x∗ within a neigh-
borhood U(x∗), if x0 ∈ U(x∗), and (65) as well as

(67) ‖GF (x)−1‖L(Y ,X ) ≤ C, for a constant C independently of x ∈ U(x∗),

hold, [10, 13].
The remainder of this subsection is devoted to the analysis of the semis-

moothness property (65) of the mapping Fγ , which defines the Newton it-

eration associated with (OSγ). This is done for X = Y = Lr(Ω̃) where the

choice of r is dictated by the need that Gy(u) ∈ C(Ω̄)l for u ∈ Lr(Ω̃). In

the subsequent subsection 3.3 we address (67) in L2(Ω̃). Superlinear con-
vergence is investigated in the final subsection. In case r > 2 a lifting step
is introduced to compensate the fact that (67) is only available in L2(Ω̃).

Throughout this section it will be convenient to utilize the operator

B u = GA−1EΩ̃u,

which satisfies B ∈ L(Lr(Ω̃), C(Ω̄)l) if (H2) and (H3) are satisfied. In par-

ticular B∗ ∈ L(Ls(Ω)l, Lr′(Ω̃)) for every s ∈ (1,∞). We shall require the
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following two additional hypotheses for some r̂ > r:

(H5)
ud, ϕ̄, ϕ ∈ Lr̂(Ω̃), and u 7→ A−∗J ′

1(A
−1EΩ̃u) is continuously

Frechet differentiable from L2(Ω̃) → Lr̂(Ω),

and

(H6) B∗ ∈ L(Lr(Ω̃)l, Lr̂(Ω̃)) where 1
r̂ +

1
r̂′ = 1.

We interpret the hypotheses (H5) and (H6) in view of the examples 5.1
and 5.2 in section 1.

Example 5.1 (revisited). We have G = id and, hence, B = A−1EΩ̃.

Note that A : W 1,r′

0 (Ω) → W−1,r′(Ω) is a homeomorphism. Consequently,
A−∗ ∈ L(W−1,r(Ω),W 1,r(Ω)). For every d there exists r̂ > r such that

W 1,r
0 (Ω) embeds continuously into Lr̂(Ω). Therefore A−∗ ∈ L(Lr(Ω), Lr̂(Ω))

and B∗ ∈ L(Lr(Ω̃), Lr̂(Ω̃)). Hence, assumption (H6) is satisfied. The sec-
ond part of hypothesis (H5) is fulfilled, e.g., for the tracking-type objective
functional J1(y) =

1
2 |y − yd|2L2(Ω) with yd ∈ L2(Ω) given.

Example 5.2 (revisited). Differently to example 5.1 we have G = ∇
and, thus, B = ∇A−1EΩ̃. Since G

∗ ∈ L(Lr(Ω),W−1,r(Ω)) we have A−∗G∗ ∈
L(Lr(Ω),W 1,r(Ω)). As in example 5.1 there exists for every d some r̂ > r
such that B∗ ∈ E∗

Ω̃
A−∗G∗ ∈ L(Lr(Ω)l, Lr̂(Ω)). For J1 as in example 5.1

above (H5) is satisfied.

Next we note that µ̄γ and µ
γ
in (OSγ) may be condensed into one mul-

tiplier µγ := µ̄γ − µ
γ
. Then the fourth and fifth equation of (OSγ) are

equivalent to

(68) µγ = (µγ + c(uγ − ϕ̄))+ + (µγ + c(uγ − ϕ))−

for some c > 0. Fixing c = α and using the third equation in (OSγ) results
in

(69) α(uγ −ud)−E∗
Ω̃
pγ+(E∗

Ω̃
pγ+α(ud− ϕ̄))++(E∗

Ω̃
pγ+α(ud−ϕ))− = 0.

Finally, using the state and the adjoint equation to express yγ and pγ in
terms of uγ , (OSγ) turns out to be equivalent to

Fγ(uγ) = 0, Fγ : Lr(Ω̃) → Lr(Ω̃),

with

(70) Fγ(uγ) := α(uγ − ud)− p̂γ + (p̂γ + α(ud − ϕ̄))+ + (p̂γ + α(ud − ϕ))−.

and

p̂γ := pγ(uγ) = −γB∗(|B uγ | − ψ)+q(B uγ)−E∗
Ω̃
A−∗J ′

1(A
−1EΩ̃uγ),

where

q(B u)(x) =







(

B u
|B u|

)

(x) if |B u(x)| > 0,

0 otherwise.
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We further set

(71) pγ(u) := −γB∗(|Bu| − ψ)+q(Bu), where pγ : Lr(Ω̃) → Lr̂(Ω̃).

For the semismoothness of Fγ we first study the Newton differentiability of
pγ(·). For its formulation we need

Gmax(ω)(x) :=

{

1 if ω(x) > 0,
0 if ω(x) ≤ 0,

which was shown in [13] to serve as a generalized derivative for max(0, ·) :
Ls1(Ω) → Ls2(Ω) if 1 ≤ s2 < s1 ≤ ∞. An analogous result holds true for
min(0, ·). Further the norm-functional | · | : Ls1(Ω)l → Ls2(Ω), with s1, s2 as
above, is Newton differentiable with generalized derivative q(·). This follows
from Example 8.1 and Theorem 8.1 in [20]. There only the case l = 1 is
treated, but the result can be extended in a straightforward way to l > 1.

We define

Q(Bv) := |Bv|−1
(

id−|Bv|−2(Bv)(Bv)⊤
)

.

Throughout this section, whenever we refer to (H3) it would actually
suffice to have G ∈ L(W, C(Ω̄)l).

Lemma 5.2. Assume that (H2), (H3) and (H6) hold true. Then the

mapping pγ : Lr(Ω̃) → Lr̂(Ω̃) is Newton differentiable in a neighborhood of

every point u ∈ Lr(Ω̃) and a generalized derivative is given by
(72)

Gpγ (u) = −γB∗
[

Gmax(|Bu| − ψ)q(Bu)q(Bu)⊤ + (|Bu| − ψ)+Q(Bu)
]

B.

Proof. By (H6) there exists a constant C1(γ) such that

‖γB∗‖L(Lr(Ω), Lr̂(Ω̃)) ≤ C1(γ).

Let u and h ∈ Lr(Ω̃). Then we have by the definition of pγ in (71) and the
expression for Gpγ in (72)

|pγ(u+ h)− pγ(u)−Gpγ (u+ h)h|Lr̂(Ω̃)

≤C1(γ)| (|B(u + h)| − ψ)+ q(Bu+ h)− (|Bu| − ψ)+ q(Bu)

− [Gmax(|B(u+ h)| − ψ) q(B(u + h)) q(B(u + h))⊤

+ (|B(u+ h)| − ψ)+Q(B(u+ h))]Bh|Lr(Ω)l

≤C1(γ)|(|B(u+ h)| − ψ)+
(

q(B(u+ h))− q(Bu)−Q(B(u+ h))Bh
)

|Lr(Ω)l

+ C1(γ) |((|B(u + h)| − ψ)+ − (|Bu| − ψ)+)q (Bu)−
− [Gmax(|B(u+ h)| − ψ) q (B(u)) q (B(u+ h))⊤]Bh|Lr(Ω)l

+ C1(γ)|Gmax(|B(u+ h)| − ψ)
(

q (Bu)− q (B(u+ h))
)

q (B(u+ h)⊤Bh|Lr(Ω)

= I + II + III.
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We now estimate separately the terms I − III. Let

S =

{

x : |Bu(x)| ≤ ψ(x)

2

}

.

Then there exists U(u) ⊂ Lr(Ω̃) and δ > 0 such that

|B(u(x) + h(x))| ≤ ψ(x), for all x ∈ S, u ∈ U(u), |h|Lr(Ω̃) ≤ δ,

where we use that B ∈ L(Lr(Ω̃), C(Ω̃)l) due to (H2) and (H3). Consequently

I ≤ C|q(B(u+ h))− q(Bu)−Q(B(u+ h))Bh|C(Ω\S)l ,

where C = C(u, δ). We check that H : υ → υ
|υ| from C(Ω\S)l to itself is

uniformly Fréchet differentiable with Fréchet derivative

H ′(υ) =
1

|υ| (id−
υ υ⊤

|υ|2 ),

provided that υ(x) 6= 0 for all x ∈ Ω\S. Moreover υ → H ′(υ) is lo-

cally Lipschitz continuous from C(Ω\S)l to C(Ω\S)l×l. Together with B ∈
L(Lr(Ω), C(Ω̄)l) this implies that

(73) I = O(|h|2
Lr(Ω̃)

),

where O is uniform with respect to u ∈ U . We turn to estimate II and
consider u → (|Bu| − ψ)+ in the neighborhood of U of u. As noted
above G : υ → |υ| is Newton differentiable from Ls1(Ω)l to Ls2(Ω) if
1 ≤ s2 < s1 ≤ ∞ at every υ ∈ Ls1(Ω)l, with a generalized derivative
υ
|υ| , if |υ| 6= 0. This, together with the chain rule for Newton differentiable

maps composed with Frechet differentiable maps, see e.g. [20], Lemma 8.1

or [21], and B ∈ L(Lr(Ω̃), C(Ω̄)l) ( hence B ∈ L(Lr(Ω̃), Lr+2ǫ(Ω)l)) implies

that u → |Bu| is Newton differentiable from Lr(Ω̃) to Lr+ε(Ω) for some
ε > 0, with a generalized derivative given by q(u). Newton differentiability
of this mapping also follows from [36] Theorem 5.2. The chain rule for two
superimposed Newton differentiable maps given in Proposition B.1 implies
then that u → (|Bu| − ψ)+ is Newton differentiable from Lr(Ω̃) to Lr(Ω)
and hence

(74) II = O (|h|Lr(Ω̃)),

with O uniform with respect to u ∈ U . It is straightforward to argue that

(75) III = O (|h|2
Lr(Ω̃)

),

with O uniform in u ∈ U . Combining (73)–(75) we have shown that

|pγ(u+ h)− pγ(u)−Gpγ (u+ h)h|Lr̂(Ω̃) = O (|h|Lr(Ω̃)),

as |h|Lr(Ω̃)) → 0, with O uniform in u ∈ U . Hence, pγ is Newton differentiable

in the neighborhood U of u. �

Newton differentiability of Fγ is established next.
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Theorem 5.2. Let (H2), (H3), (H5) and (H6) hold true. Then Fγ :

Lr(Ω̃) → Lr(Ω̃) is Newton differentiable in a neighborhood of every u ∈
Lr(Ω̃).

Proof. We consider the various constituents of Fγ separately. In terms
of

p̂γ(u) := pγ(u)− E∗
Ω̃
A−∗J ′

1(A
−1EΩ̃u)

we have by (70)

Fγ(u) = α(u− ud)− p̂γ(u) +
(

p̂γ(u) + α(ud − ϕ̄)
)+

+
(

p̂γ(u) + α(ud − ϕ)
)−
.

Lemma 5.2 and (H5) for J1 yield the Newton differentiability of

u 7→ α(u− ud)− p̂γ(u) from Lr(Ω̃) to Lr(Ω̃),

in a neighborhood U(u) of u.
We further have by Lemma 5.2 that

p̂γ(·) + α(ud − ϕ̄) and p̂γ(·) + α(ud − ϕ)

are locally Lipschitz continuous and Newton differentiable from Lr(Ω̃) to

Lr̂(Ω̃), respectively. Then the results of Appendix B yield the Newton dif-
ferentiability of

(

p̂γ(·) + α(ud − ϕ̄)
)+

+
(

p̂γ(·) + α(ud − ϕ)
)−

from Lr(Ω̃) to Lr(Ω̃) in a, possibly smaller neighborhood U(u) of u. Com-
bining these results proves the assertion. �

The structure of a particular generalized derivative associated with Fγ
immediately follows from a combination of the previous results.

Corollary 5.1. Let the assumptions of Theorem 5.2 hold. Then a
particular generalized derivative of Fγ at u ∈ Lr(Ω̃) is given by

GFγ (u) = α id−Gp̂γ (u) +Gmax(p̂γ(u) + α(ud − ϕ̄))Gp̂γ (u)

+Gmin(p̂γ(u) + α(ud − ϕ))Gp̂γ (u)

with

Gp̂γ (u) = Gpγ (u)− E∗
Ω̃
A−∗J ′′

1 (A
−1EΩ̃u)A

−1EΩ̃.

2.2. Uniform boundedness of the inverse of the generalized de-
rivative in L2(Ω̃). Next we study GFγ in more detail. For a well-defined
semismooth Newton step we need its non-singularity on a particular sub-
space. Given an approximation uk of uγ , in our context the semismooth
Newton update step is defined as

(76) GFγ (u
k)δku = −Fγ(uk)

with δku = uk+1 − uk, compare (66) with x = u and F = Fγ .
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For our subsequent investigation we define the active and inactive sets

Āk := {x ∈ Ω̃ :
(

p̂γ(u
k) + α(ud − ϕ̄)

)

(x) > 0},(77)

Ak := {x ∈ Ω̃ :
(

p̂γ(u
k) + α(ud − ϕ)

)

(x) < 0},(78)

Ak := Āk ∪ Ak,(79)

Ik := Ω̃ \ Ak.(80)

Further we introduce χIk , the characteristic function of the inactive set
Ik, and the extension-by-zero operators EĀk , EAk , EAk , and EIk with the

properties EAkχIk = 0 and EIkχIk = χIk .
Corollary 5.1 and the structure of Gmax and Gmin, respectively, yield

that

GFγ (u
k) = α id−χIkGp̂γ (u

k).

Hence, from the restriction of (76) to Āk we find

(81) δku|Āk = E∗
Ākδ

k
u = E∗

Āk(ϕ̄− uk) = ϕ̄|Āk − uk|Āk

and similarly

(82) δk
u|Ak = E∗

Akδ
k
u = E∗

Ak(ϕ− uk) = ϕ
|Ak − uk

|Ak .

Hence, δk
u|Ak is obtained by a simple assignment of data according to the

previous iterate only. Therefore, it remains to study (76) on the inactive set

(83) E∗
IkGFγ (u

k)EIkδI
k

u = −E∗
Ik

(

Fγ(u
k) +GFγ (u

k)EAkδku|Ak

)

as equation in L2(Ik).
Lemma 5.3. Let (H2), (H3), (H5) and (H6) hold and I ⊂ Ω. Then the

inverse to the operator

E∗
IGFγ (u)EI : L2(I) → L2(I),

with GFγ (u) = α id−χIGp̂γ (u), exists and is bounded by 1
α regardless of

u ∈ Lr(Ω̃) as long as meas(I) > 0 .

Proof. Note that we have

E∗
IGFγ (u)EI = α id|I +γE

∗
IB

∗T (u)BEI+E
∗
IE

∗
Ω̃
A−∗J ′′

1 (A
−1EΩ̃u)A

−1EΩ̃EI

with

T (u) = Gmax(|Bu| − ψ)q(Bu)q(Bu)⊤ + (|Bu| − ψ)+Q(Bu).

From B ∈ L(Lr̂′(Ω̃), Lr̂′(Ω)) ∩ L(Lr(Ω̃), Lr(Ω)), by (H2), (H3) and (H6),

we conclude by interpolation that B ∈ L(L2(Ω̃), L2(Ω)). Moreover T (u) ∈
L(L2(Ω)). Therefore

γE∗
IB

∗T (u)BEI ∈ L2(Ω̃) and E∗
IE

∗
Ω̃
A−∗J ′′

1 (A
−1EΩ̃u)A

−1EΩ̃EI ∈ L2(Ω̃),
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where we also use (H5). In conclusion, the operator E∗
IGFγ (u)EI is an

element of L(L2(I)). From the convexity of J we infer for arbitrary z ∈
Lr(I) that
(84)

(

(α id|I +E
∗
IE

∗
Ω̃
A−∗J ′′

1 (A
−1EΩ̃u)A

−1EΩ̃EI)z, z
)

L2(I)
≥ α‖z‖2L2(I).

Turning to γE∗
IB

∗T (u)BEI we observe that T (u) = 0 in {|Bu|−ψ ≤ 0}
and 0 < ψ/|Bu| − 1 < 1 in {|Bu| − ψ > 0}. Hence,

(T (u)w,w)L2(Ω̃) =

∫

{|Bu|−ψ>0}

(

1− ψ

|Bu|
)

|w|2 ≥ 0

for all w ∈ L2(Ω̃). From this and (84) we conclude that the inverse to
E∗

IGFγ (u)EI : L2(I) → L2(I) is bounded by 1
α . �

Proposition 5.1. If (H2), (H3), (H5) and (H6) hold, then the semis-

mooth Newton update step (76) is well-defined and δku ∈ Lr(Ω̃).

Proof. Well-posedness of the Newton step with δku ∈ L2(Ω̃) follows
immediately from (81), (82) and Lemma 5.3. Note that whenever Ik = ∅,
then δku is fully determined by (81) and (82). An inspection of (81), (82)
and (83), using (H5) and the structure of E∗

IGFγ (u)EI , moreover shows that

δku ∈ Lr(Ω̃). �

From Lemma 5.3 and the proof of Proposition 5.1 we conclude that
E∗

IGFγ (u)EI v = f is solvable in Lr(Ω̃) if f ∈ Lr(Ω̃). It is not clear, however,

whether (E∗
IGFγ (u)EI)

−1 is bounded as an operator in L(Lr(Ω̃)) uniformly
with respect to u.

We are now prepared to consider (67) for GFγ specified in Corollary 5.1.

Proposition 5.2. Let (H2), (H3), (H5) and (H6) hold. Then for each

û ∈ Lr(Ω̃) there exists a neighborhood U(û) ⊂ Lr(Ω̃) and a constant K such
that

(85) ‖GFγ (u)
−1‖L(L2(Ω̂)) ≤ K for all u ∈ U(û).

Proof. Let A and I denote disjoint subsets of Ω̃ such that A∪ I = Ω̃.
Then observe that every v ∈ L2(Ω̃) can be uniquely decomposed in two

components (E∗
Iv, E

∗
Av). For g ∈ L2(Ω̃) the equation

GFγ (u)v = g

is equivalent to

(86)

{

E∗
A v = E∗

A g,

(E∗
I GFγ (u)EI)E

∗
I v = E∗

I g − E∗
I GFγ (u)EAE

∗
A g.

In the proof of Lemma 5.3 we argued that

GFγ (u) ∈ L(L2(Ω̃)), for each u ∈ L2(Ω̃).
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Slightly generalizing this argument shows that for each û ∈ L2(Ω̃) there
exists a neighborhood U(û) and Cû such that

‖GFγ (u)‖L(L2(Ω̃)) ≤ Cû for all u ∈ U(û).

From (86) and Lemma 5.3 it follows that (85) holds with K = 1 + 1
α(1 +

Cû). �

2.3. Local q-superlinear convergence of the semismooth New-
ton iteration without and with a lifting step. For r = 2 we can deduce
the following result form the discussion at the beginning of Section 3, Lemma
5.2 and Proposition 5.2.

Theorem 5.3. If (H2), (H3), (H5) and (H6) hold, then the semi-smooth
Newton iteration (66) applied to Fγ given in (70) with generalized derivative

GFγ given in Corollary 5.1, is locally q-superlinearly convergent in L2(Ω̃).

In case r > 2 the semi-smooth Newton algorithm is supplemented by a
lifting step.

Algorithm 9 (Semi-smooth Newton method with lifting).

(i) Choose u0 ∈ Lr(Ω̃).

(ii) Solve for ũk+1 ∈ Lr(Ω̃) :

GFγ (u
k)(ũk+1 − uk) = −Fγ(uk).

(iii) Perform a lifting step:

uk+1 =
1

α

(

ud + pγ − (pγ + α(ud − ϕ̄))+ − (pγ + α(ud − ϕ))−
)

,

where pγ = pγ(ũ
k+1).

The case with r > 2 is addressed next.

Theorem 5.4. If (H2), (H3), (H5) and (H6) hold, then the semis-
mooth Newton method with lifting step is locally q-superlinearly convergent
in Lr(Ω̃).

Proof. Let U(uγ) denote the neighborhood of uγ according to Theorem
5.2. Proposition 5.2 implies the existence of a constant M and ρ̄ > 0 such
that

‖G−1
Fγ

(u)‖L(L2(Ω̃)) ≤M

for all u ∈ Br(uγ , ρ). Here Br(uγ , ρ) denotes the open ball with radius ρ and

center uγ in Lr(Ω̃), with ρ sufficiently small such that Br(uγ , ρ) ⊂ U(uγ).
We recall the definition of pγ(u):

(87) pγ(u) = −γB∗(|B u| − ψ)+q(B u)− E∗
Ω̃
A−∗J ′

1(A
−1EΩ̃u).

A computation shows that v → (|v| −ψ)+q(v) is globally Lipschitz continu-

ous from Lr(Ω̃)l to itself with Lipschitz constant 3. SinceB ∈ L(Lr(Ω̃), L∞(Ω))
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by (H3) and B ∈ L(Lr̂′(Ω̃), Lr′(Ω)) by (H6), the Marcinkiewicz interpo-

lation theorem then implies that B ∈ L(L2(Ω̃), Lr(Ω)). Moreover B∗ ∈
L(Lr(Ω̃), Lr(Ω)) again as a consequence of (H6), and hence the first sum-

mand in (87) is gobally Lipschitz continuous from L2(Ω̃) to Lr(Ω). This, to-

gether with (H5) shows that pγ(u) is locally Lipschitz continuous from L2(Ω̃)
to Lr(Ω). Let L denote the Lipschitz constant of pγ(·) in B2(uγ , ρ̄M) ⊂
L2(Ω̃). Without loss of generality we assume that α < LM .

With L,M and ρ̄ specified the lifting property of Fγ implies the existence
of a constant 0 < ρ < ρ̄ such that

|Fγ(uγ + h)− Fγ(uγ)−GFγ (uγ + h)h|Lr(Ω̃) ≤
α

3LM |Ω| r−2
2

|h|Lr(Ω̃)

for all |h|Lr(Ω̃) < ρ. Let u0 be such that u0 ∈ B2(uγ , ρ̄) ∩ Br(uγ , ρ̄) and

proceeding by induction, assume that uk ∈ B2(uγ , ρ̄) ∩Br(uγ , ρ̄). Then

|ũk+1 − uγ |L2(Ω̃) ≤ ‖GFγ (u
k)−1‖L(L2) |Ω|

r−2
r ·

· |Fγ(uk)− F (uγ)−GFγ (u
k)(uk − uγ)|Lr(Ω̃)(88)

≤ α

3LM
|uk − uγ |Lr(Ω̃) < |uk − uγ |Lr(Ω̃),

and, in particular, ũk+1 ∈ B2(uγ , ρ̄). We further investigate the implications
of the lifting step:

uk+1 − uγ =
1

α

(

pγ(ũ
k+1)− pγ(uγ)− (pγ(ũ

k+1) + α(ud − ϕ̄))+

+ (pγ(uγ) + α(ud − ϕ̄))+ − (pγ(ũ
k+1) + α(ud − ϕ))−

+ (pγ(uγ) + α(ud − ϕ))+
)

,

which implies that

(89) |uk+1 − uγ |Lr(Ω̃) ≤
3

α
|pγ(ũk+1)− pγ(uγ)|Lr(Ω) ≤

3L

α
|ũk+1 − uγ |L2(Ω̃).

Combining (88) and (89) implies that uk+1 ∈ Br(uγ , ρ̄). Thus the iteration
is well-defined. Moreover we find

|uk+1 − uγ |Lr(Ω̃)

|uk − uγ |Lr(Ω̃)

≤
3L
α M |Ω| r−2

r |Fγ(uk)− Fγ(u
γ)−GFγ (u

k)(uk − uγ)|Lr(Ω̃)

|uk − uγ |Lr(Ω̃)

,

which by (65) implies q-superlinear convergence. �

Remark 5.2. If we had a uniform estimate on ‖GFγ (u
k)−1‖L(Lr(Ω̃)), then

the lifting step could be avoided. In fact, note that we are not using the full
power of the semismooth estimate (65) in (88), since we overestimate the
L2-norm by the Lr-norm.

We note, however, that for each fixed u ∈ Lr(Ω̃) the operator GFγ (u)

is continuously invertible from Lr(Ω̃) to itself; see Proposition 5.1. Thus,
if uk 7→ GFγ (uk) is continuous for all sufficiently large k then the desired
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uniform estimate GFγ (uk)
−1 ∈ L(Lr(Ω̃)) holds. This continuity cannot be

expected in general since GFγ (u) contains the operator

T (u) = Gmax(|Bu| − ψ)q(Bu)q(Bu)⊤ + (|Bu| − ψ)+Q(Bu);

see Lemma 5.3. If, however, the measure of the set {x : (|Buk| − ψ)(x) >
0}, and similarly for the max-term changes continuously with k, then the
uniform bound on the inverse holds and the lifting step can be avoided. In
the numerical examples given in the following section this behavior could be
observed.

3. Numerics

Finally, we report on our numerical experience with Algorithm 1. In
our tests we are interested in solving (Pγ) with large γ, i.e., we aim at a
rather accurate approximation of the solution of (P). Algorithmically this
is achieved by pre-selecting a sequence γℓ = 10ℓ, ℓ = 0, . . . , 8, of γ-values
and solving (Pγ) for γℓ with the solution of the problem corresponding to
γℓ−1 as the initial guess. For ℓ = 0 we use u0 ≡ 0 as the initial guess. Such
a continuation strategy with respect to γ is well-suited for producing initial
guesses for the subsequent problem (Pγ) which satisfy the locality assump-
tion of Theorem 5.3, and it usually results in a small number of semismooth
Newton iterations until successful termination. We point out that more so-
phisticated and automatic selection rules for (γℓ) may be used. For instance,
one may adapt the technique of [14] for zero-order state constraints without
additional constraints on the control.

In the numerical tests we throughout consider A = −∆, Ω̃ = Ω = (0, 1)2

and J1(y) = ‖y − yd‖2L2(Ω). Here we discuss results for the following two

problems.

Problem 5.1. The setting for this problem corresponds to Example 5.1.
In this case we have zero-order state constraints, i.e. G = id, with ψ(x1, x2) =
5E-3 · (1 + 0.25|0.5 − x1|). The lower and upper bounds for the control are
ϕ ≡ 0 and ϕ̄(x1, x2) = 0.1 + | cos(2πx1)|, respectively. Moreover we set
ud ≡ 0, yd(x1, x2) = sin(2πx1) exp(2x2)/6 and α = 1E-2.

Problem 5.2. The second example corresponds to first-order state con-
straints with G = ∇ and ψ ≡ 0.1. The pointwise bounds on the control
are

ϕ(x1, x2) =

{

−0.5− |x1 − 0.5| − |x2 − 0.5| if x1 > 0.5
0 if x1 ≤ 0.5,

and ϕ̄(x1, x2) = 0.1 + | cos(2πx1)|. The desired control ud, the desired state
yd and α are as in Problem 5.1.

For the discretization of the respective problem we choose a regular
mesh with mesh size h. The discretization of A is based on the standard
five-point stencil and the one of G in Problem 5.2 uses symmetric differences.
For each γ-value the algorithm is stopped as soon as ‖Ahph+γG⊤

h (|Ghyh|−
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ψh)
+ + J ′

1h(yh)‖−1 and ‖µh − (µh + α(ud,h − bh)
+ − (µh + α(ud,h − ah)

−‖2
drop below tol= 1E-8. Here we use ‖w‖−1 = ‖A−1

h w‖2, and the subscript
h refers to discretized quantities. Before we commence with reporting on
our numerical results, we briefly address step (ii) of Algorithm 2. In our
tests, the solution of the linear system is achieved by sparse (Cholesky)
factorization techniques. Alternatively, one may rely on iterative solvers
(such as preconditioned conjugate gradient methods) for the state and the
adjoint equation, respectively, as well as for the linear system in step (ii) of
Algorithm 2.

In Figure 1 we display the state, control and multiplier µh upon termi-
nation of Algorithm 1 when solving the discrete version of Problem 5.1 for
γ = 1E8 and h = 1/256. The active and inactive set structure with respect
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Figure 1. Problem 1 (γ = 1E8, h = 1/256). State yh, control
uh and multiplier µh upon termination of Algorithm 1.

to the pointwise constraints on uh can be seen in the left plot of Figure 2.
Here, the white region corresponds to the inactive set, the gray region rep-
resents the active set for the lower bound and the black set is the active
set with respect to the upper bound. The graph in the middle shows the
approximation of the active set for the zero-order state constraint. On the
right we show the overlapping region where the pointwise state constraint
and one of the bounds on the control are active simultaneously. In Table 1
we display the iteration numbers upon successful termination of Algorithm
1 for various mesh sizes and for each γ-value of our pre-selected sequence.
We recall that these figures are based on our γ-continuation strategy.

Upon studying the above results for Problem 5.1 we first note that Al-
gorithm 1 with γ-continuation exhibits a mesh independent behavior. This
can be seen from the stable iteration counts along the columns of Table 1.
Moreover, for fixed h the number of iterations until termination is rather
stable as well. This is due to the excellent initial guesses produced by our
γ-continuation technique. In our tests we also found that Algorithm 1 with-
out the γ-continuation for solving (Pγ) for large γ and with initial choice
u0h = 0 may fail to converge. Concerning the test example under investiga-
tion we note that the overlap of the active sets for the state and the controls
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Figure 2. Problem 1 (γ = 1E8, h = 1/256). Inactive set (white),
active set for the lower bound (gray) and for the upper bound
(black) in the left plot. Approximation of the active set for the
zero-order state constraint (black) in the middle plot. Overlap of
active regions for control and state constraints in the right plot.

Iterations
h/γ 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8
1
64 3 3 4 5 5 5 4 4 2
1

128 3 3 4 6 5 5 5 4 4
1

256 3 3 5 6 5 5 5 5 4
1

512 4 3 5 6 6 6 5 5 5
Table 1. Problem 1. Number of iterations for various mesh sizes
and γ-values.

is rather special. In this case, the bound on the state and the control satisfy
the state equation in the region of overlapping active sets.

Next we report on our findings for Problem 5.2. In Figure 3 we show
the state, control and multiplier µh upon termination for γ = 1E8 and
h = 1/256. Figure 4 shows the active and inactive sets for the constraints
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Figure 3. Problem 2 (γ = 1E8, h = 1/256). State yh, control
uh and multiplier µh upon termination of Algorithm 1.

on the control in the left plot and the approximation for the active set for the
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pointwise gradient-constraint on the state on the right. As before, Table 2

Figure 4. Problem 2 (γ = 1E8, h = 1/256). Inactive set (white),
active set for the lower bound (gray) and for the upper bound
(black) in the left plot. Approximation of the active set for the
zero-order state constraint (black) in the right plot.

provides the iteration numbers upon successful termination for various mesh
sizes and γ-values.

Iterations
h/γ 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8
1
32 6 6 6 4 3 3 2 2 2
1
64 7 7 6 4 4 3 3 2 2
1

128 7 7 6 5 5 4 3 2 2
1

256 7 7 6 6 5 5 4 3 2
Table 2. Problem 2. Number of iterations for various mesh sizes
and γ-values.

Concerning the mesh independence and the stability of the iteration
counts due to the employed γ-continuation scheme, the results of Table 2
support the same conclusions as for Problem 5.1. Again, without the con-
tinuation technique Algorithm 1 may fail to converge for the simple initial
guess u0h = 0. We observe that a stable (with respect to h and γ) and
a superlinear convergence behavior of the semismooth Newton method is
obtained without utilizing the lifting step.

Next we demonstrate the difference in regularity between λγ of Prob-
lem 5.1 (see Figure 5; left plot) and λsγ of Problem 5.2 (see Figure 5; right
plot). Note that for visualization purposes we linearly interpolate the multi-
plier values at the grid points. The approximate multiplier λγ,h reflects the
structural result obtained in [4]. According to this result, under sufficient
regularity the multiplier is L2-regular on the active set, zero on the inactive
set and measure-valued on the boundary between the active and inactive
set. Such a structure can be observed by inspecting the left plot of Figure 5.
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Figure 5. γ = 1E8, h = 1/256. Approximate multiplier λγ,h for
Problem 5.1 (left) and λsγ,h for Problem 5.2 (right).

On the other hand, for pointwise state constraints of gradient-type (first-
order constraints) additional regularity on the active set appears not to be
available for the example under investigation. Indeed, λsγ,h in the right plot

of Figure 5 exhibits low regularity in the interior of the (smooth) active set.
Finally we note that the rather small value for tol and the rather large

values for γ in our numerics reflect our interest of studying Algorithm 1
as a solver for a given discrete problem. In view of the error in discretiza-
tion, however, when solving (P) by a sequence of approximating problems
(Pγ) one would be interested in estimating the overall error in terms of the
discretization and the γ-relaxation error, respectively. Such a result would
allow a γ-choice such that both errors are balanced on a given mesh. This
kind of numerical analysis is important in its own right, but goes beyond
the scope of the present paper and is the subject of future research.





APPENDIX A

Some useful results

Given a vector norm ‖ · ‖ in R
n we assume throughout that for matrices

A,B ∈ R
n×n the corresponding norms satisfy the consistency relation

‖AB‖ ≤ ‖A‖ ‖B‖.

This condition is in particular satisfied if the matrix norm is induced by a
given vector norm, such as the ℓp-norms:

‖A‖ = max
v∈Rn,v 6=0

{‖Av‖
‖v‖

}

.

Theorem A.1. Let ‖ · ‖ denote any norm on R
n×n which satisfies the

consistency relation above, and let ‖I‖ = 1, E ∈ R
n×n. If ‖E‖ < 1, then

(I − E)−1 exists and

(90) ‖(I − E)−1‖ ≤ 1

1− ‖E‖ .

If A ∈ R
n×n is nonsingular and ‖A−1(B − A)‖ < 1, then B is nonsingular

and

(91) ‖B−1‖ ≤ ‖A−1‖
1− ‖A−1(B −A)‖ .

The next result is concerned with the approximation quality of a suffi-
ciently smooth nonlinear mapping.

Theorem A.2. Let F : Rn → R
m be continuously differentiable in the

open convex set D ⊂ R
n, x ∈ D, and let ∇F be Lipschitz continuous at x

in the neighborhood D (with constant L > 0). Then, for any x+ d ∈ D,

‖F (x+ d)− F (x)−∇F (x)d‖ ≤ L

2
‖d‖2.

Proof. By using a mean value type result in integral form, we find

F (x+ d)− F (x)−∇F (x)d =

∫ 1

0
∇F (x+ td)d dt −∇F (x)d

=

∫ 1

0
(∇F (x+ td)−∇F (x)) d dt.
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Using the Lipschitz property of the Jacobian, we get

‖F (x+ d)− F (x)−∇F (x)d‖ ≤
∫ 1

0
‖∇F (x+ td)−∇F (x)‖dt ‖d‖

≤ L‖d‖2
∫ 1

0
t dt(92)

=
L

2
‖d‖2.

�

Notice, if ∇F is Hölder continuous with exponent γ, with 0 < γ < 1 and L
still denoting the constant, then we obtain

‖F (x+ d)− F (x)−∇F (x)d‖ ≤ L

2
‖d‖1+γ .



APPENDIX B

Auxiliary result

The following proposition establishes the Newton differentiability of a
superposition of Newton differentiable maps.

Proposition B.1. Let f : Y → Z and g : X → Y be Newton differ-
entiable in open sets V and U , respectively, with U ⊂ X , g(U) ⊂ V ⊂ Y.
Assume that g is locally Lipschitz continuous and that there exists a New-
ton map Gf (·) of f which is bounded on g(U). Then the superposition
f ◦ g : X → Z is Newton differentiable in U with a Newton map GfGg.

Proof. Let x ∈ U and consider

|f(g(x+ h))− f(g(x))−Gf (g(x + h))Gg(x+ h)h|Z
= |f(w + k)− f(w)−Gf (w + k)k +R(x, h)|Z ,(93)

where w = g(x), k = k(h) = g(x + h) − g(x) and R(x, h) = Gf (g(x +

h))
(

g(x+ h)− g(x)
)

−Gf (g(x + h))Gg(x+ h)h. Observe that

|R(x, h)|Z = |Gf (g(x + h))
(

g(x + h)− g(x) −Gg(x+ h)h
)

|Z
≤ C|g(x+ h)− g(x)−Gg(x+ h)h|Y = O(|h|X )

as |h|X → 0 by Newton differentiability of g at x. Further, owing to the
local Lipschitz continuity of g there exists a constant L > 0 such that |g(x+
h) − g(x)|Y ≤ L|h|X for all h sufficiently small. Hence, |k(h)|Y = O(|h|X )
as |h|X → 0. Now we continue (93) by

|f(w + k)− f(w)−Gf (w + k)k +R(x, h)|Z
≤ |f(w + k)− f(w)−Gf (w + k)k|Z + O(|h|X )
=O(|k|Y ) + O(|h|X ) = O(|h|X )

as |h|X → 0, where we use Newton differentiability of f at g(x). This proves
the assertion. �
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[25] C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized
pointwise state constraints. Comput. Optim. Appl., 33(2-3):209–228, 2006.

[26] R. Mifflin, Semismooth and semiconvex functions in constrained optimization. SIAM
J. Control and Optimization, 15 (1977), pp. 957-972.
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[35] F. Tröltzsch. Regular Lagrange multipliers for control problems with mixed pointwise
control-state constraints. SIAM J. Optim., 15(2):616–634 (electronic), 2004/05.

[36] M. Ulbrich. Semismooth Newton methods for operator equations in function spaces.
SIAM J. Optimization, 13 (2003), pp. 805-842.


