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We consider an elliptic optimal control problem with control and pointwise state constraints. The cost functional is approxi-
mated by a sequence of functionals which are obtained by discretizing the state equation with the help of linear finite elements
and enforcing the state constraints in the nodes of the triangulation. The control variable is not discretized. A general error
bound for control and state is obtained which forms the starting point for optimal error estimates in both in two and three space
dimensions. For the numerical implementation of the discrete concept fix-point iterations or generalized Newton methods are
proposed.
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1 Optimization problem

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with a smooth boundary ∂Ω and consider an uniformly elliptic, coercive
differential operator Ay := −

∑d
i,j=1 ∂xj

(
aijyxi

)
+

∑d
i=1 biyxi

+ cy, with associated bilinear form a defined on H1(Ω). We
are interested in finite element analysis of the following control problem

min
u∈Uad

J(u) =
1
2

∫
Ω

|y − y0|2 +
α

2
‖u− u0‖2

U subject to y = G(Bu) and y(x) ≤ b(x) in Ω. (1)

Here, G denotes the solution operator associated to A, and Uad ⊆ U denotes the set of admissible controls which is assumed
to be a closed and convex subset of the Hilbert space U . Furthermore, we suppose that α > 0 and that y0 ∈ H1(Ω), u0 ∈ U ,
b ∈ W 2,∞(Ω) are given, and that B : U → (H1(Ω))∗ is linear and bounded. Clearly, (1) admits a unique solution u ∈ Uad.
We suppose a so called Slater condition. i.e. there exists some ũ ∈ Uad such that G(Bũ) < b in Ω̄.

Finite element analysis for elliptic control problems in the presence of control and state constraints is presented by Casas
in [1] who proves convergence of finite element approximations for finitely many state constraints. Casas and Mateos extend
these results in [2] to a less regular setting for the states and prove convergence of finite element approximations to semi-
linear distributed and boundary control problems. In [9] Meyer considers a fully discrete strategy to approximate an elliptic
control problem with pointwise state and control constraints. His results are similar to those presented by the authors in [3,4].
Constraints on the gradient of the state are considered by the authors in [5]. The discretization concept introduced in the next
section is developed in [6], where also tailored fixed point iterations and generalized Newton methods are proposed for the
numerical solution of the corresponding discrete problem (2), compare also [7].

2 Finite element discretization

Let Th be a quasi–uniform triangulation of Ω with maximum mesh size h := maxT∈Th
diam(T ) and vertices x1, . . . , xm.

Furthermore, let Xh ⊂ H1(Ω) denote some associated finite element space consisting of continuous, piecewise polynomial
functions. We suppose that Ω̄ is the union of the elements of Th so that element edges lying on the boundary are curved.
Problem (1) is now approximated by the following sequence of control problems depending on the mesh parameter h:

min
u∈Uad

Jh(u) :=
1
2

∫
Ω

|yh−y0|2+
α

2
‖u−u0,h‖2

U subject to yh = Gh(Bu) and yh(xj) ≤ b(xj) for j = 1, . . . ,m. (2)

Here, Gh denotes the finite element solution operator associated to G, and u0,h denotes an approximation to u0 which is
assumed to satisfy ‖u0 − u0,h‖ ≤ Ch. Clearly, problem (2) admits a unique solution uh ∈ Uad. We note that the set Uad is
not discretized so that uh in general does not represent a finite element function. This is different to the common approaches
considered in the literature to approximate (1). There holds
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Theorem 2.1 Let u, uh denote the unique solutions to (1), (2) with associated states y, yh. Then

α‖u− uh‖2
U + ‖y − yh‖2 ≤ 〈B(uh − u), (p− ph)〉(H1)∗,H1 +

∫
Ω

(y − yh)(y − yh)−

− α (u0 − u0,h, uh − u)U +
∫

Ω̄

(y − yh)dµ +
∫

Ω̄

(Ihb− b)dµ +
∫

Ω̄

(yh − y)dµh +
∫

Ω̄

(b− Ihb)dµh. (3)

Here, yh = Gh(Buh), yh = Gh(Bu), Ih denotes the Lagrange interpolation operator, and ph ∈ Xh denotes the unique
solution of a(wh, ph) =

∫
Ω
(y − y0)wh +

∫
Ω̄

whdµ for all wh ∈ Xh. Furthermore, p, ph denote adjoint and discrete adjoint
states associated to the state and discrete state equation, respectively, and µ, µh denote multipliers associated to the constraints
on the state and its finite element discretization, respectively. A proof of this theorem can be deduced from the proof of [4,
Theorem 3.2]. Estimate (3) is optimal, since it allows to estimate the error ‖u−uh‖ in the controls using the weakest possible
norms of p − ph and y − yh, respectively. Using standard finite element analysis together with the fact that µh is uniformly
bounded w.r.t. h in the space of regular Borel measures ( [4, Lemma 2.4]) it is possible to deduce from (3) for continuous,
linear finite elements

‖u− uh‖U , ‖y − yh‖H1 ≤

 Ch1− d
4 ,

Ch
3
2−

d
2s

√
| log h|, if Bu ∈ W 1,s(Ω) for s ∈

[
1, d

d−1

)
.

(4)

2.1 Numerical example

The following test problem is taken - in a slightly modified form - from [8, Example 6.2]. Let Ω := B1(0) ⊂ R2, α > 0,
Uad ≡ U := L2(Ω), B : L2(Ω) → H1(Ω)∗ denote the injection,

y0(x) := 4 +
1
π
− 1

4π
|x|2 +

1
2π

log |x|, u0(x) := 4 +
1

4απ
|x|2 − 1

2απ
log |x|

and b(x) := |x|2 + 4. We consider problem (2) for this setting, where we use linear, continuous finite elements for the
approximation of yh. By checking the optimality conditions of first order one verifies that u ≡ 4 is the unique solution of
(1) with corresponding state y ≡ 4, see [3]. The experimental order of convergence for a sequence of conform, uniform
refinements of the unit disc up to RL = 5 refinement levels is reported in Table 1 for the error functionals E(h) := ‖u −
uh‖, ‖y − yh‖. It confirms the analytical findings of (4) for the controls u, uh. The order of convergence for y, yh is better
than expected which may be explained by the fact that y ∈ Xh.

The experimental order of convergence for an error
functional E(h) > 0 is defined by

EOC :=
log E(h1)− log E(h2)

log h1 − log h2
.

Its value is equal to κ if E(h) ≤ Chκ, with some
constant C > 0.

RL ‖u− uh‖ ‖y − yh‖
1 0.788985 0.536461
2 0.759556 1.147861
3 0.919917 1.389378
4 0.966078 1.518381
5 0.986686 1.598421

Table 1 Experimental order of convergence
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