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Stallings’s structure theorem

Theorem (Stallings 1971)

Every finitely generated group G with more than one end splits
non-trivially over a finite subgroup C , that is, G = ∗CA or
G = A ∗C B for some subgroups A 6= C 6= B.
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G
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Definition

A finitely generated group is accessible if this process of
successively decomposing factors with more than one end
terminates after finitely many steps.



Wall’s conjecture

Conjecture (Wall 1971)

Every finitely generated group is accessible.

Verified by Linnell 1983 if all finite subgroups have bounded
order.

Verified by Dunwoody 1985 for finitely presented groups.

Disproved by Dunwoody 1993.
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The idea

groups ←→ Cayley graphs −→ other
graph classes

⇓ ⇓ ⇓
accessibility

theorem
←→ ? −→ ??



Reformulating Dunwoody’s theorem

Theorem (Dunwoody 1985)

Finitely presented groups are accessible.

A finitely presented group G = 〈S | R〉 has a locally finite Cayley
graph Γ whose first homology group is generated by
{g(C ) | C ∈ C, g ∈ G} for some finite set C of closed walks
corresponding to the relators in R, that is, its first homology group
is a finitely generated G -module.
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Extending Dunwoody’s accessibility theorem

Theorem (H. 2015+)

Let G be a 2-edge-connected transitive graph. If its cycle space is
a finitely generated Aut(G )-module, then so is its cut space.

Can we ask for ‘if and only if’?

Remark

Bieri and Strebel (1980) gave an example of a finitely generated
accessible group that is not finitely presentable, that is, of a Cayley
graph G whose cut space is a finitely generated Aut(G )-module
but its first homology group is not.
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Going to infinity: ends

Definition

A ray is a one-way infinite path.

Two rays in a graph G are equivalent if for any finite vertex
set S ⊆ V (G ) both rays lie eventually in the same component
of G − S .

The equivalence classes of this relation are the ends of the
graph.

one end two ends infinitely many ends
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Going to infinity: accessibility

Definition

A graph is accessible if there is some k ∈ N such that for any two
distinct ends, there an edge set of size at most k separating them.

Theorem (Thomassen & Woess 1993)

A finitely generated group is accessible if and only if one (and
hence every) of its locally finite Cayley graphs is accessible.

Theorem (Dunwoody 1985)

Every locally finite Cayley graph G whose first homology group is a
finitely generated Aut(G )-module is accessible.
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A conjecture

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.

Theorem (H. 2015+)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.



A conjecture is confirmed

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated
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Application II: hyperbolic graphs

Definition

A connected graph G is called
hyperbolic if there exists some δ ≥ 0
such that for any three vertices x , y , z
of G and for any three shortest paths,
one between every two of the vertices,
each of those paths lies in the
δ-neighbourhood of the union of the
other two.

≤δ

yx

z
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How can we translate Stallings’s theorem in graph theoretic
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