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Abstract. We construct models for the motivic homotopy category based
on simplicial functors from smooth schemes over a field to simplicial sets.

These spaces are homotopy invariant and allow an easier characterization of

the fibrant objects as the motivic models are obained by a smaller Bousfield
localization from an objectwise structure.

Introduction

In this note, we study certain simplicial functors as an alternative for simplicial
presheaves in the construction of the motivic homotopy category. Along the way we
give a terse introduction to motivic homology and cohomology and its connection
to motivic homotopy theory in order to motivate the technical effort necessary for
the setup of the presented results. A short overview of models for the motivic
homotopy category based on simplicial presheaves is given and by using a method
of Beke we show that there exists an infinite number of them. This serves as a list of
examples of model structures lifting to enriched simplicial presheaves. An enriched
simplicial presheaf is a simplicial functor from a category of schemes enriched over
simplicial sets to the category of simplicial sets enriched over itself. Considering
enriched simplicial presheaves instead of simplicial presheaves seems to be quite
natural in the spirit of motivic homotopy theory. For example there is a naive
homotopy contracting the affine line in the category of schemes. More precisely,
for any constant map c there exists a morphism H of smooth schemes over a field,
such that the diagram

A1

i0 $$HHHHHHHHH
c

&&
A1 × A1 H // A1

A1
id

88
i1

;;vvvvvvvvv

commutes. The simplicial presheaf represented by A1 resists to be weakly equiv-
alent to the point until it is finally forced to be weakly contractible by Bousfield
localization. In contrast to this the enriched simplicial presheaf represented by A1

is objectwise contractible (cf. Corollary 3.4). Hence the motivic models can be
obtained without the A1-contracting Bousfield localization.

In the first section we recall the definition of motivic homology and cohomology
through an analogy to singular homology and cohomology in algebraic topology. In
the second section, the A1-local injective, projective and intermediate model struc-
tures on the category of simplicial presheaves are presented. It is shown that an
infinite numbers of non-intermediate model structures with the same weak equiv-
alences exist. In the third section the category of enriched simplicial presheaves is
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introduced and a few properties of enriched simplicial presheaves are verified. Even-
tually, in the fourth section we construct model structures on enriched simplicial
presheaves and discuss some of their properties.

This note was written as a result of our Diploma theses at the Department of
Mathematics at the University of Bielefeld. We would like to thank Prof. Markus
Rost for his support. We are particularly grateful to Prof. Oliver Röndigs for many
helpful discussions and his help in accomplishing this project.

1. Unstable motivic cohomology

In this section we recall some notations which are used in the sequel. One may
regard this section as a brief and topologically flavoured introduction to motivic
homology and cohomology.

Throughout this section let G be an abelian group and k be a field. We consider
the homological viewpoint first. Motivic homology with coefficients in G consists
of a functor

Hmot
p,q (−, G) : Sm/k → Ab

for every pair (p, q) of integers from the category Sm/k of smooth and separated
schemes of finite type over k to the category Ab of abelian groups (one reason for
considering only smooth schemes is the Homotopy Purity theorem [MV99, 2.23]).

Motivic homology is strongly related to singular homology of topological spaces.
Given an integer p, the p-th singular homology group Hp(X) of a topological space
X with coefficients in G is defined as the p-th homology group of the chain complex

. . .→ G⊗ Z[hom(∆n, X)]→ . . .→ G⊗ Z[hom(∆0, X)]→ 0

with the usual alternating sums as boundary maps. The only topological input to
this singular chain complex besides the space X itself is given by the topological
cosimplicial object ∆(-) : ∆→ T op determined by the standard simplices.

An algebraic analogue to ∆p is given by the object

∆∆p = Spec k[X0, . . . , Xp]/(1−
∑
Xi),

which is isomorphic to Ap and ∆∆(-) induces a cosimplicial object in Sm/k. There-
fore a first attempt to define motivic homology would be to mimic the topological
construction with the algebraic cosimplicial object in place of the topological one.
However, this naive approach does not work: one notes for example that

hom(Spec Q,Spec Q(
√

2)) ∼= hom(Q(
√

2),Q) = ∅
but it is not reasonable that Hmot

p (Q(
√

2),Z) is zero and Hmot
p (Q,Z) = Z.

The right way to define motivic homology is by using an analogue of the topo-
logical Dold-Thom theorem which was discovered by Suslin and Voevodsky [SV96].
For a connected topological space X, there is a weak homotopy equivalence

SP∞(X)→ |Z[hom(∆(-), X)] |
where the right hand side is a realized simplicial set and where SP∞(X) denotes the
infinite symmetric product of X, i.e. the colimit of SPn(X) = X+ ∧ . . . ∧X+/Σn
with respect to the structure maps (x1, . . . , xn) 7→ (x1, . . . , xn, ∗) [DT58]. By in-
terpreting this relation algebraically one defines for a connected scheme D ∈ Sm/k
and an arbitrary X ∈ Sm/k the set elCor(D,X) of elementary correspondences
from D to X as the set of closed and irreducible subsets M of the fiber product
D ×k X such that the canonical map of schemes

Mred ⊆ D ×k X → D

is finite and surjective. The graph of a morphism gives an injective but not sur-
jective map hom(D,X) → elCor(D,X). This makes use of the separability of X.
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The above mentioned problem is solved since elCor(Spec Q,Spec Q(
√

2)) = ∗. One
writes CorG(D,X) instead of G ⊗ Z[elCor(D,X)] and omits the reference to the
group if integer coefficients are used. This construction is in fact functorial [Voe02].

Set

Hmot
p (X,G) = Hp(CorG(∆∆(-), X))

for an integer p and a scheme X of Sm/k. The following theorem of Suslin and
Voevodsky underlines the tenability of this definition.

Theorem 1.1 ([SV96]). Let k = C, X ∈ Sm/k and l be a prime. Then

Hmot
p (X,Zl) ∼= Hp(X(k),Zl)

where X(k) denotes the k-rational points of X endowed with the subspace topology.

The Dold-Kan correspondence [Dol58, Theorem 1.9] is an equivalence of cate-
gories

N : sAb � Ch≥0(Ab) : K

with π∗(−, 0) corresponding to H∗(−). This expresses the singular homology of a
topological space X in the homotopy category of pointed topological spaces by

Hp(X) =
[
|∆p/∂∆p |, | Z̃[hom(∆(-), X+)] |

]
T op∗

where Z̃[−] : sSet∗ → sAb is the left adjoint Z̃[∗ → A] = Z[A]/Z[∗] of the functor

Ũ[−] which considers a simplicial abelian group as a simplicial set pointed by zero.
The usual realization functor |−| : sSet∗ → T op∗ is part of an adjunction whose
unpointed version |−| : sSet � T op : Sing is obtained by the following standard
lemma on left Kan extensions [Bor94a].

Lemma 1.2 (Adjunction Lemma). Let D be an essentially small category, C a
cocomplete category and c : D → C a functor. There exists a commutative diagram

D Yoneda //

c
##FF

FF
FF

FF
FF

Pre(D)

|−|
��
C

and an adjunction |−| : Pre(D) � C : Sing with Sing(X) = hom(c(−), X).

This Lemma fails to be applied directly to the case c = ∆∆(-) since the category
Sm/k is not cocomplete. A canonical way to complete and cocomplete a category
C is by considering the category Pre(C) of presheaves on it. Although one could
describe motivic homology analogously to the topological case in some homotopy
category of Pre∗ [MV99, Proposition 3.14], one enlarges the category of spaces
again by embedding it constantly in the simplicial direction into the category sPre
of simplicial presheaves since it is more natural to develop a homotopy theory there.
There is a diagram of full subcategories

Sm/k → Pre→ sPre← sSet

where the category of simplicial sets is embedded constantly in the presheaf direc-
tion. By applying the Adjunction Lemma to the (embedded) algebraic cosimplicial
object c = ∆∆(-), one obtains an adjunction

|−| : sSet∗ � sPre∗ : Sing.

To describe motivic homology in a suitable homotopy category of pointed simpli-
cial (pre)sheaves, Morel and Voevodsky developed the motivic homotopy category
[MV99]. It is the homotopy category, respectively, of several model structures on
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the category sPre. These motivic model structures are discussed in the next sec-
tion. For all these models, the above adjunction (|−|,Sing) is a Quillen adjunction.
Motivic homology can be expressed as

Hmot
p (X) = Hp(Cor(∆∆(-), X))

=
[
∆p/∂∆p , Cor(∆∆(-), X)

]
sSet∗

=
[

∆p/∂∆p ,Sing(C̃or(−, X+))
]

sSet∗

=
[
Sps , C̃or(−, X+)

]
sPre∗

where Sps = |∆p/∂∆p| and C̃or(D, ∗ → X) = Cor(D,X)/Cor(D, ∗). The usual
smash product gives rise to a closed symmetric monoidal structure on the category
sPre∗ and one observes that Sps ' S1

s ∧ . . . ∧ S1
s . Besides the simplicial sphere S1

s

with rational points S1
s (C) ' S1 ' S1

s (R) there is another reasonable sphere which
captures algebraic phenomena. This algebraic sphere S1

t is defined as the scheme
A1 \ {0} pointed by 1. Note that S1

t (C) ' S1, S1
t (R) ' S0 and S1

s ∧ S1
t ' (P1,∞)

[Voe98, Lemma 4.1]. This leads to the bi-indexed definition

Hmot
p,q (X) =

[
Sp−qs ∧ Sqt , C̃or(−, X+)

]
sPre∗

of motivic homology. Smashing with a negative exponent sphere on the left hand
side should be interpreted as smashing with the associated positive one on the right.

Now we focus on the cohomological viewpoint. The p-th singular cohomology
group of a topological space X consists of the group

Hp(X) =
[
X+, | Z̃[hom(∆(-), Sp)] |

]
T op∗

where the latter space is an Eilenberg-MacLane space K(Z, p). An analogous and
appropriate definition of motivic cohomology requires a change in the notation of
correspondences since the simplicial sphere is not a scheme.

The category SmCor/k has the same objects as Sm/k and morphism groups
Cor(D,X) = Z[∪elCor(Di, X)] where the Di denote the connected components of
D. The cruicial point is to define the composition. A detailed construction can be
found in [Voe02]. The graph of a morphism defines a functor Γ : Sm/k → SmCor/k.
Let PST be the abelian category of additive functors from the category SmCor/kop

to the category of abelian groups. There is a diagram of full additive subcategories

SmCor/k → PST→ sPST← sAb

as above. The category PST is symmetric monoidal closed with respect to the
canonical tensor product existing by general results on enriched categories [Day70].
The category sPST is also symmetric monoidal closed by taking the tensor product
of PST degreewise. Applying the Adjunction Lemma to c(U, [n]) = Cor(−, U) ⊗
Z[∆n] yields a symmetric monoidal adjunction

Z̃tr : sPre∗ � sPST : Ũtr

where the right adjoint is given by Ũtr(X) = Ũ[−] ◦ X ◦ Γ. The isomorphism

C̃or(−, X+) ∼= ŨtrZ̃tr(X+) gives

Hmot
p,q (X) =

[
Sp−qs ∧ Sqt , ŨtrZ̃tr(X+)

]
sPre∗

and one defines motivic cohomology (for p ≥ q and q ≥ 0) as

Hp,q
mot(X) =

[
X+ , ŨtrZ̃tr(S

p−q
s ∧ Sqt )

]
sPre∗

where the latter space is a motivic Eilenberg-MacLane space K(Z, q)[p] in sPre∗.
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To get rid of the restriction on the indices p, q and to describe the relation
to an approach to motivic cohomology using chain complexes [Voe00, MVW06],
one defines a model structure on the abelian category sPST by detecting the weak
equivalences and the fibrations via the right adjoint Ũtr in the A1-local projective
model structure on sPre∗ [Voe07, RØ08]. The adjunction (Z̃tr, Ũtr) becomes a
Quillen adjunction and one has

Hp,q
mot(X) =

[
X+ , ŨtrZ̃tr(S

p−q
s ∧ Sqt )

]
sPre∗

=
[
Z̃tr(X+) , Z̃tr(S

p−q
s ∧ Sqt )

]
sPST

=
[
Z̃tr(X+) , Z̃tr(S

p−q
s )⊗ Z̃tr(S

q
t )
]

sPST.

Tensoring with a negative exponent sphere on the right hand side could be in-
terpreted as tensoring with the associated positive one on the left which gives a
definition of motivic cohomology without a restriction on the indices.

The category Ch≥0(PST) of non-negative chain complexes of preasheaves with
transfers can be equipped with the usual projective model structure where weak
equivalences are the quasi-isomorphisms and the fibrations are the epimorphisms
in positive degrees [CH02]. This model structure may be localized by the standard
technique of Bousfield localization in the same way as it is done to construct the
A1-local projective model structure on sPre∗ from the projective one [Voe07]. The
outcome is the A1-local projective model structure on Ch≥0(PST) and each of the
adjunctions (N,K) and (K,N) of the Dold-Kan correspondence

N : sPST � Ch≥0(PST) : K

is a Quillen equivalence. The category Ch−(PST) = Ch+(PST) of bounded above
cochain complexes of presheaves with transfers admits a A1-local projective mo-
noidal model structure constructed analogously to the case Ch≥0(PST) [Voe00].

The associated homotopy category is denoted by DMeff,−
Nis . This is Voevodsky’s

category of effective motives [Voe00]. The inclusion functor

ι : Ch≥0(PST)→ Ch−(PST)

is well defined on homotopy classes of maps and one has

Hp,q
mot(X) =

[
Z̃tr(X+) , Z̃tr(S

p−q
s )⊗ Z̃tr(S

q
t )
]

sPST

= homDMeff,−
Nis

(
MZ(X+) , MZ(Sp−qs )⊗MZ(Sqt )

)
where MZ : sPre∗ → DMeff,−

Nis denotes the composed functor ιN Z̃tr and maps a
scheme X of Sm/k to its associated motive MZ(X). The motive MZ(X) of a
scheme X is represented by the chain complex

. . .
0−→ Cor(−, X)

id−→ Cor(−, X)
0−→ Cor(−, X) → 0

2 1 0 -1

of presheaves with transfers which is a cofibrant but not generally a fibrant object
in Ch−(PST). Tensoring a chain complex with the simplicial circle corresponds to
a shift of the cochain complex to the left such that its former zeroth entry becomes
the first. The chain complex associated to the motivic Eilenberg-MacLane space
Z̃tr(S

p−q
s ∧ Sqt ) is given by

. . . →
⊗q

Cor(−,A1 \ 0)/Z → . . . →
⊗q

Cor(−,A1 \ 0)/Z → 0
p-q+k p-q p-q-1
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which is also cofibrant but not generally fibrant in the A1-local projective model
structure on Ch−(PST). A fibrant replacement for this cochain complex is called
the motivic complex Z(q)[p] [MVW06, Definition 3.1].

2. Model structures for motivic homotopy theory

The main focus of this section is on giving a brief survey of model structures
available for localizing sPre(Sm/k) to the motivic homotopy category H(k) in the
sense of Morel and Voevodsky [MV99]. This will serve as a collection of examples
for model structures lifting to the category of enriched simplicial presheaves in the
following section.

Model structures on simplicial presheaves on a general category C have taken
a developement starting at the latest with [BK72] and Jardine’s extension [Jar87]
of Joyal’s model structure [Joy84] from simplicial sheaves to presheaves. In the
following paragraphs we will always consider the case C = Sm/k and continue to
denote the category of simplicial presheaves on Sm/k by sPre. A morphism in sPre
is called a local weak equivalence if it induces isomorphisms on sheaves of homotopy
groups. These are defined to be the sheafification of the presheaf given by taking
usual homotopy groups of the objectwise realization of a simplicial presheaf. The
sheafification process requires a topology on Sm/k to make sense and the Nisnevich
topology has turned out to be most convenient (the Homotopy Purity theorem does
not hold when the Zariski topology is used [MV99, 2.23] and Algebraic K-Theory
is not representable when the étale topology is used [MV99, 3.9]). We denote by
W the class of all local weak equivalences. Let Hs(k) be the homotopy category of
the localizer (sPre,W ). A proof of the existence of Hs(k) through giving a model
structure on sPre with W as weak equivalences can be found in [Jar87, Theorem
2.3]. The main reason for defining local weak equivalences this way is to repair the
loss of geometric information in the transition Sm/k ↪→ sPre. The problem can
most easily be seen when passing from Sm/k to presheaves. Consider the usual
glueing construction

A1 \ 0

��

// A1

��
A1 // P1

of the projective line. The Yoneda embedding takes this diagram to a diagram of
presheaves which is a pushout if and only if all presheaves X take it to a pullback
diagram

(2.1) X(P1)

��

// X(A1)

��
X(A1) // X(A1 \ 0)

of sets. Using the presheaf X = Pic(−) we have X(P1) ∼= Z and X(A1) ∼= 0, so the
diagram (2.1) is not generally a pullback.

Taking local weak equivalences to be defined by a sufficiently fine topology
(e.g. the Nisnevich topology) the induced morphism

A1
∐
A1\0

A1 → P1

of simplicial presheaves is a local weak equivalence as explained in [DHI04]. In
fact Dugger, Hollander and Isaksen show in [DHI04, Theorem 6.2] that local weak
equivalences emerge from objectwise weak equivalences by left Bousfield localization
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at the class of all hypercovers. At this point the category of smooth k-schemes
still embedds into the homotopy category Hs(k), but the next step of localization
will change this. Inspired by the topological situation and the naive homotopy
equivalence A1 → ∗ in Sm/k one makes the following definition.

Definition 2.1. An object Z ∈ sPre is called A1-local if for any X ∈ sPre the
projection X × A1 → X induces a bijection

homHs(k)(X,Z)→ homHs(k)(X × A1, Z).

A morphism X → Y in sPre is called A1-local weak equivalence if for any A1-local
object Z the induced map

homHs(k)(Y, Z)→ homHs(k)(X,Z)

is a bijection. Let WA1 be the class of A1-local weak equivalences.

The following theorem is a starting point of motivic homotopy theory.

Theorem 2.2 (Morel, Voevodsky [MV99, Theorem 2.3.2]). There is a proper sim-
plicial cofibrantly generated model structure on sPre with A1-local weak equivalences
as weak equivalances and monomorphisms as cofibrations.

This model structure is called the A1-local injective model structure on simplicial
presheaves and the associated motivic homotopy category is denoted by H(k). This
model structure is a left Bousfield localization of Jardine’s local injective model
structure with respect to the class

C =
{
U × A1 pr−→ U | U ∈ Sm/k

}
of morphisms in sPre. Hence a lot of work for proving the above theorem is done in
[Jar87, Theorem 2.3]. As a consequence of the localization the affine line is forced
to be contractible and all cylinders on an object X contract to X, but one should
be warned that X ×A1 does not have to be a cylinder object in all of the following
model structures.

The A1-local injective model structure is one end of a family of model structures
which follow a more general pattern, outlined by Jardine [Jar06] as a generalization
of Larusson’s model structure [Lar04]. Before we discuss this general pattern we
take a look at the families other end, the so-called A1-local projective model struc-
ture. It arises in the same manner as its injective analogue by Bousfield localization
of a local projective structure [Bla01, Theorem 1.6].

Theorem 2.3 (Blander [Bla01, Theorem 2.3]). The category sPre admits a proper
simplicial cofibrantly generated model structure with A1-local weak equivalences as
weak equivalences and morphmisms with the left lifting property with respect to
objectwise acyclic fibrations as cofibrations.

Generating (A1-local) projective cofibrations are given by the small class

S0 :=
{
U × ∂∆n idU ×i−−−−→ U ×∆n | U ∈ Sm/k, n ≥ 0

}
of morphisms in sPre, i.e. the cofibrations cofproj are exactly the maps with left
lifting property with respect to all maps with the right lifting property with respect
to all maps in S0. Due to a smallness condition fulfilled by all simplicial presheaves
the description of cofproj can be made a little more explicit by saying that every
cofibration is a retract of a transfinite composition of pushouts along the maps in
S0.

More generally any small class S of morphisms in sPre such that

S0 ⊆ S ⊆ {monomorphisms}
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gives rise to an intermediate model structure MS by the following process. Define

S̄ := {s�in : B × ∂∆n ∪A×∂∆n A×∆n ↪→ B ×∆n | s ∈ S, n ≥ 0}

to be class of pushout products of the morphisms in S with the boundary inclusions
of the standard simplices. The class of S-cofibrations cofS is then given by the
saturation cofS = (S̄ -inj) -proj.

Theorem 2.4 (Jardine, [Jar06]). The category sPre admits a proper simplicial
cofibrantly generated model structure MS with A1-local weak equivalences as weak
equivalences and S-cofibrations as cofibrations.

The model structureMS is intermediate in the sense that idsPre gives a diagram

Mprojective →MS →Minjective

ordered by the perspective of left Quillen equivalences.
An example of an intermediate model structure of particular importance is Isak-

sen’s flasque model structure [Isa05]. Let UI := {Ui → X}i∈I be a finite (possibly
empty) family of monomorphisms in Sm/k and denote by U the coequalizer of the
diagram ∏

i,j

Ui ×X Uj ⇒
∏
i

Ui

of simplicial presheaves. Define Sflasque to be the collection of all monomorphisms
U → X induced by finite families as above. The Sflasque-cofibrations are called
flasque cofibrations and we get the following result of Isaksen [Isa05, Section 4.] as
a corollary of the above theorem.

Theorem 2.5 (Isaksen). The category sPre admits a proper simplicial cofibrantly
generated model structure with A1-local weak equivalences as weak equivalences and
flasque cofibrations as cofibrations.

In [PPR09] Panin, Pimenov and Röndigs use another intermediate model struc-
ture which they call closed motivic model structure. It is a slight variation of the
flasque model structure, built in the same way but just allowing finite families of
closed embeddings as UI .

Different choices of the class of morphisms S may define the same intermediate
model structure. Using a method of Beke [Bek08] based on the Quillen equivalence

sd : sSet � sSet : Ex

of subdivision we show that a countably infinite number of different model struc-
tures with A1-local weak equivalences as weak equivalences exists.

Lemma 2.6. Let cof0 = cofproj be the class of projective cofibrations. There exists
a strictly descending sequence of classes

cof0 ⊃ cof1 ⊃ cof2 ⊃ . . .

such that for any n ≥ 0 the class cofn fits into a left proper cofibrantly gener-
ated model structure Mn with A1-local weak equivalences as weak equivalences and
cofibrations cofn.

Proof. One starts with the projective model structure on sPre, i.e. with fibrations
and weak equivalences being defined objectwise. The functors sd and Ex induce an
adjunction

sd∗ : sPre � sPre : Ex∗
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on simplicial presheaves which can be used to lift the projective model structure
along the right adjoint using the Lifting Theorem [Hir03, Theorem 11.3.2.]. Since
Ex∗ preserves filtered colimits it remains to show that for all pushout squares

sd∗(X × Λnk )

sd∗(j)

��

// Y

p

��
sd∗(X ×∆n) // Z

the morphism Ex∗(p) is a weak equivalence. This can be done by recognising that
sd∗(j) is still an acyclic projective cofibration and that Ex∗ preserves objectwise
weak equivalences. By induction we obtain a sequence

. . .→ sPre2
id−→ sPre1

id−→ sPre0 = sPreproj

of left Quillen equivalences. The Bousfield localization gives the claimed Quillen
equivalence of model structures Mn with A1-local weak equivalences using [Hir03,
Theorem 3.3.20] by evaluating the derived left adjoint L idsPre at a class localizing
from the projective to the A1-local projective model structure. By Beke’s Theorem
[Bek08, Proposition 2.3], for any n ≥ 0, there exists a simplicial set X, such that
Exn(X) is not fibrant, but Exn+1(X) is. As a constant simplicial presheaf X is
therefore not fibrant inMn, but it is fibrant inMn+1. Hence this model structures
are actually distinct. �

To summarize the results presented in this section the identity on sPre as left
Quillen equivalence gives a totally ordered chain

. . .→M1 →M0 →Mproj →Mclosed →Mflasque →Minj

of the mentioned model structures. Every representable object of Sm/k is cofibrant
in each of these model structures but not fibrant in general. A model structure
on the category sPre of simplicial presheaves induces a model structure on the
associated pointed category sPre∗ by detecting weak equivalences, cofibrations and
fibrations with the forgetful functor [Hov99, Proposition 1.1.8].

3. Enriched simplicial presheaves

In this section we introduce the category SPre of enriched simplicial presheaves
as an alternative for the category sPre of simplicial presheaves. The construction of
SPre is based on categories enriched over simplicial sets. In a simplicial category C
there are hom-simplicial sets sSetC(A,B) instead of just hom-sets associated with
any two objects, in a way compatible with an associative and unital composition.
The 0-simplices of sSetC(A,B) can be thought of as morphisms A → B. The
relation of being connected by a zig-zag of 1-simplices models a notation of naive
homotopy depending on the enrichment. In the following we consider sSet as a
simplicial category by

sSetsSet(A,B)n = homsSet(A×∆n, B)

and the naive homotopy relation turns out to be perfectly sensible in the sense that
it coincides with the notation of left homotopy in the usual model structure on
simplicial sets. This enrichment is natural in many aspects, for example it is given
by the Yoneda embedding and the following straightforward lemma.

Lemma 3.1. Let C be a category with finite products. Any cosimplicial object
c : ∆→ C with c0 the terminal object of C gives rise to a simplicial category, which
we also denote by C, with underlying category C and

sSetC(A,B)n = homC(A× cn, B).
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Proof. A map σ : [m]→ [n] in ∆ induces a map sSetC(A,B)n → sSetC(A,B)m by
assigning the composite

A× c([m])
(pr1,c(σ)◦pr2)−−−−−−−−−→ A× c([n])

f−→ B

to f ∈ sSetC(A,B)n. Clearly sSetC(A,B)(id[n]) = idsSetC(A,B)n and one observes
that for composable morphisms σ and τ in ∆ the identity

sSetC(A,B)(τ ◦ σ)(f) = f ◦ (pr1, (c(τ ◦ σ) ◦ pr2))

= sSetC(A,B)(σ) ◦ sSetC(A,B)(τ)(f)

holds and hence sSetC(A,B) is in fact a simplicial set. The composition maps

cABC : sSetC(B,C)× sSetC(A,B)→ sSetC(A,B), (g, f) 7→ g ◦ (f, pr2)

are maps of simplicial sets and satisfy the relevant coherence diagrams [Bor94b,
6.9,6.10]. The underlying category UC has by definition the same objects as C and
the hom-sets are given by

homUC(A,B) := homsSet(∆[0], sSetC(A,B))
∼= sSetC(A,B)0

∼= homC(A,B).

The composition in UC is the same as composition in simplicial dimenstion 0 of the
enriched category and therefore UC ∼= C. �

By applying this lemma to the algebraic cosimplicial object ∆∆ one obtains Sm/k
as a simplicial category.

Definition 3.2. The category SPre of enriched simplicial presheaves is the cate-
gory of simplicial functors from Sm/kop to sSet, i.e. functors X assigning a simpli-
cial set XU to any smooth k-scheme U and a morphism

sSetSm/k(U, V )→ sSetsSet(XV,XU)

of simplicial sets to any pair of objects U, V compatible with composition.

The notation of naive homotopy in the simplicial category Sm/k is not completly
convenient, but includes some reasonable aspects as for example

sSetSm/k(S1
t , S

1
t )∗/∼naive

equals the integers. A discussion of this naive homotopy relation in Sm/k can be
found in section 2 of [Mor04].

The Adjunction Lemma 1.2 applied to the functor

c : Sm/k ×∆→ SPre, (U, [n]) 7→ sSetSm/k(−, U)×∆n

provides a symmetric monoidal adjunction

(3.1) L : sPre � SPre : R

of cartesian closed categories. The composite functor RL is well known and was
already studied in [MV99] as a functor called Sing, defined as

Sing(X)(U)m = homPre(U ×∆∆m, Xm).

Lemma 3.3. The functors RL and Sing coincide.
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Proof. Since the functors R,L and Sing preserve colimits we only need to check
their behavior on representable objects.

RL(U ×∆n)(V, [m]) = homSPre(sSetSm/k(−, V )×∆m, sSetSm/k(−, U)×∆n)
∼= sSetSPre(sSetSm/k(−, V ), sSetSm/k(−, U)×∆n)m
∼= homSm/k(V ×∆∆m, U)×∆n

m

∼= U(V ×∆∆m)m ×∆n
m

∼= homPre(V ×∆∆m, Um)×∆n
m

∼= Sing(U ×∆n)(V )m

�

Corollary 3.4. The enriched simplicial presheaf represented by the affine line is
objectwise contractible.

Proof. As a corollary of Lemma 3.3 we obtain

A1(U) = sSetSm/k(U,A1) = LA1(U)

= RLA1(U) = Sing(A1)(U)

which is contractible by [MV99, Corollary 3.5]. �

The following lemma is a generalization of the bicompleteness of presheaf cate-
gories to enriched category theory.

Lemma 3.5. The category of enriched simplicial presheaves is bicomplete and col-
imits and limits can be computed objectwise.

Proof. The category SPre is the underlying category of a sSet-category in which
all weighted sSet-colimits and limits exist [Bor94b, Proposition 6.6.17], so SPre is
bicomplete by [Bor94b, Proposition 6.6.16]. �

We use the conventional terminology and say that a set I of morphisms in a
category permits the small object argument, if the domains of the elements of I are
small relative to transfinite compositions of pushouts of elements in I.

Lemma 3.6. Let I be a set of morphisms in sPre. Then the set LI of morphisms
in SPre permits the small object argument.

Proof. We make use of the fact that all objects in the locally presentable category
sPre are small. So there exists a cardinal κ, such that for all κ-filtered ordinals λ
and any λ-sequence S : λ→ SPre the following diagram commutes.

colim
β<λ

homSPre(LX,Fβ)

∼=
��

Φ // homSPre(LX, colim
β<λ

Fβ)

∼=
��

colim
β<λ

homsPre(X,RFβ)
∼= // homsPre(X, colim

β<λ
RFβ)

Hence LX is small and LI permits the small object argument. �

Parallel to the construction of enriched simplicial presheaves, there is an additive
category of enriched simplicial presheaves with transfers denoted by SPST. The
category of simplicial abelian groups is canonically enriched by sAb(A,B) = Ab(A⊗
Z[∆(-)], B). Also SmCor/k is an sAb-category with sAb(X,Y ) = Cor(X ⊗∆∆(-), Y ).
An additive version of the Adjunction Lemma 1.2 applied to the functor

c : SmCor/k ⊗ Z∆→ sPST, c(U, [n]) = sAb(−, U)⊗ Z[∆n]
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provides an additive adjunction (Ltr, Rtr) between sPST and SPST. The composite
functor RtrLtr coincides with the additive functor Singtr defined by

Singtr(X)(U)m = Ab(U ⊗∆∆m, Xm).

The set LI permits the small object argument for every set I of morphisms in sPST.
One obtains a diagram of symmetric monoidal adjunctions

(3.2) sPre∗
L∗ //

Z̃tr

��

SPre∗
R∗

oo

Z̃tr

��
sPST

Ltr //

Ũtr

OO

SPST,
Rtr

oo

Ũtr

OO

where the functor Ztr comes from an enriched version of the Adjunction Lemma
1.2 and is defined by Ztr(sSetSm/k(−, U)×∆n) = sAbSmCor/k(−, U)⊗ Z[∆n]. Its

right adjoint is given by Ũtr(X) = Ũ [−] ◦X ◦ Γ.

4. Model structures for enriched simplicial presheaves

In this section we construct several model structures on the category SPre of
enriched simplicial presheaves. These model structures correspond to model struc-
tures on the category sPre of simplicial presheaves which are presented in the pre-
vious sections. Subsequently, Corollary 4.8 gives a characterization of the fibrant
objects. Finally motivic homology and motivic cohomology are represented in a
homotopy category of enriched simplicial presheaves with transfers.

Definition 4.1. Let C and D be a model categories and L : C � D : R an
adjunction. The model structure on D is called (L,R)-lifted if a morphism f of
D is a weak equivalence (resp. a fibration) if and only if R(f) is a weak equiva-
lence (resp. a fibration) of C. A cofibrantly generated model category C is called
(I, J)-cofibrantly generated if I is a set of generating cofibrations and J is a set of
generating acyclic cofibrations for the model structure on C.

If C is a model category, L : C � D : R an adjunction and D is equipped with
the (L,R)-lifted model structure, then the adjunction (L,R) is necessarily a Quillen
adjunction since the right adjoint R preserves fibrations and acyclic fibrations. The
lifted model structure on D is right proper if and only if C is a right proper model
category.

Lemma 4.2 (Lifting Lemma). Let C be a (I, J)-cofibrantly generated model cate-
gory, D a bicomplete category and L : C � D : R an adjunction such that the right
adjoint R commutes with colimits and LI and LJ permit the small object argument.
Then there exists a (LI, LJ)-cofibrantly generated (L,R)-lifted model structure on
D if and only if for every j ∈ J and every pushout diagram

L(A) //

L(j)

��

X

p

��
L(B) // Y

the morphism R(p) is a weak equivalence of C.

Proof. The existence of a (LI, LJ)-cofibrantly generated (L,R)-lifted model struc-
ture on D is provided by Lifting Theorem [Hir03, Theorem 11.3.2]. Conversely, sup-
pose that there exists a (LI, LJ)-cofibrantly generated (L,R)-lifted model structure
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on D. Let j be an element of J and let

L(A) //

L(j)

��

X

p

��
L(B) // Y

be a pushout diagram. Since L is a left Quillen functor and j is an acyclic cofibra-
tion, the morphism L(j) is an acyclic cofibration. The class of acyclic cofibrations
is closed under pushouts [Hir03, Proposition 7.2.12]. Hence p is a weak equivalence
and so R(p) is a weak equivalence of C. �

Theorem 4.3. Consider the adjunction

L : sPre � SPre : R

constructed in (3.1). Let sPre be equipped with a cofibrantly generated model struc-
ture with A1-local weak equivalences as weak equivalences and with the property that
every cofibration is in particular a monomorphism. Then the (L,R)-lifted model
structure on SPre exists and the adjunction (L,R) is a Quillen equivalence.

Proof. Let I be a set of generating cofibrations and J be a set of generating acyclic
cofibrations for the model structure on sPre, j an element of J and

L(A) //

L(j)

��

X

p

��
L(B) // Y

be a pushout diagram in SPre. Since R commutes with colimits, the diagram

RL(A) //

RL(j)

��

R(X)

R(p)

��
RL(B) // R(Y )

is also a pushout. The morphism j is an acyclic cofibration of sPre and therefore in
particular an acyclic cofibration in the A1-local injective model structure on sPre,
that is a A1-local weak equivalence and a monomorphism. Lemma 3.3 identifies the
functor RL with the singular functor Sing. The singular functor respects monomor-
phisms and A1-local weak equivalences by [MV99, Corollary 3.8]. Therefore RL(j)
is an acyclic cofibration in the A1-injective model structure on sPre. The class of
acyclic cofibrations of a model category is closed under pushouts and hence R(p) is
a A1-local weak equivalence. The category SPre is bicomplete by Lemma 3.5 and
Lemma 3.6 provides that LI and LJ permit the small object argument. Hence the
category SPre can be equipped with the (L,R)-lifted model structure by Lemma
4.2. To prove that (L,R) is a Quillen equivalence, let η be the unit of the adjunc-
tion (L,R) and let X be a simplicial presheaf. Lemma 3.3 identifies η(X) with the
canonical morphism X → Sing(X) which is a A1-local weak equivalence by [MV99,
Corollary 3.8]. The diagram

X
η(X) //

f]

""FF
FF

FF
FF

F RL(X)

R(f)

��
R(Y )
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shows that a morphism f : LX → Y is a weak equivalence if and only if its adjoint
f ] is a weak equivalence. Therefore (L,R) is a Quillen equivalence. �

As already mentioned, the right properness of a model structure on simplicial
presheaves is transfered to the lifted structure on enriched simplicial presheaves.
The following lemmas provide that the left properness, the simplicial and the
monoidal structure are also preserved.

Lemma 4.4. Consider the adjunction L : sPre � SPre : R and let (sPre,×)
be equipped with a monoidal model structure. If the category (SPre,×) is endowed
with the (L,R)-lifted model structure, then it is a monoidal model category.

Proof. General results on enriched category theory imply that SPre is cartesian
closed [Day70]. Let i : A → B and j : C → D be cofibrations. One has to show
that the morphism

i�j : (B × C)
∐

(A×C)(A×D)→ B ×D
is a cofibration and an acyclic cofibration if i or j is a weak equivalence. This
follows from the property of L being a left Quillen functor and from the relation
L(i�j) ∼= L(i)�L(j) holding as the functor L is strong monoidal, which is the case
since

L(X × Y ) = L(colim(hom(−, U)×∆n)× colim(hom(−, V )×∆m))
= L(colim(hom(−, U × V )×∆n ×∆m))
= colim(sSet(−, U × V )×∆n ×∆m)
= colim(sSet(−, U)×∆n)× colim(sSet(−, V )×∆m)
= L(X)× L(Y ).

�

Lemma 4.5. Consider the adjunction L : sPre � SPre : R and let sPre be
equipped with a simplicial model structure. If the category of enriched simplicial
presheaves is endowed with the (L,R)-lifted model structure, then it is a simplicial
model category.

Proof. The category SPre is naturally enriched over the category of simplicial sets
by sSet(X,Y ) = homSPre(X ×∆(-), Y ). It is tensored with X ⊗A = X(−)×A and
cotensored with JA,XK = homsSet(A × ∆(-), X(−)). By Lemma 4.4 a statement
equivalent to the (SM7) axiom holds [GJ99, II.3.11]. �

Lemma 4.6. Every enriched simplicial presheaf X is homotopy invariant, that is
the map

X(U)→ X(U × A1)

induced by the projection is a weak equivalence of sSet for all objects U of Sm/k.

Proof. An enriched simplicial presheaf X maps a morphism f : U → V of Sm/k
to a 0-simplex of the simplicial set sSet(XV,XU) and it maps a naive homotopy
H : U ×∆∆1 → V of Sm/k to a 1-simplex of sSet(XV,XU), which is a homotopy
equivalence of the simplicial sets XV and XU with respect to the cylinder object
∆1. Therefore X takes naive homotopy equivalences in Sm/k to weak equivalences
in sSet. The assertion is obtained from the fact that the affine line A1 is naive
homotopy equivalent to the point Spec (k) in Sm/k where a homotopy equivalence
is given by the map k[X]→ k[X,Y ], X 7→ XY of k-algebras. �

Corollary 4.7. Let SPre be equipped with a simplicial model structure in which
every object of Sm/k is cofibrant. Then the class

C = {U × A1 pr−→ U | U ∈ Sm/k}
consists of weak equivalences.
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Proof. Lemma 4.6 provides that sSet(U,X) → sSet(U × A1, X) is a weak equiv-
alence of simplicial sets for every enriched simplicial presheaf X by an enriched
version of the Yoneda Lemma. Weak equivalences in a simplicial model category
are detected by the property of the above morphism being a weak equivalence of
simplicial sets for all fibrant objects X [Hir03, Corollary 9.7.5]. �

Corollary 4.8. Consider the adjunction L : sPre � SPre : R and the class

C = {U × A1 pr−→ U | U ∈ Sm/k}

of morphisms of simplicial presheaves. Let sPre be equipped with a Bousfield local-
ized model structure LC(sPre) in which every object of Sm/k is cofibrant. Suppose
that the (L,R)-lifted model structure on SPre exists. Then an object X of SPre is
fibrant if and only if the object R(X) is fibrant in sPre before localizing.

Lemma 4.9. Consider the adjunction L : sPre � SPre : R and let sPre be
equipped with a left proper cofibrantly generated model structure with A1-local weak
equivalences as weak equivalences and with the property that every cofibration is
in particular a monomorphism. If the category of enriched simplicial presheaves
is endowed with the (L,R)-lifted model structure, then it is a left proper model
category.

Proof. It is sufficient to show that the (L,R)-lifted A1-local injective model struc-
ture is left proper. The injective model structure on SPre is left proper and it is
the (L,R)-lifted model of the injective structure on sPre [Lur09, Proposition B.1].
Let B be a class of cofibrations in sPre, such that the localization at B is the local
injective model structure. Then (L,R) is a Quillen adjunction between the local
injective model on sPre and the localization M of the injective model structure
on SPre at L(B) [Hir03, Theorem 3.3.20]. We show that M coincides with the
(L,R)-lifted A1-local injective model structure on SPre. Let the injective model
structure on sPre be (I, J)-cofibrantly generated, then the injective model structure
on SPre is (LI, LJ)-cofibrantly generated and so is its left Bousfield localization
M . By the same arguments, the (L,R)-lifted A1-local injective model structure on
SPre is (LI, LJ)-cofibrantly generated. Hence both model structures have the same
cofibrations. Moreover, their fibrant objects coincide by Corollary 4.8 and the fact
that an object X is fibrant in the Bousfield localization M if and only if sSet(−, X)
maps B to weak equivalences. Therefore the model structures are the same since a
model structure is determined by its cofibrations and its fibrant objects. �

The previous statements might suggest that it is possible to get a model for the
motivic homotopy category by lifting a local model structure to the category of
enriched simplicial presheaves. In view of Lemma 4.2 one observes that a (I, J)-
cofibrantly generated model structure lifts via (L,R) to the category of enriched
simplicial presheaves if Sing(j) is a local weak equivalence for every generating
acyclic cofibration j in J , but the singular functor does not preserve local weak
equivalences in general.

Now we focus on the A1-local projective model structure on the category sPre
of simplicial presheaves. Theorem 4.3 induces a Quillen equivalence

L∗ : sPre∗ � SPre∗ : R∗

of monoidal model categories [Hov99, Proposition 1.3.17, 4.2.19] since the functor
L preserves the terminal object. Parallel to the results of this section, one obtains
a Quillen equivalence

Ltr : sPST � SPST : Rtr
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of monoidal model categories and the Quillen adjunctions of (3.2) are symmetric
monoidal. This allows one to describe motivic cohomology as

Hp,q
mot(X) =

[
LtrZ̃tr(X+) , LtrZ̃tr(S

p−q
s )⊗ LtrZ̃tr(S

q
t )
]
SPST

where the first enriched simplicial presheaf LtrZ̃tr(X+) is cofibrant as it is the image
of a cofibrant object under a left Quillen functor. The enriched simplicial Eilenberg-
MacLane presheaf LtrZ̃tr(S

p−q
s ∧Sqt ) is fibrant as NRtr : SPST→ Ch≥0(PST) maps

it to the motivic complex Z(q)[p] given by

→
⊗q

Cor(−×∆∆k,A1 \0)/Z → ...→
⊗q

Cor(−×∆∆0,A1 \0)/Z → 0
p-q+k p-q p-q-1

which is fibrant by [MVW06, Corollary 14.9] whereas the Eilenberg-MacLane sim-
plicial presheaf K(Z, q)[p] needs to be fibrantly replaced.
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Mathématiques de l’Institut des Hautes Études Scientifiques 90 (1999), 45–143.



A NOTE ON SIMPLICIAL FUNCTORS AND MOTIVIC HOMOTOPY THEORY 17

[MVW06] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic co-

homology, Clay Mathematics Monographs, vol. 2, American Mathematical Society,

Providence, RI, 2006.
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