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Hyperbolic graphs: Example 1
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Hyperbolic graphs: Example 2
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Aim of the talk

Exhibit the tree-likeness of hyperbolic graphs

Matthias Hamann Hyperbolic graphs and trees



Hyperbolic graphs: Example 2
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Hyperbolic graphs: Definition

A graph is hyperbolic if ∃δ ≥ 0 such that

all triangles look like

≤δ
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Trees as hyperbolic graphs

Observation

A graph is 0-hyperbolic if and only if it is a tree.

Proof.

If not, take a minimal cycle C .
All geodesics on C are geodesics in the graph.
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The hyperbolic boundary ∂G : Definition

Two geodetic rays are equivalent if ∃M ≥ 0 such that

each two geodetic rays look like

≤M
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The hyperbolic boundary ∂G : Definition

Remark

The equivalence of geodetic rays is an equivalence relation.

Proof.

Reflexive and symmetric:
√

Transitive: Two equivalent geodetic rays are eventually δ-close to
each other.
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The hyperbolic boundary ∂G : Definition

The hyperbolic boundary ∂G of a hyperbolic graph G is the set of
equivalence classes of geodetic rays and the hyperbolic
compactification Ĝ is G ∪ ∂G .
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Ends of graphs

Two rays in a graph G are equivalent if for any finite set S of
vertices they lie eventually in the same component of G − S .

Remark

The equivalence of rays is an equivalence relation.

The equivalence classes of this relation are the ends ΩG of G .
Let |G | := G ∪ ΩG .

Matthias Hamann Hyperbolic graphs and trees



Ends of graphs

Two rays in a graph G are equivalent if for any finite set S of
vertices they lie eventually in the same component of G − S .

Remark

The equivalence of rays is an equivalence relation.

The equivalence classes of this relation are the ends ΩG of G .
Let |G | := G ∪ ΩG .

Matthias Hamann Hyperbolic graphs and trees



Ends of graphs

Two rays in a graph G are equivalent if for any finite set S of
vertices they lie eventually in the same component of G − S .

Remark

The equivalence of rays is an equivalence relation.

The equivalence classes of this relation are the ends ΩG of G .
Let |G | := G ∪ ΩG .

Matthias Hamann Hyperbolic graphs and trees



Hyperbolic boundary versus ends

Observation

The hyperbolic boundary of a locally finite hyperbolic graph is a
refinement of its end space.
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The hyperbolic boundary: Example 1
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The hyperbolic boundary: Example 2
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Hyperbolic metric

Theorem (Gromov, 1987)

Let G be a locally finite hyperbolic graph. Then there exists a
metric dε such that (Ĝ , dε) is a compact metric space.
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Hyperbolic metric
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Hyperbolic metric
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Spanning trees in hyperbolic graphs

Two aims for a spanning tree T of a hyperbolic graph G :

1. T should represent G well.

2. ∂T should represent ∂G well.
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End-faithful spanning trees

A spanning tree T of a graph G is end-faithful if its embedding
extends to a continuous map |T | → |G | whose restriction to ΩT is
a bijection.

Theorem (Halin, 1964)

Every countable graph has an end-faithful spanning tree.
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Spanning trees in hyperbolic graphs

For a subtree T of a hyperbolic graph G , we say that the canonical
map ∂T → ∂G exists if the identity T → G extends to a
continuous map T̂ → Ĝ .
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Spanning-trees in hyperbolic graphs

Theorem (H., 2011)

For every locally finite hyperbolic graph G whose hyperbolic
boundary has topological dimension n and for every spanning tree
T of G such that the canonical map ϕ : ∂T → ∂G exists and is
onto, there is an η ∈ ∂G such that |ϕ−1(η)| ≥ n + 1.
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Tree-likeness of hyperbolic graphs

Theorem (H., 2011)

Let G be a locally finite δ-hyperbolic graph with boundary ∂G that
has finite Assouad dimension.
Then there exists a rooted spanning tree T of G such that

1. every ray in T is eventually quasi-geodetic for some global
constant depending only on dimA(∂G ) and δ;

2. there exists a constant ∆(dimA(∂G ), δ) such that for the
subtree T ′ ⊆ T that consists of all rays in T that starts at the
root the graph G − B∆(T ′) contains no geodetic ray;

3. the canonical map ϕ : ∂T → ∂G exists and is surjective;

4. |ϕ−1(η)| is bounded in terms of dimA(∂G ).
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Hyperbolic graphs whose boundary is finite-dimensional

Every hyperbolic graph with bounded degree satisfies the
assumptions of the theorem.

These are in particular all Cayley graphs of hyperbolic groups.
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Assouad dimension

A metric space is doubling if ∃M ∈ N such that ∀R ≥ 0 every ball
of radius R can be covered by M balls of radius R/2.

Theorem (Assouad)

A metric space is doubling if and only if it has finite Assouad
dimension.
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Sketch of the proof

Theorem

G locally finite δ-hyperbolic
graph, ∂G has finite Assouad
dimension.
∃ spanning tree T of G s.t.

1. rays in T are eventually
quasi-geodetic for a constant
c(dimA(∂G ), δ);

2. ∃∆(dimA(∂G ), δ) s.t.
G − B∆(T ′) contains no
geodetic ray;

3. ∃ϕ : ∂T → ∂G that is onto;

4. |ϕ−1(η)| bounded by a
constant c(dimA(∂G )).

The proof is done constructively.

• Choose an increasing
sequence of nets in ∂G .

• Construct an increasing
sequence of trees that
contain rays only to the
elements of the
corresponding net.

• Their union T ′ is a tree and
satisfies 1.–4., but it need
not be a spanning tree.

• Add the remaining vertices
to T ′ appropriately to
obtain a spanning tree T
with all the properties.
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Final remarks I

There is an analogue result in the case of proper hyperbolic
geodetic spaces.

Theorem (H., 2011)

Let X be a proper δ-hyperbolic geodetic space with boundary ∂X
that has finite Assouad dimension.
Then there exists an R-tree T in X such that

1. every ray in T is eventually quasi-geodetic for some global
constant depending only on dimA(∂X ) and δ;

2. there is a constant ∆(dimA(∂G ), δ) such that X \ B∆(T )
contains no geodetic ray;

3. the canonical map ϕ : ∂T → ∂X exists and is surjective;

4. |ϕ−1(η)| is bounded in terms of dimA(∂X ).
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Final remarks II

Question

Does there exists a dimension concept that offers a lower and an
upper bound for the canonical map?
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