CANONICAL TREE STRUCTURE OF GRAPHS

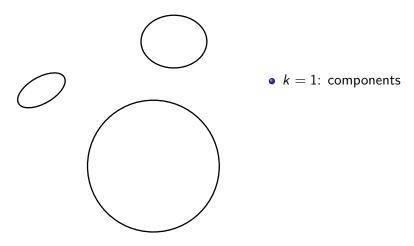
MATTHIAS HAMANN

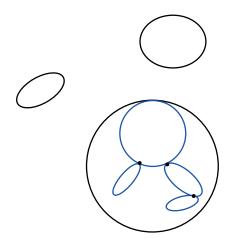
(Joint work with J. Carmesin, R. Diestel, F. Hundertmark, M. Stein)

UNIVERSITÄT HAMBURG

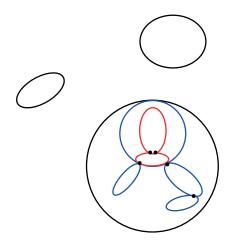
March 7, 2014

- motivation
- ecomposing graphs
- an infinite detour
- ideas from the proof
- \bigcirc a new notion: *k*-profiles
- *k*-blocks
- algorithms

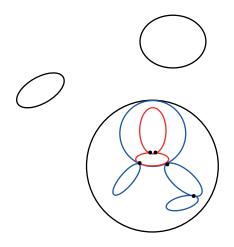




- k = 1: components
- k = 2: block cut-vertex tree



- k = 1: components
- k = 2: block cut-vertex tree



- k = 1: components
- *k* = 2: block cut-vertex tree
- *k* = 3: Tutte
- k ≥ 4: ???

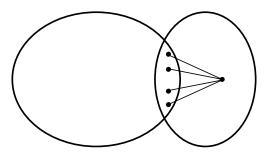
THEOREM (TUTTE)

Every 2-connected graphs admits a tree-decomposition (invariant under the automorphisms of the graph) such that each torso is either 3-connected or a cycle.

THEOREM (TUTTE)

Every 2-connected graphs admits a tree-decomposition (invariant under the automorphisms of the graph) such that each torso is either 3-connected or a cycle.

Torsos fail for $k \ge 4$:



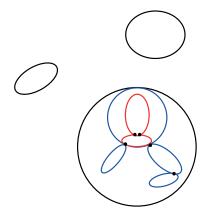
A k-block is a maximal set of vertices no two of which can be separated by less than k vertices.

A k-block is a maximal set of vertices no two of which can be separated by less than k vertices.

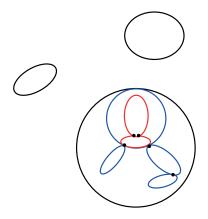
THEOREM (CARMESIN, DIESTEL, HUNDERTMARK, STEIN)

For every k and every graph G, there exists a canonical tree-decomposition that distinguishes the k-blocks of G.

ITERATED DECOMPOSITION



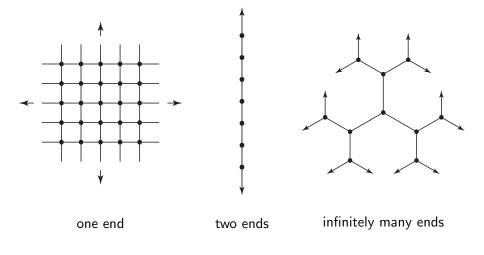
ITERATED DECOMPOSITION



THEOREM (CARMESIN, DIESTEL, HUNDERTMARK, STEIN) For every graph G, there exists a canonical tree-decomposition that distinguishes the robust k-blocks of G for all k.

A ray is a one-way infinite path. Two rays in a graph G are equivalent if they lie eventually in the same component of G - Sfor every finite vertex set S. The equivalence classes of this equivalence relation are the ends of the graph.

ENDS OF GRAPHS: EXAMPLES



A graph is accessible if there is some $n \in \mathbb{N}$ such that each two ends are separated by at most n vertices.

A graph is accessible if there is some $n \in \mathbb{N}$ such that each two ends are separated by at most n vertices.

THEOREM (THOMASSEN & WOESS)

A group is accessible if and only if some (and hence any) of its locally finite Cayley graphs is accessible.

THEOREM (H.)

Locally finite vertex-transitive graphs whose cycle spaces are generated by cycles of bounded length are accessible.

THEOREM (H.)

Locally finite vertex-transitive graphs whose cycle spaces are generated by cycles of bounded length are accessible.

COROLLARY (H.)

Locally finite hyperbolic vertex-transitive graphs are accessible.

THEOREM (H.)

Locally finite vertex-transitive graphs whose cycle spaces are generated by cycles of bounded length are accessible.

COROLLARY (H.)

Locally finite hyperbolic vertex-transitive graphs are accessible.

COROLLARY (DUNWOODY)

Finitely presented groups are accessible.

THEOREM (ROBERTSON & SEYMOUR)

For every graph and $k \in \mathbb{N}$, there exists a canonical tree-decomposition that distinguishes all tangles of order k.

THEOREM (ROBERTSON & SEYMOUR)

For every graph and $k \in \mathbb{N}$, there exists a canonical tree-decomposition that distinguishes all tangles of order k.

Is it possible, to obtain a *canonical* such tree-decomposition?

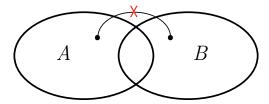
THEOREM (CARMESIN, DIESTEL, HUNDERTMARK, STEIN)

For every k and every graph G, there exists a canonical tree-decomposition that distinguishes the k-blocks of G.

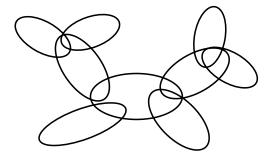
THEOREM (CARMESIN, DIESTEL, HUNDERTMARK, STEIN) For every k and every graph G, there exists a canonical tree-decomposition that distinguishes the k-blocks of G.

DEFINITION

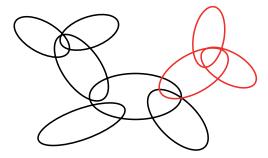
A separation is a pair (A, B) of vertex sets with $A \cup B = V$ and $G[A] \cup G[B] = G$. Its order is $|A \cap B|$.



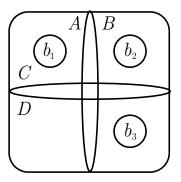
Each tree-decomposition belongs to a unique nested set of separations of the graph.

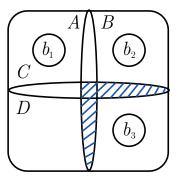


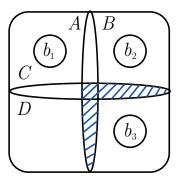
Each tree-decomposition belongs to a unique nested set of separations of the graph.



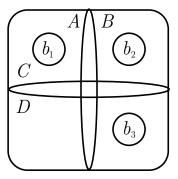
Task: Find a canonical nested set N of separations of order less than k that distinguishes all k-blocks.







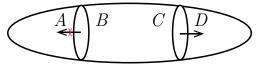
We need a lemma like "If S is rich enough in term of \mathcal{B} , then we find \mathcal{N} ." The only necessary fact about the relation between S and B is: If $(A, B) \in S$ and $b_2 \in B$ on which side of (A, B) does b_2 live?



INSIDE THE PROOF

Every k-block induces an orientation of every separation of order less than k which is consistent in that the set P of these orientations satisfies

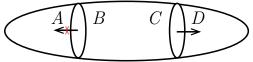
 $(P1) (A,B) \le (C,D) \in P \Rightarrow (B,A) \notin P$



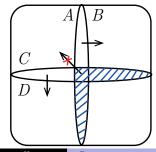
INSIDE THE PROOF

Every k-block induces an orientation of every separation of order less than k which is consistent in that the set P of these orientations satisfies

 $(P1) (A,B) \leq (C,D) \in P \Rightarrow (B,A) \notin P$



(P2) $(A,B), (C,D) \in P \Rightarrow (B \cap D, A \cup C) \notin P$



A *k*-profile is an orientation of all separations of order less than k that satisfies (P1) and (P2).

A *k*-profile is an orientation of all separations of order less than k that satisfies (P1) and (P2).

Remark

Tangles of order k are k-profiles.

THEOREM (CARMESIN, DIESTEL, H., HUNDERTMARK)

For every k and every graph G, there exists a canonical tree-decomposition that distinguishes the k-profiles of G.

For every k and every graph G, there exists a canonical tree-decomposition that distinguishes the k-profiles of G.

THEOREM (HUNDERTMARK)

For every graph G, there exists a canonical tree-decomposition that distinguishes the robust k-profiles of G for all k.

For every k and every graph G, there exists a canonical tree-decomposition that distinguishes the k-profiles of G.

THEOREM (HUNDERTMARK)

For every graph G, there exists a canonical tree-decomposition that distinguishes the robust k-profiles of G for all k.

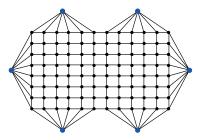
COROLLARY

Tangles of order k can be separated canonically.

• *k*-connected graphs form *k*-blocks

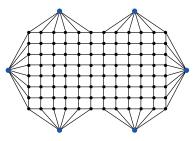
Examples of k-blocks

- k-connected graphs form k-blocks
- onnectivity induced by some dense substructure:



Examples of k-blocks

- k-connected graphs form k-blocks
- ② connectivity induced by some dense substructure:



 connectivity given without any dense substructure: Take an independent set on k vertices and add k internally disjoint paths between every two of those vertices.

QUESTION

Which assumptions on a graph do force the existence of a k-block?

QUESTION

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the minimum degree:

- 2(k-1) is sufficient
- $\frac{3}{2}(k-1)-1$ is not sufficient

QUESTION

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the minimum degree:

- 2(k-1) is sufficient
- $\frac{3}{2}(k-1) 1$ is not sufficient

and for the average degree:

- 3(k-1) is sufficient
- $2(k-1) 1 \varepsilon$ is not sufficient for any $\varepsilon > 0$.

QUESTION

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the minimum degree:

- 2(k-1) is sufficient
- $\frac{3}{2}(k-1)-1$ is not sufficient

and for the average degree:

- 3(k-1) is sufficient
- $2(k-1) 1 \varepsilon$ is not sufficient for any $\varepsilon > 0$.

PROBLEM

Find the sharp bounds.

QUESTION

Which assumptions on a graph do force the existence of a k-block?

We (Carmesin, Diestel, H., Hundertmark) have results for the minimum degree:

- 2(k-1) is sufficient
- $\frac{3}{2}(k-1)-1$ is not sufficient

and for the average degree:

- 3(k-1) is sufficient
- $2(k-1) 1 \varepsilon$ is not sufficient for any $\varepsilon > 0$.

PROBLEM

Find the sharp bounds.

Problem

Relate other graph parameters to the existence of k-blocks.

There exists a polynomial time algorithm for the decision problem of the existence of some k-block (for fixed k).

- There exists a polynomial time algorithm for the decision problem of the existence of some k-block (for fixed k).
- There exists a polynomial time algorithm to find all k-blocks (for fixed and for variable k).

- There exists a polynomial time algorithm for the decision problem of the existence of some k-block (for fixed k).
- There exists a polynomial time algorithm to find all k-blocks (for fixed and for variable k).
- There exists a polynomial time algorithm to find the decomposition tree (for fixed k).