ACCESSIBLE GROUPS AND GRAPHS

MATTHIAS HAMANN

(University of Hamburg)

2 October 2015

- Accessibility in groups
- Reinterpreting Dunwoody's accessibility theorem
- Accessibility in graphs
- Outlook

- Accessibility in groups
- Reinterpreting Dunwoody's accessibility theorem
- Accessibility in graphs
- Outlook

THEOREM (STALLINGS 1971)

Every finitely generated group G with more than one end splits non-trivially over a finite subgroup C, that is, $G = *_C A$ or $G = A *_C B$ for some subgroups $A \neq C \neq B$.

Splitting recursively

G

Splitting recursively

DEFINITION

A finitely generated group is *accessible* if this process of successively decomposing factors with more than one end terminates after finitely many steps.

Every finitely generated group is accessible.

Every finitely generated group is accessible.

• Verified by Linnell 1983 if all finite subgroups have bounded order.

Every finitely generated group is accessible.

- Verified by Linnell 1983 if all finite subgroups have bounded order.
- Verified by Dunwoody 1985 for finitely presented groups.

Every finitely generated group is accessible.

- Verified by Linnell 1983 if all finite subgroups have bounded order.
- Verified by Dunwoody 1985 for finitely presented groups.
- Disproved by Dunwoody 1993.

ACCESSIBLE GROUPS

Remark

Finitely generated free groups are accessible.

Remark

Finitely generated free groups are accessible.

THEOREM (GROMOV 1987)

Finitely generated hyperbolic groups are finitely presented.

Remark

Finitely generated free groups are accessible.

THEOREM (GROMOV 1987)

Finitely generated hyperbolic groups are finitely presented.

THEOREM (DROMS 2006)

Finitely generated planar groups are finitely presented and accessible.

- Accessibility in groups
- e Reinterpreting Dunwoody's accessibility theorem
- Accessibility in graphs
- Outlook

Reformulating Dunwoody's Theorem

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

Reformulating Dunwoody's Theorem

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

A finitely presented group $G = \langle S | \mathcal{R} \rangle$ has a locally finite Cayley graph Γ whose first homology group is generated by $\{g(C) | C \in C, g \in G\}$ for some finite set C of closed walks corresponding to the relators in \mathcal{R}

Finitely presented groups are accessible.

Finitely presented groups are accessible.

Finitely presented groups are accessible.

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

DEFINITION

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

DEFINITION

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

DEFINITION

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

DEFINITION

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

DEFINITION

Finitely presented groups are accessible.

Finitely presented groups are accessible.

A finitely presented group $G = \langle S | \mathcal{R} \rangle$ has a locally finite Cayley graph Γ whose first homology group is generated by $\{g(C) | C \in C, g \in G\}$ for some finite set C of closed walks corresponding to the relators in \mathcal{R} , that is, its first homology group is a finitely generated G-module.

THEOREM (DICKS & DUNWOODY 1989)

The cut space of a locally finite Cayley graph G of a finitely generated accessible group is a finitely generated Aut(G)-module.

Finitely presented groups are accessible.

A finitely presented group $G = \langle S | \mathcal{R} \rangle$ has a locally finite Cayley graph Γ whose first homology group is generated by $\{g(C) | C \in C, g \in G\}$ for some finite set C of closed walks corresponding to the relators in \mathcal{R} , that is, its first homology group is a finitely generated G-module.

THEOREM (DICKS & DUNWOODY 1989)

The cut space of a locally finite Cayley graph G of a finitely generated accessible group is a finitely generated Aut(G)-module.

THEOREM (DUNWOODY 1985)

Let G be a locally finite Cayley graph. If its first homology group is a finitely generated Aut(G)-module, then so is its cut space.

Let G be a locally finite Cayley graph. If its first homology group is a finitely generated Aut(G)-module, then so is its cut space.

Let G be a locally finite Cayley graph. If its first homology group is a finitely generated Aut(G)-module, then so is its cut space.

THEOREM (?)

Let G be a locally finite transitive graph. If its first homology group is a finitely generated Aut(G)-module, then so is its cut space.

Let G be a locally finite Cayley graph. If its first homology group is a finitely generated Aut(G)-module, then so is its cut space.

THEOREM (H. 2015^+)

Let G be a locally finite transitive graph. If its first homology group is a finitely generated Aut(G)-module, then so is its cut space.

• The cycle space of a graph is the set of all finite sums (over GF(2)) of edge sets of finite cycles.

• The cycle space of a graph is the set of all finite sums (over GF(2)) of edge sets of finite cycles.

THEOREM (H. 2015^+)

Let G be a 2-edge-connected transitive graph. If its cycle space is a finitely generated Aut(G)-module, then so is its cut space.

THEOREM (H. 2015^+)

Let G be a 2-edge-connected transitive graph. If its cycle space is a finitely generated Aut(G)-module, then so is its cut space.

Can we ask for 'if and only if'?

Theorem (H. 2015^+)

Let G be a 2-edge-connected transitive graph. If its cycle space is a finitely generated Aut(G)-module, then so is its cut space.

Can we ask for 'if and only if'?

Remark

Bieri and Strebel (1980) gave an example of a finitely generated accessible group that is not finitely presentable, that is, of a Cayley graph G whose cut space is a finitely generated Aut(G)-module but its first homology group is not.

- Accessibility in groups
- Reinterpreting Dunwoody's accessibility theorem
- Accessibility in graphs
- Outlook

Going to infinity: ends

DEFINITION

• A ray is a one-way infinite path.

GOING TO INFINITY: ENDS

DEFINITION

- A ray is a one-way infinite path.
- Two rays in a graph G are *equivalent* if for any finite vertex set $S \subseteq V(G)$ both rays lie eventually in the same component of G S.

Going to infinity: ends

DEFINITION

- A ray is a one-way infinite path.
- Two rays in a graph G are *equivalent* if for any finite vertex set $S \subseteq V(G)$ both rays lie eventually in the same component of G S.
- The equivalence classes of this relation are the *ends* of the graph.

Going to infinity: ends

DEFINITION

- A ray is a one-way infinite path.
- Two rays in a graph G are *equivalent* if for any finite vertex set $S \subseteq V(G)$ both rays lie eventually in the same component of G S.
- The equivalence classes of this relation are the *ends* of the graph.

A graph is *accessible* if there is some $k \in \mathbb{N}$ such that for any two distinct ends, there an edge set of size at most k separating them.

A graph is *accessible* if there is some $k \in \mathbb{N}$ such that for any two distinct ends, there an edge set of size at most k separating them.

THEOREM (THOMASSEN & WOESS 1993)

A finitely generated group is accessible if and only if one (and hence every) of its locally finite Cayley graphs is accessible.

A graph is *accessible* if there is some $k \in \mathbb{N}$ such that for any two distinct ends, there an edge set of size at most k separating them.

THEOREM (THOMASSEN & WOESS 1993)

A finitely generated group is accessible if and only if one (and hence every) of its locally finite Cayley graphs is accessible.

THEOREM (DUNWOODY 1985)

Every locally finite Cayley graph G whose first homology group is a finitely generated Aut(G)-module is accessible.

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated by cycles of bounded length is accessible.

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated by cycles of bounded length is accessible.

Theorem (H. 2015^+)

Every locally finite transitive graph whose cycle space is generated by cycles of bounded length is accessible.

We obtain a combinatorial proof of

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

We obtain a combinatorial proof of

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

THEOREM (DUNWOODY 2007)

Every locally finite transitive planar graph is accessible.

A connected graph G is called hyperbolic if there exists some $\delta \ge 0$ such that for any three vertices x, y, zof G and for any three shortest paths, one between every two of the vertices, each of those paths lies in the δ -neighbourhood of the union of the other two.

THEOREM (GROMOV 1987)

Every finitely generated hyperbolic group is finitely presented.

THEOREM (GROMOV 1987)

Every finitely generated hyperbolic group is finitely presented.

CONJECTURE (DUNWOODY 2011)

Every locally finite transitive hyperbolic graph is accessible.

THEOREM (GROMOV 1987)

Every finitely generated hyperbolic group is finitely presented.

CONJECTURE (DUNWOODY 2011)

Every locally finite transitive hyperbolic graph is accessible.

Theorem (H. 2015^+)

Every locally finite transitive hyperbolic graph is accessible.

- Accessibility in groups
- Reinterpreting Dunwoody's accessibility theorem
- Accessibility in graphs
- Outlook

• graph theoretic versions of

- graph theoretic versions of
 - the main definition and

- graph theoretic versions of
 - the main definition and
 - the most important theorems

- graph theoretic versions of
 - the main definition and
 - the most important theorems
- good understanding for accessible transitive graphs

- graph theoretic versions of
 - the main definition and
 - the most important theorems
- good understanding for accessible transitive graphs

Really?

THEOREM (STALLINGS 1971)

Every finitely generated group G with more than one end splits non-trivially over a finite subgroup C, that is, $G = *_C A$ or $G = A *_C B$ for some subgroups $A \neq C \neq B$.

THEOREM (STALLINGS 1971)

Every finitely generated group G with more than one end splits non-trivially over a finite subgroup C, that is, $G = *_C A$ or $G = A *_C B$ for some subgroups $A \neq C \neq B$.

QUESTION

How can we translate Stallings's theorem in graph theoretic notions?