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Highly symmetric objects

Definition

A relational structure is homogeneous if every isomorphism
between two finite induced substructures extends to an
automorphism of the whole structure.

Rado graph

There is a unique countable graph R such that for any two finite
disjoint A,B ∈ V (R) there is a vertex x with A ⊆ N(x) and
B ∩ N(x) = ∅.
This graph is called Rado graph.
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Highly symmetric objects

Theorem (Fräıssé 1953)

Given an age R, there is a unique countable homogeneous
structure whose age is R iff R is amalgamable.

Definition

An age R is amalgamable if for any A,B,C ∈ R with embeddings
f : C → A and g : C → B there is some D ∈ R and embeddings
f ′ : A→ D and g ′ : B → D with cff ′ = cgg ′ for all c ∈ C .
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Examples of highly symmetric structures: graphs

Theorem (Gardiner 1976, Lachlan&Woodrow 1980)

A countable graph is homogeneous iff it or its complement belongs
to the following list:

disjoint union of cliques of the same cardinality,

Rado graph,

generic Kr -free graphs,

C5, L(K3,3).

homogeneous graphs are transitive

are homogeneous graphs Cayley graphs?

Theorem (Cameron&Johnson 1987, Cameron 2000, Cherlin 2014)

Every countable homogeneous graph is a Cayley graph.
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Some further classifications

Known are the classifications of the . . .

countable homogeneous partial orders:
Schmerl 1979

countable homogeneous digraphs:
Lachlan 1982, 1984, Cherlin 1998

finite homogeneous 3-uniform hypergraphs:
Lachlan&Tripp 1995

But unknown is the classification of the . . .

countable homogeneous k-uniform hypergraphs
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Making ‘local’ really local

consider graphs as metric objects
(current classification program of Cherlin)

Definition

A graph G is connected-homogeneous (or C-homogeneous) if every
isomorphism between any two finite connected induced subgraphs
extends to an automorphism of the whole graph.

The notion of C-homogeneity carries over verbatim to
digraphs, where a digraph is connected if its underlying
undirected graph is.
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First structural fact

Lemma

1 The out-neighbourhood of some (and hence every) vertex of a
C-homogeneous digraphs induces a homogeneous digraph.

2 The in-neighbourhood of some (and hence every) vertex of a
C-homogeneous digraphs induces a homogeneous digraph.



First structural fact (proof)
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1st result

Theorem

For every countable C-homogeneous digraph D one of the
following statements is true:

1 D is a blow-up of a homogeneous digraph;

2 D has more than one end;

3 every vertex of D has an independent out- and an
independent in-neighbourhood.



2nd result

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an
Aut(G )-invariant nested set of vertex cuts distinguishing some
ends.

They associate to such a set of vertex cuts a structure tree that
resembles the global structure of G .

Theorem

Connected C-homogeneous digraphs with at least two ends have
connectivity 1 or 2 and are tree-like.

There are five classes of such digraphs.
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An infinitely ended C-homogeneous digraph



Reachability

Definition

An edge e is reachable from an edge f if there is some walk
x1 . . . xn containing e and f such that:

xi−1 ∈ N+(xi )⇔ xi+1 ∈ N−(xi ).

e f

Remark

Reachability is an equivalence relation.

Lemma (Cameron&Praeger&Wormald 1993)

In edge-transitive digraphs either the reachability relation is
universal or one (and hence every) equivalence class forms a
bipartite digraph.
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Reachability

Lemma (Gray&Möller 2011)

In C-homogeneous digraphs whose reachability relation is not
universal and with independent out- and in-neighbourhood for
every vertex, the equivalence classes of the reachability relation
form C-homogeneous bipartite digraphs.



3rd result

Theorem

For every countable C-homogeneous digraph with at most end
whose reachability relation is not universal and with independent
out- and in-neighbourhood for every vertex one of the following
statements is true:

1 essentially, the digraph is a blow-up of a directed cycles or
double ray.

2 it is a quotient digraph of D∗.



Final situation

If the reachability relation is universal, then the digraph contains
the following induced subdigraph:
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Final situation

Lemma

If D is a countable C-homogeneous
digraph with universal reachability
relation and with independent out-
and in-neighbourhood for every
vertex, then with
A := N+(y) r N−(x) and
B := N−(x) r N+(y)
for xy ∈ E (D) the digraph induced by
A ∪ B is a non-empty homogeneous
2-partite digraph.
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B



4th result

Theorem

A countable C-homogeneous digraph with universal reachability
relation and with independent out- and in-neighbourhood for every
vertex is either

1 homogeneous or

2 the generic orientation of the generic bipartite graph.



The classification

Theorem

A countable digraph is C-homogeneous if and only if all its
components are isomorphic and belong to one of twelve classes.

Eleven of these classes have explicit constructions but

one does not!



The classification

Theorem

A countable digraph is C-homogeneous if and only if all its
components are isomorphic and belong to one of twelve classes.

Eleven of these classes have explicit constructions

but

one does not!



The classification

Theorem

A countable digraph is C-homogeneous if and only if all its
components are isomorphic and belong to one of twelve classes.

Eleven of these classes have explicit constructions but

one does not!



A C-homogeneous digraph: D∗



One particular class

the digraph D∗

One class of connected
C-homogeneous digraph of degree 4
are quotient digraphs of D∗, where
the quotient is built using some
Aut(D∗)-invariant equivalence
relation on V (D∗).

Theorem

There is a canonical bijection from
this class of C-homogeneous
digraphs to those subgroups of the
modular group C2 ∗ C3 that contain
a fixed involution.
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The classification

Theorem
A countable digraph is C-homogeneous if and only if it is a disjoint union of countably many copies of one of the
following digraphs:

(i) a countable homogeneous digraph;

(ii) H[In ] for some n ∈ N∞ and with either H = S(3) or H = T∧ for some countable homogeneous
tournament T 6= S(2);

(iii) Xλ(T ) for some countable homogeneous tournament T and λ ∈ N∞;

(iv) a regular tree;

(v) DL(∆), where ∆ is a bipartite digraph such that G(∆) is one of

C2m for some integer m ≥ 2,
CPk for some k ∈ N∞ with k ≥ 3,
Kk,l for k, l ∈ N∞, k, l ≥ 2, or
the countable generic bipartite graph;

(vi) M(k,m) for some k ∈ N∞ with k ≥ 3 and some integer m ≥ 2;

(vii) M′(2m) for some integer m ≥ 2;

(viii) Yk for some k ∈ N∞ with k ≥ 3;

(ix) Cm [Ik ] for some k,m ∈ N∞ with m ≥ 3;

(x) Rm for some m ∈ N∞ with m ≥ 3;

(xi) X2(C3)∼, where ∼ is a non-universal Aut(X2(C3))-invariant equivalence relation on V (X2(C3)); or

(xii) the generic orientation of the countable generic bipartite graph.


