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Abstract. In this paper we study a model structure on a category of schemes

with a group action and the resulting unstable and stable equivariant motivic
homotopy theories. The new model structure introduced here will be compared

to those by Voevodsky and Hu-Kriz-Ormsby. We show that our model struc-

ture allows to detect equivariant motivic weak equivalences on fixed points
and how this property also leads to a topologically convenient behavior of

stable equivalences. We also prove a negative result concerning descent for

equivariant algebraic K-theory.

1. Introduction

The study of transformation groups has a long history in many abstract and geo-
metric areas of mathematics, including topology and algebraic geometry. However,
recently equivariant matters experienced an increased focus in algebraic topology,
not only due to their role in the work of Hill-Hopkins-Ravenel. This trend is also ob-
served in motivic homotopy theory, where a first foundational setup for equivariant
considerations was provided by [Voe01] and generalized by [HKO11]. In this work,
we present an alternative equivariant motivic homotopy theory, based on a slight
variation of a Nisnevich-style Grothendieck topology on the category of smooth
G-schemes over a field. This new topology is build in a way that allows to detect
equivariant local weak equivalences on fixed points. More precisely, under rather
mild restrictions to the transformation group G (cf. Remark 2.8), there exist right
adjoint fixed point functors (−)H : GSm/k → Sm/k, for all H ≤ G, whose left Kan
extensions give rise to a family of functors (−)H : sPre(GSm/k) → sPre(Sm/k),
such that f : X → Y in sPre(GSm/k) is a local weak equivalence with respect
to our new topology if and only if fH : XH → Y H is an ordinary (Nisnevich-)
local weak equivalence for all H ≤ G (cf. Corollary 3.4). Further, we show that
the usual A1 contracting Bousfield localization interacts nicely with respect to the
local model structures on both sides and the above implies a characterisation of
equivariant A1-local weak equivalences in the same terms.

Proposition 3.9. A morphism f ∈ sPre(GSm/k) is an A1-local weak equivalence
if and only if for all subgroups H ≤ G the morphism fH is an A1-local weak
equivalence in sPre(Sm/k).

Following the topological work of Mandell [Man04] and its motivic adaption in
[HKO11], we develop some stable equivariant motivic homotopy theory. In particu-
lar, we show how motivic analogs of (Lewis-May) fixed points (−)H and geometric
fixed points ΦH , from genuine motivic G-spectra to ordinary P1-spectra, both de-
tect equivariant stable weak equivalences, cf. Propositions 4.25 & 4.33.

Finally, we investigate descent for equivariant algebraic K-theory and conclude
that the topology under investigation does not allow equivariant algebraic K-theory
to satisfy descent. We notice that by the same argument also the isovariant topology
of [Ser10] does not allow descent for equivariant algebraic K-theory - in contrast to
[Ser10, Theorem 4.2]. These results have to be seen in correlation to [KØ12] where
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it is shown that the equivariant Nisnevich topology from [Voe01, HKO11] allows
K-theory descent.
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2. Equivariant Grothendieck Topologies

In [Voe01] Voevodsky first defined a Nisnevich-style topology on a category of
G-equivariant quasi-projective schemes. This approach was taken up by others and
has since then been developed in several slightly different contexts, e.g. [HKO11,
KØ12, HØV13]. Originally, Voevodsky defined the equivariant Nisnevich topology
as generated by étale equivariant maps which have an equivariant splitting sequence.
After a discussion of concepts of stabilizers and fixed-points, we will rephrase the
following definition in Lemma 2.10.

Definition 2.1. An étale equivariant morphism f : X → Y ∈ GSm/k is a covering
in the equivariant Nisnevich topology if there is a sequence of G-invariant closed
subvarieties

∅ = Yn+1 ( Yn ( . . . ( Y0 = Y,

such that f has an equivariant section on Yj \ Yj+1.

The main focus in this work will be on the following alternative topology.

Definition 2.2. A morphism f : X → Y ∈ GSm/k is a covering in the fixed-point
Nisnevich topology, if fH : XH → Y H is an ordinary Nisnevich covering in Sm/k,
for all H ≤ G.

Remark 2.3. a) Instead of considering all subgroups, we could just insist on Nis-
nevich covers for a family F of subgroups. We would call the resulting topol-
ogy the F-fixed-point Nisnevich topology or just the F-Nisnevich topology. If
F = All is the family of all subgroups H ≤ G, then we call the resulting topology
the H-Nisnevich topology.

b) After recalling the definitions and properties of isotropy and fixed-point functors
for schemes in the following subsection, we will obtain a detailed comparison
result of the equivariant Nisnevich topology and the H-Nisnevich topology in
Lemmata 2.10-2.12.

2.1. Isotropy and Fixed-Points. Next we introduce two concepts of stabilizers.
Their difference will be responsible for many distinctions in the following and will
finally explain the difference between the two topoloies introduced above - the
equivariant Nisnevich topology and the fiexed point Nisnevich topology.

Definition 2.4. Let G be a group scheme acting on a scheme X and x : κ(x)→ X
be a point of X. The scheme theoretic stabilizer Gx is defined by the pullback
diagram

(2.1) Gx //

��

G×X

(αX ,prX)

��
κ(x)

∆◦x // X ×X.
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In general, an action αX : G×X → X of a group object G on some object X is
called free if the morphism

(αX ,prX) : G×X → X ×X

is a monomorphism. By the characterization of locally finite type monomorphisms
[Gro67, Proposition 17.2.6] this implies that an action in Sm/k is free if and only if

all isotropy groups are trivial in the sense that Gx
∼=−→ Spec(κ(x)) is an isomorphism

for all x ∈ X.
There is a forgetful functor U : GSm/k → |G|T op. As we only consider finite

constant group schemes G, we disregard the difference between G and its underlying
space |G| here. Applying U to the diagram (2.1) we obtain a morphism i : Gx → Sx
into the pullback in GT op:

Gx

  
Sx //

��

G× UX

��
∗ Ux// UX × UX.

where Sx is the set theoretic stabilizer of x.

Lemma 2.5. Let G be a finite constant group acting on a scheme X and let x ∈ X.
Then there is an inclusion of subgroups Gx ≤ Sx ≤ G.

Proof. We know that for an element x in the underlying set UX of the scheme X
we have

Sx = {g ∈ G | the set map g : UX → UX satisfies gx = x}

and in the same way we can describe (the underlying set of) Gx as

Gx = {g ∈ Sx | the induced morphism g : κ(x)→ κ(x) equals idκ(x)}.

�

Example 2.6. Let L : k be a Galois extension and consider the Galois action of
G := Gal(L : k) on Spec(L). Then the scheme theoretic stabilizer G∗ of the unique
point ∗ in Spec(L) is trivial while the set theoretic isotropy S∗ is all of G in this
case. For the induced action of G on Spec(OL), the scheme theoretic stabilizer
Gp of a point p ∈ Spec(OL) recovers the inertia group of p while Sp gives the
decomposition group of p.

Let k be a field of characteristic 0 and letGSm/k be the category ofG-equivariant
separated smooth k-schemes with G-equivariant morphisms. Much power in clas-
sical equivariant topology is obtained from adjunctions connecting equivariant to
non-equivariant questions, e.g. the two adjunctions with the functor from spaces to
G-spaces which adds a trivial G-action. Due to the usual problems with quotients
in algebraic geometry it seems to be difficult to carry both of the mentioned ad-
junctions to a motivic setup. Therefore, we decide to build up our theory with a
focus on an adjunction analogous to the classical adjunction

(−)trivial : T op � GT op : (−)G.

For any k-scheme X there is the trivial G-scheme

(2.2) Xtr = (X,G×X πX−−→ X)
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over k. Mapping X to Xtr gives embeddings Schk ⊂ GSchk and Sm/k ⊂ GSm/k.
For X ∈ GSchk, we define the functor

hXG : Schop
k → Set, Y 7→ HomGSchk

(Ytr, X).

It is natural to ask for the representability of hXG and one is inclined to denote
a representing object by XG. The following theorem answers this question and
supports the notation.

Theorem 2.7. Let G be a finite constant group scheme over k and let X ∈ GSchk.
Then there exists a G-invariant closed subscheme XG of X with a trivial G-action,
representing hXG .

Proof. Let {Ui}i∈I be the family of all closed G-invariant subschemes of X on which
G acts trivially and let Ji be the quasi-coherent ideal of OX corresponding to Ui.
Let J := ∩iJi be the intersection of OX modules and denote by XG the closed
subscheme of X corresponding to the ideal sheaf J . Then XG is G-invariant and
has a trivial G-action as it is shown in [Fog73, Theorem 2.3]. �

Remark 2.8. Theorem 2.7 has a notable history. It is stated in more general terms
as [DG70, Exp. VIII, Théorème 6.4]. Fogarty still tried to loose the assumptions
on G in [Fog73, Theorem 2.3], but his published proof contains a gap which can
not be closed, as shown in [Wri76]. However, in this special case of a finite constant
group scheme Fogarty’s proof also holds.

Lemma 2.9. Let G be a finite constant group scheme over k and let X ∈ GSm/k.
Then XG is a smooth k-scheme and thus we have an adjunction

(2.3) tr : Sm/k � GSm/k : (−)G.

Proof. This follows essentially from Luna’s slice theorem [Lun73, Théorème du slice
étale, p.97] (cf. [HKO11, (1)]). �

We obtain similar adjunctions for all subgroups H ≤ G as a composition

Sm/k � HSm/k � GSm/k : (−)H ,

where the left adjunction is as in (2.3) and the right adjunction is given by restricting
the G action to an H action. This gives the family {(−)H}H≤G of fixed-point
functors we have used in Definition 2.2 to define the H-Nisnevich topology.

2.2. Comparison. Now that we have recalled the essential concepts for a dis-
tinction of the equivariant Nisnevich topology and the alternative H-Nisnevich
topology, we will rephrase these topologies in terms focusing on pointwise isotropy
groups. This will allow to describe a relation of the two topologies in Corollary
2.13.

The following lemma is [HØV13, Proposition 3.5] and gives a good collection of
equivalent definitions of the equivariant Nisnevich topology from the literature.

Lemma 2.10. Let f : X → Y be an étale morphism in GSm/k. The following are
equivalent:

(1) f is a covering in the equivariant Nisnevich topology.
(2) f is a covering in the topology generated by the cd-structure with squares

A //

��

C

p

��
B

i // D,

where i is an open inclusion and p is étale and restricts to an isomorphism
p−1(D \B)red ∼= (D \B)red.
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(3) For every y ∈ Y there is an element x ∈ X such that f induces an iso-
morphism between the residue class field κ(x) and κ(y) and between the
set-theoretic isotropy groups.

Lemma 2.11. Let G be a finite constant group and let f : X → Y be an étale
morphism in GSm/k such that for all y ∈ Y there is an element x ∈ X with

f∗ : κ(y)
∼=−→ κ(x). If there is such an x with the additional property that Sx = Sf(x)

then f induces an isomorphism of the respective scheme theoretic stabilizers.

Proof. Since f is equivariant, we have an inclusion of the underlying subgroups
Gx ≤ Gf(x) for all x ∈ X. Let y ∈ Y and x ∈ X be as above and let g be an
element in the underlying set of Gy. From the assumptions we know that g is then
also an element in the set theoretic stabilizer Sx. Consider the commutative square

OY,y
gy=id //

fx

��

OY,y

fx

��
OX,x

gx // OX,x.

We need to see that the action gx induced by g on the local ring of X at x is trivial,
i.e. gx = id, to conclude that the underlying subgroups Gx and Gy coincide. Since
fx induces an isomorphism on residue fields, it follows from Nakayama’s Lemma
that fx is itself surjective. So, fx is an epimorphism and we cancel it in fx = gx ◦fx
to obtain gx = id and hence Gx = Gy for the underlying subgroups of G. Finally,
we may again apply that f induces an isomorphism between κ(y) and κ(x) to obtain
that f also induces an isomorphism

Gx = |Gx| × κ(x)
∼=−→ |Gy| × κ(y) = Gy

of the scheme theoretic isotropy groups. �

Lemma 2.12. A morphism f : X → Y in GSm/k is a cover in the H-Nisnevich
topology (an H-cover) if and only if f is étale (as a morphism of schemes), for
every point y in Y there is a point x in X, such that f induces an isomorphism of
residue fields, and

(*) also induces an isomorphism Gx
∼=−→ Gy of scheme theoretic stabilizers.

Proof. First, assume that f : X → Y ∈ GSm/k is a morphism such that fe is
Nisnevich in Sm/k and f induces an isomorphism on scheme theoretic isotropy.

In the commutative diagram

XH

i%%

fH

��

ιHX

**
X ×Y Y H

j
//

f ′

��

X

f

��
Y H

ιHY // Y

the morphisms ιHX and ιHY are closed immersions, hence so are j and i. From the
isotropy condition (*) it follows that fH is surjective, so that by dimension XH is
a union of irreducible components of X ×Y Y H and thus i and also fH are étale.
If for any y ∈ Y H an element x ∈ X is given with the property that f induces
isomorphisms of the respective residue fields and scheme theoretic stabilizers, then
x is in XH and therefore fH is Nisnevich.
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Conversely, let fH be a Nisnevich cover in Sm/k for all subgroups H ≤ G. Given
an element y ∈ Y say with Gy = H×κ(y), then y is in Y H and there is an element
x in XH , such that f induces an isomorphism from κ(y) to κ(x). Since x is in XH

we know

Gx = K × κ(x) ≥ H × κ(x) ∼= H × κ(y) = Gy

and the equivariance of f implies Gx ≤ Gy, so that f induces an isomorphism on
scheme theoretic isotropy. �

Corollary 2.13. Every equivariant Nisnevich cover is an H-cover.

Proof. This follows from the above lemma combined with Lemma 2.11. �

The following example reminds one to be careful while thinking about isotropy
groups and fixed points.

Example 2.14. Let L : k be a finite Galois extension and G = Gal(L : k). The
induced G-action on Spec(L) has empty fixed points Spec(L)G = ∅. This is since
Spec(L)G is by construction a closed subscheme of Spec(L) and

HomSm/k(Spec(L),Spec(L)G) ∼= HomGSm/k(Spec(L)tr,Spec(L)) = ∅.

The set-theoretic stabilizer S∗ of the unique point ∗ is obviously the whole group
G, but the scheme theoretic stabilizer is trivial, that is G∗ = Spec(L), since the
action is free and hence the left vertical arrow in the pullback diagram

G∗ //

∼=
��

G× Spec(L)

∼=Ψ

��
Spec(L)

∆ // Spec(L)× Spec(L)

is an isomorphism as well.

Lemma 2.15. The H-Nisnevich topology is subcanonical, i.e. representable pre-
sheaves are sheaves on GSm/k.

Proof. Let {Zi
ιi−→ Z}i be an H-Nisnevich covering and let U : GSm/k → Sm/k

be the forgetful functor. U is faithful and as a (trivial) fixed point functor U takes
the chosen covering to a Nisnevich covering in Sm/k. Hence, the bottom row in
the diagram

HomG(Z,X) //

��

∏
HomG(Zi, X)

��

////
∏

HomG(Zi ×Z Zj , X)

��
Homk(UZ,UX) // ∏Homk(UZi, UX) ////

∏
Homk(UZi ×UZ UZj), UX)

is an equalizer and all vertical arrows are injective. A family (σi)i in the product∏
HomG(Zi, X) which is equalized by the double arrow is mapped to a family in∏
Homk(UZi, UX) which is also equalized and therefore comes from a morphism

g in Homk(UZ,UX). To see that g is equivariant we have to show that the square
labeled with ’?’ commutes in the following diagram.

G×
∐
Zi
idG×

∐
fi//

��

G× Z

αZ

��

idG×g// G×X

αX

��∐
Zi

∐
ιi //

	

Z
g

//

?

X
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First note that all ιi and g ◦ ιi are equivariant. The square in question commutes
since both the outer rectangle and the left square commute, and since idG×

∐
fi

is an epimorphism. �

Corollary 2.16. The equivariant Nisnevich topology is also subcanonical.

Lemma 2.17. For all H ≤ G, the H fixed points functor (−)H : GSm/k → Sm/k
is continuous map of sites.

Proof. [AGV72, III.Proposition 1.6.] �

Lemma 2.18. The adjunction (2.3) extends via left Kan extension of (−)G to an
adjunction

(2.4) ((−)G)∗ : sShv(GSm/k) � sShv(Sm/k) : RG,

where the right adjoint is composition with (−)G.

Proof. Consider the situation

GSm/k
Y //

(−)G ((

sPre(GSm/k)

L

��

Sm/k

Y ))
sPre(Sm/k)

R

OO

where L is the left Kan extension of Y ◦(−)G along the horizontal Yoneda embedding
Y and R is the right adjoint of L. The right adjoint R is given by composition with
(−)G, which is a continuous map of sites and so R restricts to a functor R′ in

sPre(GSm/k)
a1 //

L
��

sShv(GSm/k)
i1
oo

sPre(Sm/k)
a2 //

R

OO

sShv(Sm/k)

R′

OO

i2
oo

of sheaves with respect to the Nisnevich (resp. H-Nisnevich) topology. Thus, we
have that ((−)G)∗ := a2Li1 is right adjoint to RG. �

From now on we will mostly leave sheaves aside and focus on building a homotopy
theory based on presheaves. The few statements about sheaves we collected so far
were just given to allow a study of site theoretic points for the H-Nisnevich topology
on GSm/k in the next subsection.

For any subgroup H ≤ G, we define the H-fixed points functor

(2.5) (−)H : sPre(GSm/k)→ sPre(Sm/k)

as the composite

sPre(GSm/k)
resH // sPre(HSm/k)

(−)H // sPre(Sm/k)

X � // X(G×H −),

where resH is the restriction functor or forgetful functor. Note that precomposing
with the induction functor G×H − coincides with the left Kan extension of resH :
GSm/k → HSm/k. Hence we could have equivalently defined H-fixed points as a
left Kan extension in one step.
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Remark 2.19. The functor (−)G : sPre(GSm/k) → sPre(Sm/k) is also right
adjoint which can be seen as follows. On the scheme level we have the adjunction
(−)tr : Sm/k � GSm/k : (−)G with the left adjoint given by the trivial G-
action functor (−)tr. The right adjoint R to the left Kan extension of (−)tr along
the obvious Yoneda embedding is given by precomposition with (−)tr and hence

commutes with colimits. Further, for a representable sheaf X̃ we evaluate

R(X̃)(U) ∼= HomGSm/k(Utr, X) ∼= HomSm/k(U,XG) = X̃G(U)

and note that R and (−)G coincide on representables and therefore are equal.
The same arguments work to show that resH : sPre(GSm/k) → sPre(HSm/k) is
also right adjoint and we eventually note that the H-fixed points functor (−)H :
sPre(GSm/k) → sPre(Sm/k) from (2.5) is a left and right adjoint functor, for all
H ≤ G.

3. Equivariant Motivic Homotopy Theory

The following example was explained to me by Ben Williams. It shows that local
weak equivalences with respect to the equivariant Nisnevich topology can not be
detected by the family {(−)H}H≤G of fixed-point functors.

Example 3.1. Let Y in Z/2-Sm/C be given by the disjoint union Gm
∐

Gm
be equipped with the Z/2 action permuting the summands. Let X = Gm =
Spec(C[T, T−1]) carry the Z/2 action induced by T 7→ −T . We define a Z/2-
equivariant morphism

p := id
∐

σ : Y → X,

where σ is the non-trivial automorphism acting on X. Note that the fixed-point
morphisms

pe = Gm
∐

Gm
id

∐
id−−−−→ Gm and

pG = id∅

are Nisnevich covers in the usual non-equivariant sense. Now, consider the coequal-
izer diagram

Y ×X Y // // Y //

p

  

W

h

��
X

The map h is not a local weak equivalence in the equivariant Nisnevich topology
and p is not a cover in that topology. The reason is that the generic point of
X = Gm inherits an action and does not lift to Y : There is a map

(t 7→ −t) � Spec(C(t))→ X = Gm,

but the value of the point at Y and W is ∅ since

∅ = HomG(C(t), Y ) � HomG(C(t),W ).

Hence, h is not a local weak equivalence for the equivariant Nisnevich topology and
the morphism p can not be a covering for this topology.
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3.1. Characterization of Unstable Equivalences. Recall that a point x in a
topos T is a geometric morphism x : Set→ T or equivalently, by Freyd’s Theorem,
a functor x∗ : T → Set which commutes with colimits and finite limits. In this
subsection GSm/k is equipped with the H-Nisnevich topology by default.

Denote by Hensel := {x∗ : F 7→ F (Spec(OhX,x) | x ∈ X}X the set of functors

indexed over all X in a small skeleton of Sm/k. This gives a conservative family of
points for the Nisnevich topology on Sm/k [MV99, Lemma 3.1.11], i.e. a morphism
f in sPre(Sm/k) is local weak equivalence if and only if x∗f is a weak equivalence
of simplicial sets for all x,X.

Lemma 3.2. Let x∗ be a point in sShv(Sm/k). Then the composition x∗ ◦ (−)H is
a point in sShv(GSm/k). Hence, if f ∈ sPre(GSm/k) is a local weak equivalence,
then fH is a local weak equivalence in sPre(Sm/k).

Proof. By Remark 2.19 the left Kan extension

(−)H : sPre(GSm/k)→ sPre(Sm/k)

is also a right adjoint and therefore preserves limits. As a left adjoint it preserves
colimits and hence x∗ ◦ (−)H is a point in sShv(GSm/k). Thus, for any local weak
equivalence f ∈ sPre(GSm/k) the morphism x∗fH is weak equivalence of simplicial
sets, so fH is local weak equivalence in sPre(Sm/k). �

Lemma 3.3. The set of functors sShv(GSm/k)→ Set given by{
x∗ ◦ (−)H | H ≤ G, x∗ ∈ Hensel

}
is a conservative family of points in sShv(GSm/k) (for the H-Nisnevich topology).

Proof. Let X := (fHj : Xj → X)j∈J be a family of morphisms in GSm/k such that(
x∗(XH

j

fH
j−−→ XH)

)
j∈J

is surjective for all Nisnevich points x∗ ∈ Hensel and H ≤ G. Then by [AGV72,
Proposition 6.5.a], (fHj : XH

j → XH)j∈J is a Nisnevich covering in Sm/k. Hence,
X is a H-Nisnevich covering. �

The following is also an immediate consequence.

Corollary 3.4. A morphism f ∈ sPre(GSm/k) is a local weak equivalence if and
only if for all subgroups H ≤ G the morphism fH is a local weak equivalence in
sPre(Sm/k).

Corollary 3.5. For all subgroups H ≤ G, the adjunction

(−)H : sPre(GSm/k) � sPre(Sm/k) : RH

is a Quillen adjunction for the local injective model structures.

Proof. We have just concluded that (−)H preserves local weak equivalences. Be-
cause of being right adjoint (and the fact that both categories have pullbacks) the
functor (−)H also preserves monomorphisms, i.e. local injective cofibrations. �

To achieve the same result for A1-local weak equivalences we cite a result of
Hirschhorn which takes care of the Bousfield localization on both sides of a Quillen
adjunction.

Proposition 3.6. Let F : C � D : G be a Quillen pair and let K be a class of
morphisms in C. Denote by LKC, resp. LLFKD, the left Bousfield localization of C
with respect to K, resp. of D with respect to the image of K under the left derived
of F . Then F : LKC � LLFKD : G remains a Quillen pair.
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Proof. [Hir03, Theorem 3.3.20] �

Lemma 3.7. Let H,K ≤ G. The composition (−)K ◦ (−)H : sPre(Sm/k) →
sPre(Sm/k) equals some coproduct of identities. In particular, the H-fixed points
functors (−)H are right Quillen functors in a Quillen adjunction

(−)H : sPre(Sm/k) � sPre(GSm/k) : (−)H

with respect to the local injective model structures.

Proof. Both functors commute with colimits, so we only need to check the statement
for representables. We have

((Ỹ )H)K ∼=
(

˜G/H × Y
)K ∼= ˜(G/H)K × Y ∼=

∐
(G/H)K

Ỹ .

Furthermore, the functors (−)K detect local weak equivalences by Corollary 3.4
and a (finite) coproduct of local weak equivalences is a local weak equivalence.
Eventually, to check that (−)H preserves monomorphisms recall that (−)H is the
left Yoneda extension of G/H × − : Sm/k → GSm/k which preserves all finite
limits. Left Kan extensions of flat functors preserve finite limits and in particular
monomorphisms. �

Lemma 3.8. For every subgroup H ≤ G, the H-fixed points functor (−)H is a
right Quillen functor in the adjunction

(−)H : sPre(Sm/k) � sPre(GSm/k) : (−)H

with respect to the A1-local injective model structures.

Proof. By Proposition 3.6 the Quillen adjunction

(−)H : sPre(Sm/k) � sPre(GSm/k) : (−)H

of Lemma 3.7 descents to a Quillen adjunction

LK sPre(Sm/k)
(−)H// LL(−)H

K sPre(GSm/k)
(−)H

oo

of left Bousfield localizations, where K is the class of morphisms represented by
{X ×A1 → X | X ∈ Sm/k} and L(−)HK is the image of that class under the total
left derived of (−)H . The latter is a (proper) subclass of the class of morphisms
represented by {X × A1 → X | X ∈ GSm/k} which is used to A1-localize on the
equivariant side. Hence, the identity gives a left Quillen functor

LL(−)H
K sPre(GSm/k)→ sPre(GSm/k)

where the right hand side carries the A1-local injective model structure. By com-
posing the two Quillen adjunctions we obtain the conclusion. �

Proposition 3.9. A morphism f ∈ sPre(GSm/k) is an A1-local weak equivalence
if and only if for all subgroups H ≤ G the morphism fH is an A1-local weak
equivalence in sPre(Sm/k).

Proof. By Proposition 3.6 the functors (−)H are left Quillen functors for the A1-
local injective model structures. Thus, it follows by Ken Brown’s Lemma [Hir03,
Lemma 7.7.1] that (−)H preserves A1-local weak equivalences.

Conversely, suppose that f : X → Y in sPre(GSm/k) is a map such that for all
subgroups H of G, the morphism fH ∈ sPre(Sm/k) is an A1-local weak equiva-
lence. Let r be a fibrant replacement functor in the A1-local injective structure on
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sPre(GSm/k). Then (−)H takes the diagram

X

∼A1

��

f // Y

∼A1

��
rX

rf // rY

to the diagram

XH

∼A1

��

fH

∼A1
// Y H

∼A1

��
(rX)H

(rf)H // (rY )H

where all the arrows decorated with ∼A1 are A1-local weak equivalences. Hence
(rf)H is an A1-local weak equivalence between objects which are A1-locally injective
fibrant by Lemma 3.8. Therefore, (rf)H is a local weak equivalence for all H and it
follows by Corollary 3.4 that rf is a local weak equivalence and so f is an A1-local
weak equivalence. �

4. Stable Equivariant Motivic Homotopy Theory

4.1. The Stable Model Category. The definition of representation spheres be-
low already aims towards a stable equivariant homotopy theory. Analogously to
the work of Mandell [Man04] in classical topology, and to Hu, Kriz, and Ormsby
in [HKO11] we consider spectra with respect to smashing with the regular repre-
sentation sphere.

Definition 4.1. Let V ∈ GSm/k be a representation of G. We define the repre-
sentation sphere SV to be the quotient

V/(V − 0)

in sPre(GSm/k). For the special case of the regular representation we introduce
the notation

TG := SA[G].

Remark 4.2. A linear algebraic group is called linearly reductive if every rational
representation is completely reducible. It is the statement of Maschke’s Theorem
that a finite group is linearly reductive if the characteristic of k does not divide
the group order. A splitting of the representation V causes a splitting of the
representation sphere:

SV⊕W ∼= SV ∧ SW .
Clearly, the reason to invert the regular representation sphere is to invert smashing
with all representation spheres and therefore it should be emphasized that the group
G has to be linearly reductive for this approach to make sense.

However, there are models for stable homotopy theory based on enriched functors
[Lyd98, Blu06, DRØ03] instead of sequential spectra. These allow a more flexible
stabilization and in a recent preprint [CJ14] Carlsson and Joshua apply this tech-
nique to stabilize a slightly different approach to equivariant motivic homotopy
theory without being restricted to linearly reductive groups.

The category SpN(C, Q) of sequential spectra in a model category C with respect
to a left Quillen functor Q : C → C consists of objects

(Xn, σn)n∈N,
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where the Xn’s are objects in C and σn : Q(Xn)→ Xn+1 are morphisms in C, the
so-called bonding maps. The morphisms in SpN(C, Q) are given by sequences of
morphisms in C which commute with the respective bonding maps.

Jardine has established a non-equivariant stable motivic homotopy theory in
[Jar00]. We will follow Jardine’s work closely to establish a stable equivariant
motivic homotopy theory based on A1 H-Nisnevich local injective model structure,
which has weak equivalences as characterised by Proposition 3.9.

Lemma 4.3. The adjunction

TG ∧ − : sPre.(GSm/k) � sPre.(GSm/k) : ΩTG

prolongates canonically to an adjunction

Σ′TG
: SpN(sPre.(GSm/k),TG ∧ −) � SpN(sPre.(GSm/k),TG ∧ −) : Ω′TG

called fake suspension adjunction.

Proof. Use the identity transformation on (TG ∧ −)2 to prolongate TG ∧ − and
compose unit and counit of the adjunction to obtain a natural transformation

TG ∧ (ΩTG
(−))→ ΩTG

(TG ∧ −))

which prolongates ΩTG
to the right adjoint. �

Remark 4.4. The above lemma is originally [Hov01, Corollary 1.6] in the general
situation. Note that there is no twisting of the smash factors involved in the bonding
maps, which is why the resulting suspension is called fake suspension in contrast
to the suspension defined in equation (4.1) below.

Definition 4.5. Let R denote a levelwise fibrant replacement functor. A morphism
f ∈ SpN(sPre.(GSm/k),TG ∧ −) is called a stable equivalence if

(Ω′ ◦ sh)∞R(f)

is a levelwise equivalence.

For Jardine’s machinery to work, we need to assure that the object TG which is
used for suspending fulfills a technical property, which then implies a good behavior
of the right adjoint to smashing with TG.

Lemma 4.6. The object TG ∈ sPre.(GSm/k) is compact in the sense of [Jar00,
2.2].

Proof. The analog statement about the presheaf quotient A1/(A1 \ 0) in Jardine’s
work is [Jar00, Lemma 2.2]. All the arguments in the proof are statements about the
flasque model structure on simplicial presheaves on a general site [Isa05]. The only
thing used about about schemes is that an inclusion of schemes gives a monomor-
phism of the represented presheaves, which is true for an inclusion of equivariant
schemes like (A[G] \ 0) ↪→ A[G] as well. �

Theorem 4.7. Let C be any compact object in sPre.(GSm/k). There is a proper
simplicial model structure on the associated category SpN(sPre.(GSm/k), C ∧−) of
C-spectra with stable weak equivalences and stable fibrations.

Proof. This is a version of [Jar00, Theorem 2.9]. �

Definition 4.8. Let X in SpN(sPre.(GSm/k),TG ∧−). We define the suspension
ΣTG

X by ΣTG
Xn = TG ∧Xn with bonding maps

σΣX : TG ∧ TG ∧Xn
τ∧idXn−−−−−→ TG ∧ TG ∧Xn

σX−−→ TG ∧Xn+1
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where τ : TG ∧ TG → TG ∧ TG denotes the twist of the two smash factors. The
right adjoint to ΣTG

is also levelwise given by the internal hom ΩTG
, i.e. ΩTG

(X)n =
ΩTG

(Xn) with bonding maps adjoint to

Xn ∧ TG
τ−→ TG ∧Xn

σX−−→ Xn+1.

Together these two functors give the suspension adjunction

(4.1) ΣTG
: SpN(sPre.(GSm/k),TG ∧ −) � SpN(sPre.(GSm/k),TG ∧ −) : ΩTG

.

To be able to untwist the levelwise smashing inside the definition of the functor
TG ∧ − an important condition appears to be the symmetry of TG.

Lemma 4.9. There is an A1-homotopy in sPre·(GSm/k) between the cyclic per-
mutation of the smash factors

TG ∧ TG ∧ TG → TG ∧ TG ∧ TG
and the identity.

Proof. This is [HKO11, Lemma 2]. �

A consequence, which is also true in the general situation of [Hov01, Theorem
9.3], is that smashing with TG is invertible in the stable model.

Theorem 4.10. The suspension adjunction (4.1) is a Quillen equivalence with
respect to the stable model structure.

Proof. Let Y be fibrant and f : TG ∧X → Y in SpN(sPre.(GSm/k),TG ∧ −). By
[Jar00, Corollary 3.16]

ev : TG ∧ ΩTG
Y → Y

is a stable equivalence, so we may deduce from the commutative diagram

TG ∧ ΩTG
Y

ev∼
��

TG ∧X

Tf]
88

f // Y

that f is a stable equivalence if and only if Tf ] is a stable equivalence, which
is by [Jar00, Corollary 3.18] if and only if the adjoint morphism f ] is a stable
equivalence. �

Proposition 4.11. Let V be a representation of G. Then the adjunction

− ∧ SV : SpN(sPre.(GSm/k),TG ∧ −) � SpN(sPre.(GSm/k),TG ∧ −) : ΩV

is a Quillen equivalence.

Proof. Smashing with SV is a left Quillen functor. There exists a representation
W such that V ⊕W ∼= nAG is a n-fold sum of the regular representation. By using
the theorem above one can show that ΩnTG ◦ SW is ’Quillen inverse’ to SV . �

In Definition 4.5 a morphism f : X → Y of equivariant spectra was defined to be
a stable equivalence if colimi(Ω

′ ◦ sh)iR(f) is a levelwise equivalence of equivariant
spectra. Equivalently, for all m,n ∈ N and all H ≤ G the induced maps of all
sectionwise n-th homotopy groups in levelm of theH-fixed points are isomorphisms,
i.e.

(4.2) f∗ : colim
i

[G/H ∧ Sn ∧ TiG, Xm+i|U ]→ colim
i

[G/H ∧ Sn ∧ TiG, Ym+i|U ]

is an isomorphism of groups for all U ∈ Sm/k.
The standard simplicial enrichment of local homotopy theory on sPre(C) gives

us another splitting of TG.
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Lemma 4.12. There is an isomorphism TG ∼= S1 ∧ (A[G] − 0) in the unstable
equivariant homotopy category.

Proof. Recall that TG ∼= A[G]/(A[G]− 0) where A[G] is pointed by 1 and consider
the diagram

∂∆[1] ∧ (A[G]− 0) � � //
� _

��

A[G]

��

∼ // ∗

��
∆[1] ∧ (A[G]− 0) //

∼

��

P

��

// S1 ∧ (A[G]− 0)

∗ // TG
consisting of push out squares. The two morphisms decorated with a tilde are
A1-local weak equivalences. The vertical one being

∆[1] ∧ (A[G]− 0)
p∧id−−−→ ∆[0] ∧ (A[G]− 0) = ∗

and the horizontal one by Proposition 3.9. Further, both morphisms to the push
out P are cofibrations and hence by left properness there is a zig-zag

TG
∼←− P ∼−→ S1 ∧ (A[G]− 0)

of weak equivalences. �

Continuing from (4.2) we compute that f is a stable equivalence if and only if
the induced map

colim
i

[G/H∧Sn+i∧(A[G]−0)i, Xm+i|U ]→ colim
i

[G/H∧Sn+i∧(A[G]−0)i, Ym+i|U ]

is an isomorphism. This leads naturally to the following definition.

Definition 4.13. Let X in SpN(sPre.(GSm/k),TG ∧ −). The weighted stable
homotopy groups πHs,tX are defined to be the presheaf of groups on Sm/k given by

πHs,t(X)(U) = colim
i≥0

[G/H ∧ Ss+i ∧ (A[G]− 0)t+i ∧ U+, Xi]

Lemma 4.14. A morphism f : X → Y of equivariant spectra is a stable equivalence
if and only if it induces isomorphisms

πHs,t(f) : πHs,t(X)
∼=−→ πHs,t(Y )

for all s, t ∈ Z and H ≤ G.

Proof. This is the analog of [Jar00, Lemma 3.7]. �

Cofiber and Fiber Sequences. Recall from Theorem 4.7 and Proposition 4.11 that
we consider SpN(GSm/k) as a proper stable model category. The theory of cofiber
and fiber sequences is therefore quite convenient. Given a morphism f : X → Y of
equivariant spectra the homotopy cofiber (resp. homotopy fiber) is defined by the
homotopy push out (resp. homotopy pullback) square

X
f //

��

Y

��

hofib(f) //

��

∗

��
∗ // hocofib(f) X

f // Y.

The simplicial structure on SpN(GSm/k) provided by Theorem 4.7 implies that
there is a stable weak equivalence

hocofib(X → ∗) ' S1 ∧X.
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At this point we omit a thorough introduction of the triangulated structure on
the stable homotopy category SH(k,G) via S1 | (A[G]−0)-bispectra and (co-) fiber
sequences which works out perfectly analogous to what is developed in Jardine’s
Section 3.3 of [Jar00]. Instead, we just state the following important consequence.

Lemma 4.15. Given a cofiber sequence

X
f−→ Y → hocofib(f)

of equivariant spectra, there is a long exact sequence of presheaves of groups

(4.3) . . .→ πGs,t(X)→ πGs,t(Y )→ πGs,t(hocofib(f))→ πGs−1,t(X)→ . . .

4.2. Naive G-Spectra and Change of Universe. For a careful investigation
of the connection between stable equivariant and stable non-equivariant motivic
homotopy theories it is appropriate to introduce naive G-spectra, a natural inter-
mediate. We mirror some results from the topological theory (cf. [LMS86, Section
II]) into our context.

Definition 4.16. Let T be the Tate sphere S1∧Gm ∈ sPre.(GSm/k). An object in
SpN(sPre.(GSm/k), T ∧−) is called a (sequential) naive G-spectrum. We consider
the category SpN(sPre.(GSm/k), T ∧ −) of naive G-spectra as endowed with the
stable model structure of Theorem 4.7, i.e. take the A1-local injective model struc-
ture with respect to the H-Nisnevich topology on sPre.(GSm/k) and localize the
levelwise (projective) model structure on SpN(sPre.(GSm/k), T ∧ −) along stable
equivalences.

We will usually continue to call an object E in SpN(sPre.(GSm/k),TG ∧ −)
an equivariant spectrum or G-spectrum, but to emphasize the distinction E is
sometimes called a genuine G-spectrum.

Given a non-equivariant spectrum X in SpN(sPre.(Sm/k)) we may apply the
canonical prolongation of the trivial G-action functor (4.8)

(−)tr : sPre(Sm/k)→ sPre(GSm/k)

on X to obtain a naive G-spectrum Xtr. Let E be any naive G-spectrum and define

a genuine G-spectrum i∗E by (i∗E)n = T̃nG ∧ En with bonding maps

TG ∧ i∗En ∼= T̃G ∧ T ∧ i∗En
id∧σn−−−−→ T̃n+1

G ∧ En+1.

The resulting functor i∗ from naive to genuine G-spectra has a right adjoint i∗,

which is defined by (i∗E)n = HomG(T̃nG, En) with bonding maps

T ∧ i∗En → i∗En+1 = HomG(T̃n+1
G , En+1) adjoint to

T̃n+1
G ∧ T ∧ i∗En ∼= TG ∧ T̃nG ∧HomG(T̃nG, En)

ev−→ TG ∧ En
σn−−→ En+1.

This way, we have defined a change of universe adjunction

i∗ : SpN(sPre.(GSm/k), T ∧ −) � SpN(sPre.(GSm/k),TG ∧ −) : i∗.

Lemma 4.17. The change of universe adjunction (i∗, i
∗) is a Quillen adjunction

with respect to the stable model structures.

Proof. The pair (i∗, i
∗) is a Quillen adjunction with respect to the levelwise model

structures. Let X be a stably fibrant genuine G-spectrum, in particular we have
weak equivalences

Xn
∼−→ HomG(TG, Xn+1)
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of A1-locally fibrant simplicial presheaves for every n. The right Quillen functor

HomG(T̃nG,−) preserves them and we compute

i∗Xn
∼= HomG(T̃nG, Xn) ' HomG(T̃nG,HomG(TG, Xn+1))

∼= HomG(T,HomG(T̃n+1
G , Xn+1)) = (ΩT i

∗X)n

and note that i∗X is a stably fibrant naiveG-spectrum [Jar00, Lemma 2.7]. Further,
the adjunction (i∗, i

∗) is compatible with the simplicial enrichments and we combine
this with the (SM7)-style characterization of stable equivalences [Jar00, Corollary
2.12]: Let W be a stably fibrant and levelwise-injective fibrant genuine G-spectrum
and let f : X → Y be a trivial cofibration of naive G-spectra. The diagram

sSet(i∗Y,W )
i∗f
∗
//

∼=
��

sSet(i∗X,W )

∼=
��

sSet(Y, i∗W )
∼
f∗
// sSet(X, i∗W )

commutes and therefore i∗f is a stable equivalence (and a cofibration). �

The forgetful functor (−)e : sPre(GSm/k) → sPre(Sm/k) (the e-fixed points
functor) also has a canonical prolongation

(−)e : SpN(sPre.(GSm/k), T ∧ −)→ SpN(sPre.(Sm/k), T ∧ −)

and for a (genuine) G-spectrum E, we call Ee (resp. (i∗E)e) the underlying non-
equivariant spectrum of E.

Lemma 4.18. Let E be a naive G-spectrum. The unit morphism

E → i∗i∗E

is a non-equivariant stable equivalence.

Proof. Let X be a naive G-equivariant suspension spectrum. Consider the commu-
tative diagram

(4.4) Xe //

∼
��

i∗i∗X
e

∼
��

R∞Xe // R∞i∗i∗Xe

of non-equivariant spectra. We compare domain and codomain of the lower hori-
zontal morphism. The level n in the domain is given by

R∞Xe
n = colim

j≥0
Hom(T j , Xe

j+n)

= colim
j≥0

Hom(T j , T j ∧Xe
n)

while for the codomain we need a few transformations to compute

R∞i∗i∗X
e
n = colim

j≥0
Hom(T j , i∗i∗X

e
j+n)

= colim
j≥0

Hom(T j ,HomG(T̃j+nG , T̃j+nG ∧Xj+n)e)

= colim
j≥0

HomG(G+ ∧ T j ∧ T̃j+nG , T̃j+nG ∧Xj+n)
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and replace G+∧T̃j+nG by the weakly equivalent G+∧T (j+n)(|G|−1). The equivariant
weak equivalence is given by G+∧Y e → G+∧Y, (g, x) 7→ (g, g ·x) in sPre.(GSm/k).
We continue

' colim
j≥0

HomG(G+ ∧ T j+(j+n)(G−1), T̃j+nG ∧Xj+n)

= colim
j≥0

Hom(T j+(j+n)(G−1), (T̃j+nG ∧Xj+n)e)

= colim
j≥0

Hom(T j+(j+n)(G−1), T j+(j+n)(G−1) ∧Xe
n).

Thus, the (filtered and hence homotopy) colimit in the codomain can be computed
as a cofinal system of the colimit in the domain. Therefore, the lower horizontal
morphism is a levelwise equivalence in diagram (4.4).

Let X be an arbitrary naive G-spectrum. X is stably equivalent to the colimit

colim(Σ∞T X0 → Σ∞T X1[−1]→ Σ∞T X1[−1]→ . . .)

of shifted suspension spectra. By the same arguments as in [Jar00, Lemma 4.29],
basically because stable weak equivalences are closed under filtered colimits [Jar00,
Lemma 3.12], the conclusion follows from the first part of this proof. �

Not only the forgetful functor (−)e has a canonical prolongation, but also its
space level adjoint functor ind = G+∧− prolongates canonically due to the twisting
isomorphism G+ ∧ T ∧X ∼= T ∧G+ ∧X to naive G-spectra.

Lemma 4.19. The adjunction

ind : SpN(sPre.(Sm/k), T ∧ −) � SpN(sPre.(GSm/k), T ∧ −) : res = (−)e

is a Quillen adjunction with respect to the stable model structures.

Proof. First, note that (ind, res) is a Quillen adjunction for the levelwise model
structures by Lemma 3.8 and that res preserves levelwise equivalences. Since we
have

res(R∞X) = res

(
colim
n≥0

HomG(Tn, Xn)

)
∼= colim

n≥0
res (HomG(Tn, Xn))

∼= colim
n≥0

Hom(Tn, res(Xn)) = R∞res(X)

it follows that res also preserves stable equivalences. Together with a characteriza-
tion of stably fibrant objects [Jar00, Lemma 2.7&2.8] a similar computation reveals
that res preserves stably fibrant objects. As the stable model structures are left
Bousfield localizations of the levelwise ones, it is sufficient to show that ind maps
trivial cofibrations to stable equivalences. So let f : X → Y be a trivial cofibration
in SpN(sPre.(Sm/k), T ∧−) and let W be a stably fibrant and injective-levelwise fi-
brant object in SpN(sPre.(GSm/k), T ∧−). We make use of the simplicial structure
and observe that the diagram

sSet(ind(Y ),W )
ind(f)∗//

∼=
��

sSet(ind(X),W )

∼=
��

sSet(Y, res(W ))
∼
f∗
// sSet(X, res(W ))

commutes and that res(W ) is still stably fibrant and ’injective’. Thus, ind(f) is a
stable equivalence [Jar00, Corollary 2.12]. �
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Lemma 4.20. Let d : E → F be a non-equivariant stable equivalence of naive
G-spectra and let X be stably equivalent to an induced naive G-spectrum. Then the
map

d∗ : [X,E]
∼=−→ [X,F ]

is an isomorphism.

Proof. Due to naturality the diagram

[X,E]

d∗

��

∼= // [ind(D), E]

d∗

��

∼= // [D,Ee]

de∗
��

[X,F ]
∼= // [ind(D), F ]

∼= // [D,F e]

commutes, where the maps decorated with ’∼=’ are isomorphisms by Lemma 4.19
and the assumption of a stable equivalence between X and ind(D). Further, we
assume the de is a stable equivalence, hence (de)∗ and d∗ are isomorphisms. �

Proposition 4.21. Let X be stably equivalent to an induced naive G-spectrum and
let E be any naive G-spectrum. Then there is an isomorphism

i∗ : [X,E]
∼=−→ [i∗X, i∗E].

Proof. By Lemma 4.18 and Lemma 4.20 the morphism i∗ is a composition of iso-
morphisms

i∗ : [X,E]
ηE−−→ [X, i∗i∗E] ∼= [i∗X, i∗E].

�

With the same arguments as for Lemma 4.19 all the other induction/restriction
adjunctions

indHG : sPre.(HSm/k) � sPre(GSm/k) : resGH

prolongate to Quillen adjunctions between the respective naive equivariant cate-
gories as well. This is also true for the fixed-point functors and we record the
following lemma for the study of fixed-point functors of genuine G-spectra in the
next subsection.

Lemma 4.22. For all H ≤ G, the canonically prolongated adjunction

(−)H : SpN(sPre.(Sm/k), T ∧ −) � SpN(sPre.(GSm/k), T ∧ −) : (−)H

is a Quillen adjunction with respect to the stable model structure on both sides.

Proof. Again, note that ((−)H , (−)H) is a Quillen adjunction for the levelwise
model structures. Let f : X → Y be a stable acyclic cofibration of non-equivariant
spectra. We have to show that fH is a stable equivalence of naive G-spectra or
equivalently that for all n ∈ N and K ≤ G the morphism R∞(fH)Kn is an A1-local
weak equivalence. Since we have

Hom(T i, XK) ∼= HomsPre(G)(T
i ∧G/K+ ∧ (̃ )+, X) ∼= HomG(T i, X)K

we see that (R∞(fH)n)K ∼= R∞((fH)K)n holds and the statement follows from
Lemma 3.8. �
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4.3. Characterization of Stable Weak Equivalences. In this section we define
two fixed point functors

(−)H : SpN(sPre.(GSm/k),TG ∧ −)→ SpN(sPre.(Sm/k), T ∧ −)(4.5)

ΦH : SpN(sPre.(GSm/k),TG ∧ −)→ SpN(sPre.(Sm/k), T ∧ −)(4.6)

from G-spectra to non-equivariant spectra for any subgroup H ≤ G. The situation
is pretty much the same as in classical stable equivariant homotopy theory, where
the (Lewis-May) fixed point functor (−)H has the expected left adjoint, but is rather
abstract and the geometric fixed point functor ΦH is the levelwise extension of the
unstable fixed point functor. We show that both families of fixed-point functors
detect motivic equivariant stable weak equivalences. This means that we obtain
two stable versions of Proposition 3.9.

The Lewis-May fixed points. For a non-equivariant T -spectrum E we define the
push forward Efixed to a genuine G-spectrum by the composition
(4.7)

SpN(sPre.(Sm/k), T ∧ −)
(−)fixed //

(−)tr ))

SpN(sPre.(GSm/k),TG ∧ −)

SpN(sPre.(GSm/k), T ∧ −),

i∗

55

that is Xfixed is the genuine G-equivariant spectrum defined by

(Xfixed)n = T̃nG ∧ (Xn)tr

where T̃G is the representation sphere associated to the reduced regular represen-
tation and (Xn)tr is the image of Xn under the left adjoint functor (−)tr from the
adjunction

(4.8) (−)tr : sPre.(Sm/k) � sPre.(GSm/k) : (−)G

of left Kan extensions, cf. (2.2). The bonding maps of Xfixed are defined by

TG ∧ T̃∧nG ∧ (Xn)tr
//

∼= τ

��

T̃∧n+1
G ∧ (Xn+1)tr

T̃G ∧ T̃∧nG ∧ T ∧ (Xn)tr

id∧σn

55

Since not only ((−)tr, (−)G), but by Lemma 4.22 the whole family of fixed-point
adjunctions canonically prolongates to Quillen adjunctions

(−)H : SpN(sPre.(Sm/k), T ∧ −) � SpN(sPre.(GSm/k), T ∧ −) : (−)H

we may compose adjoints and make the following definition.

Definition 4.23. Let X be a genuine G-equivariant spectrum. We define the
(Lewis-May) H-fixed points of X by

XH := (i∗X)H .

Lemma 4.24. The adjunction

(−)fixed : SpN(sPre.(Sm/k), T ∧ −) � SpN(sPre.(GSm/k),TG ∧ −) : (−)G

as well as the other H-fixed point adjunctions are Quillen adjunctions with respect
to the stable model structures.

Proof. The Lewis-May fixed point adjunctions are compositions of Quillen adjunc-
tions by Lemma 4.17 (change of universe) and Lemma 4.22 (naive fixed points). �
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Proposition 4.25. Let f : X → Y be a morphism in SpN(sPre(GSm/k)). Then
the following are equivalent

(1) f is a stable weak equivalence.
(2) For all subgroups H ≤ G, the morphism fH is a stable equivalence of non-

equivariant spectra.

Proof. The morphism f is a stable equivalence of G-spectra if and only if it induces
isomorphisms on all weighted stable homotopy groups πHs,t. We compute

[G/H ∧ Ss+j ∧ (A[G]− 0)t+j , Xj ]
G ∼= [G/H ∧ Ss+j ∧ (Gm)t+j ∧ T̃t+jG , Xi]

G

where we use Lemma 4.12 and the splitting TG = T ∧ T̃G ' S1 ∧Gm ∧ T̃G, so that

we can (cofinally) replace A[G]− 0 by Gm ∧ T̃G and obtain

∼= [G/H ∧ Ss+j ∧ (Gm)t+j ,Ωt+j
T̃G

Xj ]
G

∼= [G/H ∧ Ss+j ∧ (Gm)t+j , i∗X[−t]j ]G

∼= [Ss+j ∧ (Gm)t+j , i∗X[−t]j ]H

∼= [Ss+j ∧ (Gm)t+j , i∗X[−t]Hj ]

So that equivalently fH induces isomorphisms on non-equivariant weighted stable
homotopy groups and hence is a stable equivalence for all H ≤ G. �

The geometric fixed points. We will need the following lemma to extend the ad-
junction of Corollary 2.18 from unstable to stable homotopy theories.

Lemma 4.26. The G-fixed points of the regular representation sphere are canoni-
cally isomorphic to the Tate sphere T , i.e.

(TG)G ∼= T

Proof. The regular representation A[G] decomposes into a sum ⊕ni=1miUi of in-
equivalent irreducible representations Ui. Let U1 be the trivial representation,
which splits off canonically due to the norm element Σg∈Gg in the finite group case.
Then we have

UGi
∼=

{
A1 if i = 1

0 else,

because non-trivial fixed-points would give a G-invariant submodule and hence a
G-invariant complement (by Maschke’s Theorem in our case). �

Corollary 4.27. There is a canonical natural isomorphism

(− ∧ T ) ◦ (−)G → (−)G ◦ (− ∧ TG)

of functors sPre.(GSm/k)→ sPre.(Sm/k) and hence a prolongation of the adjunc-
tion (2.4) to an adjunction

ΦG : SpN(sPre.(GSm/k), (− ∧ TG)) � SpN(sPre.(Sm/k), (− ∧ T )).

Proof. The left Kan extension (−)G from Corollary 2.18 preserves smash products
since it is also right adjoint by Remark 2.19.

Therefore, the isomorphism from the lemma above gives a natural isomorphism

T ∧ (−)G ∼= TGG ∧ (−)G ∼= (TG ∧ −)G.



EQUIVARIANT MOTIVIC HOMOTOPY THEORY 21

From this natural transformation τ : ((−)G ∧ T )
∼=−→ (− ∧ TG)G one obtains a

prolongation of (−)G by (X.)
G
n = (Xn)G with bonding maps

T ∧XG
n

τXn

��

// XG
n+1

(TG ∧Xn)G
σG
n

99

To prolongate the right adjoint RG of (−)G one needs a natural transformation

TG ∧RG(−)→ RG(T ∧ −),

but using the adjunction and in particular the counit ε we obtain natural morphisms

(TG ∧RG(−))G ∼= T ∧ (RG(−))G
id∧ε−−−→ T ∧ −.

The prolongations are still adjoint. �

Remark 4.28. For a finite group G the norm element Σg∈Gg ∈ A[G] gives a

canonical splitting A[G] ∼= A1×Ã[G] of the trivial part of the regular representation.
Therefore, we have a canonical morphism from the Tate sphere T with a trivial
action to the regular representation sphere TG which factors for any H ≤ G as

T //

cH ��

TG

THG

>>

This canonical morphism cH gives a natural transformation

T ∧ (−)H
cH−−→ THG ∧ (−)H ∼= (TG ∧ −)H

which leads to a prolongation of the H-fixed points to a functor

(4.9) ΦH : SpN(sPre.(GSm/k),TG ∧ −)→ SpN(sPre.(Sm/k), T ∧ −).

Lemma 4.29. Let X ∈ sPre·(GSm/k) and let Y be a genuine equivariant G-
spectrum. For all subgroups H ≤ G, we have

ΦH(X ∧ Y ) = XH ∧ ΦH(Y ).

In particular, ΦG is compatible with suspension spectra in the sense that

ΦG(Σ∞TG
X) = Σ∞T X

G.

Proof. The geometric fixed points functor ΦH is a prolongation and smashing with
a space is defined as a levelwise smash product, thus the first statement follows
from the compatibility of the space level fixed point functors with smash products.
For the second statement additionally use Lemma 4.26. �

One adds a disjoint basepoint to the unique morphism EG→ ∗ and then takes
the homotopy cofiber of the suspension spectra in SpN(GSm/k) to acquire the
cofiber sequence

(4.10) EG+ → S0 p−→ ẼG,

which is of fundamental importance in equivariant homotopy theory.

Lemma 4.30. The unreduced suspension ẼG defined by the cofiber sequence

EG+ → S0 → ẼG

is non-equivariantly contractible.



22 PHILIP HERRMANN

Proof. The space EG is non-equivariantly contractible, hence the morphism of
spectra EG+ → S0 is a stable weak equivalence of the underlying non-equivariant
spectra. Applying [Jar00, Lemma 3.7] twice to the long exact sequence of underlying
T spectra

. . .→ πt+1,s(ẼG)→ πt,s(EG+)
∼=−→ πt,s(S

0)→ πt,s(ẼG)→ . . .

we see that ẼG is contractible. �

Lemma 4.31. Let f : X → Y be a non-equivariant stable equivalence of equivariant
motivic spectra. Then

id∧f : EG+ ∧X → EG+ ∧ Y

is an equivariant stable equivalence.

Proof. We consider the cofiber sequence

X
f−→ Y → hocofib(f) =: Z

and assume that Z is non-equivariantly contractible. Let Z → Z ′ be a stably fibrant
replacement in SpN(sPre·(GSm/k),TG∧−). Then Z ′ is levelwise non-equivariantly
contractible and EG+ ∧Z is stably equivalent to EG+ ∧Z ′. But EG+ ∧Z ′ is even
equivariantly levelwise contractible and hence so is EG+ ∧ Z. �

For a comparison of geometric and Lewis-May fixed points, we introduce the
following generalization of EG. A family of subgroups of G is defined to be a set F
of subgroups of G, such that F is closed under taking subgroups and conjugation.
Given such a family F , there might exist a G-representation V = VF with the
property that

(4.11) V H is

{
> 0 if H ∈ F ,
0 if H 6∈ F .

On the other hand, given a G-representation V , the set of subgroups with defining
property (4.11) is a family of subgroups. We consider the cofiber sequence

(V − 0)+ → S0 → SV

and observe that the fixed points (SV )H are computed by the diagram

(V − 0)H //

��

V H

��
∗ // (SV )H .

Thus, (SV )H is S0 for subgroups H which are not in F and otherwise (SV )H

is equal to S2r,r, for some r > 0. Denote by EF the infinite smash product

colimj≥0(V −0)∧j and by ẼF the infinite smash product colimj≥0(SV )∧j . It follows

that ẼF
H

is S0 if H is not in F . For a subgroup H ∈ F the H-fixed points are
an infinite smash of positive dimensional spheres and therefore contractible. In
particular, we note that for the family P of all proper subgroups of G, the reduced
regular representation gives an adequate representation and the fixed points of the

unreduced suspension ẼP are given by

ẼP
H
'

{
∗ if H < G

S0 if H = G.
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Lemma 4.32. The evaluation morphism

(ẼP ∧X)G → ΦG(X)

is a levelwise equivalence of non-equivariant spectra.

Proof. We compute that

(ẼP ∧X)Gn = HomG(T̃nG, ẼP ∧Xn)G

∼= sSetG(T̃nG ∧ (−)tr, ẼP ∧Xn)

where T̃nG is a homotopy colimit of equivariant cells G/H+ ∧ SpH ,qH and therefore

∼= holim
H≤G

sSetG(G/H+ ∧ SpH ,qH ∧ (−)tr, ẼP ∧Xn)

∼= holim
H≤G

sSet(SpH ,qH ∧ (−)tr, ẼP
H
∧XH

n )

All the non-initial holim-factors corresponding to proper subgroups are contractible

and since Ã[G] has no trivial subrepresentation we have (pG, qG) = (0, 0), so that

' sSet(S0 ∧ (−)tr, ẼP
G
∧XG

n ) ∼= XG
n .

�

We obtain the following characterization of equivariant stable equivalences by
their geometric fixed points.

Proposition 4.33. Let f : X → Y be a morphism in SpN(sPre.(GSm/k)). Then
the following are equivalent

(1) f is a stable weak equivalence.
(2) For all subgroups H ≤ G, the morphism ΦH(f) is a stable equivalence of

non-equivariant spectra.

Proof. Assume that f is a stable equivalence. Let PH be the family of all proper

subgroups of H. When applying the left Quillen functor ẼPH ∧ − we still have a
stable equivalence and by Proposition 4.25 for all subgroups H of G we thus have
a non-equivariant stable equivalence

(ẼPH ∧ f)H : (ẼPH ∧X)H → (ẼPH ∧ Y )H

which implies by Lemma 4.32 that ΦH(f) is a stable equivalence.
Conversely, assume that for all subgroups H of G the map ΦH(f) on geometric

fixed points is a stable equivalence. We proceed by induction on the order of G.
For |G| = 1 there is nothing to show, since ΦG is basically the identity then. So let
G be non-trivial and assume the claim to be true for all proper subgroups of G. So
resGHf is an equivariant stable equivalence for all proper subgroups H of G and by
Proposition 4.25 this implies that for these subgroups also fH is a non-equivariant
stable equivalence. We are going to show that fG is a stable equivalence as well.
Smashing f with the norm sequence (4.10) for EP we obtain a diagram

EP ∧X

��

// X //

f

��

ẼP ∧X

��
EP ∧ Y // Y // ẼP ∧ Y
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where EP+∧f is a stable equivalence by an argument completely analogous to the
proof of Lemma 4.31. We may apply (−)G to the whole diagram above and using
Lemma 4.32 we find that fG is surrounded by stable equivalences in the diagram

(EP ∧X)G

∼
��

// XG //

fG

��

(ẼP ∧X)G

∼
��

(EP ∧ Y )G // Y G // (ẼP ∧ Y )G

with rows cofiber sequences. Therefore, fG is a stable equivalence and we conclude
again by using Proposition 4.25 that f itself is a stable equivalence. �

5. Representability of Equivariant Algebraic K-Theory

This subsection starts with a recollection of equivariant algebraic K-theory fol-
lowing Thomason [Tho87]. The main result of this subsection shows that equivari-
ant algebraic K-theory does not satisfy descent with respect to topologies that, like
the H-Nisnevich topology, contain certain morphisms as coverings. We also recall
a result of Krishna and Østvær [KØ12] that the equivariant Nisnevich topology of
Definition 2.1 allows K-theory to satisfy descent. Finally, we discuss the effect of
our non-descent result on the K-theory descent property of the isovariant Nisnevich
topology as it is investigated in [Ser10].

Definition 5.1. Let X be in GSm/k. A quasi-coherent G-module (F,ϕ) on X is
given by a quasi-coherent OX -module F and an isomorphism

ϕ : α∗XF
∼=−→ pr∗2F

of OG×X -modules, such that the cocycle condition

(pr∗23ϕ) ◦ ((id×αX)∗ϕ) = (m× id)∗ϕ

is satisfied. F is called coherent (resp. locally free) if it is coherent (resp. locally
free) as an OX -module.

Coherent G-modules on some X in GSm/k form an abelian category M(G,X)
and locally free coherent G-modules (G-equivariant vector bundles) form an exact
subcategory P (G,X). To these exact categories we associate the simplicial nerve
BQM(G,X) (resp. BQP (G,X)) of Quillen’s Q-construction. Finally, denote by
G(G,X) = ΩBQM(G,X) and K(G,X) = ΩBQP (G,X) the K-theory spectra (or
infinite loop spaces) associated to the exact categories of coherent G-modules on X
and to those that are locally free. In his fundamental work Thomason already shows
that for a separated noetherian regular G-scheme X the inclusion of categories
induces an equivalence K(G,X)

∼−→ G(G,X) [Tho87, Theorem 5.7] and that hence
for such an X the equivariant K-theory satisfies homotopy invariance in the sense
that the projection induces an equivalence

K(G,X)→ K(G,X × An)

even with respect to any linear G-action on An [Tho87, Corollary 4.2].
By the origin of the use of the word motivic in this area of mathematics it should

be considered a fundamental test for any candidate of a motivic homotopy category,
whether it allows representability for a sufficient amount of cohomological theories
or not. One obstacle for a theory F to be representable in H(k,G) is that it has to
satisfy (hypercover) descent with respect to the topology used to define the local
model structure. This is a kind of homotopical sheaf condition which implies the
compatibility of the theory F with local weak equivalences. For the following we
may restrict our attention to the weaker notion of Čech descent.
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Definition 5.2. An objectwise fibrant simplicial presheaf F on a site C satisfies
Čech descent with respect to the topology on C if for any covering family {Ui → X}i
in C the morphism

(5.1) F (X) // holim(
∏
i F (Ui)

// //
∏
i,j F (Ui ×X Uj)

//
//// . . .)

is a weak equivalence of simplicial sets. An arbitrary simplicial presheaf is said to
satisfy Čech descent if an objectwise fibrant replacement of it does.

It is a straight reformulation of this definition that a simplicial presheaf F satisfies
Čech descent if and only if for any covering U = {Ui → X}i and an injective fibrant
replacement F ′ of F the induced map

sSet(X,F ′)→ sSet(Č(U), F ′)

is a weak equivalence of simplicial sets.
In [KØ12, Theorem 5.4] Krishna and Østvær show that the presheaf of K-theory

of perfect complexes on Deligne-Mumford stacks satisfies descent with respect to
a version of the Nisnevich topology. Restricting the results from Deligne-Mumford
stacks to the subcategory of G-schemes, the topology restricts to the equivariant
Nisnevich topology and their results imply descent of equivariant K-theory for the
equivariant Nisnevich topology (cf. [KØ12, Remark 7.10]).

However, the rest of this section is devoted to showing that equivariant K-
theory does not satisfy descent with respect to certain topologies, including the
H-Nisnevich topology.

Proposition 5.3. Equivariant algebraic K-theory does not satisfy descent with
respect to the H-Nisnevich topology.

Proof. Suppose that K(G,−) satisfies descent for the H-Nisnevich topology on
Z/2 − Sm/R, then in particular K(Z/2,−) satisfies Cech descent for Spec(C)gal

and the H-Nisnevich cover

Z/2× Spec(C)tr → Spec(C)gal

induces a weak equivalence

K(Z/2,Spec(C)gal)
∼−→ holim

(
K(G,Z/2× C) ⇒ K(Z/2, (Z/2× C)×2) . . .

)
as in (5.1). We compute the equivariant K-theory of G-torsors using [Tho88,
Theorem 1.12] as K(Z/2,Spec(C)gal) ' K(Spec(R)), K(Z/2,Z/2 × Spec(C)) '
K(Spec(C)), and so on, which implies an equivalence

K(Spec(R))
∼−→ holim (K(Spec(C)) ⇒ K(Spec(C)× Spec(C))) . . .) .

Thus, the homotopy limit on the right hand side computes to

holim (K(Spec(C)) ⇒ K(Spec(C)× Spec(C))) . . .)

'Map(hocolim
n

Č(Z/2→ ∗)n,K(Spec(C)))

'Map(EG,K(Spec(C)))

= K(Spec(C))hG ' Ket(Spec(R)),

and so we finally obtain an equivalence K(Spec(R))→ Ket(Spec(R)) which gives a
contradiction, since Ket(Spec(R)) contains a non-zero additional information com-
ing from the Brauer group. �
Remark 5.4.
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(1) The proof above can easily be generalized to more general field extensions.
One needs to assure that there is some non-zero l-torsion in the Brauer
group of the base field and that the l-completed descent spectral sequence
(cf. [Mit97, Corollary 1.5]) converges and hence allows to detect this addi-
tional l-torsion elements.

(2) The same proof also provides a counterexample to the main theorem of
[Ser10] that equivariant K-theory satisfies ’isovariant’ descent. In loc. cit. a
parametrized version of scheme-theoretic isotropy is introduced as GX ,
where X is a G-scheme, and defined as the pullback

GX //

��

G×X

α×prX
��

X
∆ // X ×X.

Serpé calls a family {Ui → X}i in GSm/k an isovariant Nisnevich cover if
the underlying family of schemes is a Nisnevich cover and for all Ui → X
the induced morphism GUi → GX furnishes a pullback square

(5.2) GUi
//

��

GX

��
Ui // X.

The singleton {f : Z/2×Spec(C)tr → Spec(C)gal} defines an isovariant Nis-
nevich cover. This is because firstly the G-actions on domain and codomain
are free. Therefore, the corresponding commutative square of type (5.2) is a
pullback square. Secondly, f is a non-equivariant Nisnevich covering, since
the components of G× Spec(L) map to Spec(L) along the elements of the
Galois group.

Eventually, {f} is also a counterexample to the proof of [Ser10, Propo-
sition 2.7], since f/G is the canonical map Spec(L)→ Spec(k) which is not
a Nisnevich cover.
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[DRØ03] Bjørn Ian Dundas, Oliver Röndigs, and Paul Arne Østvær, Enriched functors and stable
homotopy theory, Documenta Math 8 (2003), 409–488.

[Fog73] John Fogarty, Fixed Point Schemes, American Journal of Mathematics (1973), 35–51.
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