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Motivation

Decompositions of graphs into their ‘k-connected pieces’.

k = 1: components

k = 2: block cut-vertex
tree

k = 3: Tutte

k ≥ 4: ???
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Tutte’s result

Theorem (Tutte)

Every 2-connected graphs admits a tree-decomposition (invariant
under the automorphisms of the graph) such that each torso is
either 3-connected or a cycle.

Torsos fail for k ≥ 4:
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k-blocks and decompositions

Definition

A k-block is a maximal set of vertices no two of which can be
separated by less than k vertices.

Theorem (Carmesin, Diestel, Hundertmark, Stein)

For every k and every graph G , there exists a canonical
tree-decomposition that distinguishes the k-blocks of G .
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Iterated decomposition

Theorem (Carmesin, Diestel, Hundertmark, Stein)

For every graph G , there exists a canonical tree-decomposition
that distinguishes the robust k-blocks of G for all k .
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Infinite graphs

Definition

A ray is a one-way infinite path. Two rays in a graph G are
equivalent if they lie eventually in the same component of G − S
for every finite vertex set S . The equivalence classes of this
equivalence relation are the ends of the graph.
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Ends of graphs: examples

one end two ends infinitely many ends
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Accessibility

Definition

A graph is accessible if there is some n ∈ N such that each two
ends are separated by at most n vertices.

Theorem (Thomassen & Woess)

A group is accessible if and only if some (and hence any) of its
locally finite Cayley graphs is accessible.
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Accessibility

Theorem (H.)

Locally finite vertex-transitive graphs whose cycle spaces are
generated by cycles of bounded length are accessible.

Corollary (H.)

Locally finite hyperbolic vertex-transitive graphs are accessible.

Corollary (Dunwoody)

Finitely presented groups are accessible.
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Tangles

Theorem (Robertson & Seymour)

For every graph and k ∈ N, there exists a canonical
tree-decomposition that distinguishes all tangles of order k .

Is it possible, to obtain a canonical such tree-decomposition?
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Inside the proof

Theorem (Carmesin, Diestel, Hundertmark, Stein)

For every k and every graph G , there exists a canonical
tree-decomposition that distinguishes the k-blocks of G .

Definition

A separation is a pair (A,B) of vertex sets with A ∪ B = V and
G [A] ∪ G [B] = G . Its order is |A ∩ B|.

A B
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Inside the proof

Each tree-decomposition belongs to a unique nested set of
separations of the graph.

Task: Find a canonical nested set N of separations of order less
than k that distinguishes all k-blocks.
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Inside the proof

We have a set S of separations of order less than k and a set B of
k-blocks and we search for a nested set N distinguishing B.

A B

C

D

b1 b2

b3

We need a lemma like
“If S is rich enough in term of B, then we find N .”
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Inside the proof

The only necessary fact about the relation between S and B is:
If (A,B) ∈ S and b2 ∈ B on which side of (A,B) does b2 live?

A B

C

D

b1 b2

b3
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Inside the proof

Every k-block induces an orientation of every separation of order
less than k which is consistent in that the set P of these
orientations satisfies

(P1) (A,B) ≤ (C ,D) ∈ P ⇒ (B,A) /∈ P

A B C D

(P2) (A,B), (C ,D) ∈ P ⇒ (B ∩ D,A ∪ C ) /∈ P

A B

C

D
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Profiles

Definition

A k-profile is an orientation of all separations of order less than k
that satisfies (P1) and (P2).

Remark

Tangles of order k are k-profiles.

Matthias Hamann Canonical tree structure of graphs



Profiles

Definition

A k-profile is an orientation of all separations of order less than k
that satisfies (P1) and (P2).

Remark

Tangles of order k are k-profiles.

Matthias Hamann Canonical tree structure of graphs



Profiles

Theorem (Carmesin, Diestel, H., Hundertmark)

For every k and every graph G , there exists a canonical
tree-decomposition that distinguishes the k-profiles of G .

Theorem (Hundertmark)

For every graph G , there exists a canonical tree-decomposition
that distinguishes the robust k-profiles of G for all k .

Corollary

Tangles of order k can be separated canonically.
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Examples of k-blocks

1 k-connected graphs form k-blocks

2 connectivity induced by some dense substructure:

3 connectivity given without any dense substructure:
Take an independent set on k vertices and add k internally
disjoint paths between every two of those vertices.
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Existence of k-blocks

Question

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the
minimum degree:

2(k − 1) is sufficient
3
2(k − 1)− 1 is not sufficient

and for the average degree:

3(k − 1) is sufficient

2(k − 1)− 1− ε is not sufficient for any ε > 0.

Problem

Find the sharp bounds.

Problem

Relate other graph parameters to the existence of k-blocks.

Matthias Hamann Canonical tree structure of graphs



Existence of k-blocks

Question

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the
minimum degree:

2(k − 1) is sufficient
3
2(k − 1)− 1 is not sufficient

and for the average degree:

3(k − 1) is sufficient

2(k − 1)− 1− ε is not sufficient for any ε > 0.

Problem

Find the sharp bounds.

Problem

Relate other graph parameters to the existence of k-blocks.

Matthias Hamann Canonical tree structure of graphs



Existence of k-blocks

Question

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the
minimum degree:

2(k − 1) is sufficient
3
2(k − 1)− 1 is not sufficient

and for the average degree:

3(k − 1) is sufficient

2(k − 1)− 1− ε is not sufficient for any ε > 0.

Problem

Find the sharp bounds.

Problem

Relate other graph parameters to the existence of k-blocks.

Matthias Hamann Canonical tree structure of graphs



Existence of k-blocks

Question

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the
minimum degree:

2(k − 1) is sufficient
3
2(k − 1)− 1 is not sufficient

and for the average degree:

3(k − 1) is sufficient

2(k − 1)− 1− ε is not sufficient for any ε > 0.

Problem

Find the sharp bounds.

Problem

Relate other graph parameters to the existence of k-blocks.

Matthias Hamann Canonical tree structure of graphs



Existence of k-blocks

Question

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the
minimum degree:

2(k − 1) is sufficient
3
2(k − 1)− 1 is not sufficient

and for the average degree:

3(k − 1) is sufficient

2(k − 1)− 1− ε is not sufficient for any ε > 0.

Problem

Find the sharp bounds.

Problem

Relate other graph parameters to the existence of k-blocks.

Matthias Hamann Canonical tree structure of graphs



Algorithms

Theorem (Carmesin, Diestel, H., Hundertmark)

1 There exists a polynomial time algorithm for the decision
problem of the existence of some k-block (for fixed k).

2 There exists a polynomial time algorithm to find all k-blocks
(for fixed and for variable k).

3 There exists a polynomial time algorithm to find the
decomposition tree (for fixed k).
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