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Definition

A cut is the edge set between A and B for a bipartition {A,B} of
the vertex set.
The cut space is the set of all finite sums (over GF(2)) of finite
cuts.
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Cycle space

Definition

The cycle space of a graph is the set of all finite sums (over
GF(2)) of edge sets of finite cycles.



The case: finite graphs

Remark

(1) In a finite graph the cut space is the orthogonal space of the
cycle space and vice versa.

(2) In a finite graph with n vertices and m edges, the cut space has
dimension n − 1 and the cycle space has dimension m − n + 1.

(1) has a rather complicated counterpart for infinite graphs for
which we have to consider ‘infinite cycles’ and suitable
compactifications of infinite graphs.

Is (2) interesting for infinite graphs?
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A first result for infinite graphs

Theorem (Dunwoody 1985)

Finitely presented groups are accessible.



Reformulating Dunwoody’s theorem

A finitely presented group G = 〈S | R〉 has a locally finite Cayley
graph Γ whose fundamental group is generated by
{C g | C ∈ C, g ∈ G} for some finite set C of closed walks
corresponding to the relators in R

, that is, its fundamental group
is a finitely generated G -module.

Theorem (Dicks & Dunwoody 1989)

The cut space of a locally finite Cayley graph G of a finitely
generated accessible group is a finitely generated Aut(G )-module.

Theorem (Dunwoody 1985)

Let G be a locally finite Cayley graph. If its fundamental group is
a finitely generated Aut(G )-module, then so is its cut space.
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Dimensions in the infinite

Theorem

Let G be a 2-edge-connected transitive graph. If its cycle space is
a finitely generated Aut(G )-module, then so is its cut space.

Can we ask for ‘if and only if’?

Remark

Bieri and Strebel (1980) gave an example of a finitely generated
accessible group that is not finitely presentable, that is, of a Cayley
graph G whose cut space is a finitely generated Aut(G )-module
but whose fundamental group is not.
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Brief sketch of the proof

Theorem (Dicks & Dunwoody 1989)

Every graph G has a nested Aut(G )-invariant set E of minimal
cuts generating its cut space.

Instead of E we consider E ′ := {(A,B) | E (A,B) ∈ E}.
Order E ′:

(A,B) ≤ (A′,B ′) :⇔ A ⊆ A′,B ⊇ B ′

Every (A,B) ∈ E ′ induces bipartitions on every cycle and those
that induce the same non-trivial one form a finite chain.
Let C be a set of finitely many cycles with their Aut(G )-images
that generates the cycle space.
If E ′ has many orbits, one of them has never a minimal or maximal
element of any such chain with C ∈ C.
But such a bipartition cannot exist.
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Going to infinity: accessibility

Definition

A graph is accessible if there is some k ∈ N such that for any two
rays for which some finite edge set separates them eventually there
is also one such set of size at most k .

Theorem (Thomassen & Woess 1993)

A finitely generated group is accessible if and only if one (and
hence every) of its locally finite Cayley graphs is accessible.

Theorem (Dunwoody 1985)

Every locally finite Cayley graph G whose fundamental group is a
finitely generated Aut(G )-module is accessible.
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A conjecture

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.



A conjecture is confirmed

Theorem

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.



Applications



Applications I

We obtain a combinatorial proof of

Theorem (Dunwoody 1985)

Finitely presented groups are accessible.

Theorem (Dunwoody 2007)

Every locally finite transitive planar graph is accessible.
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Application II: hyperbolic graphs

Definition

A connected graph G is called
hyperbolic if there exists some δ ≥ 0
such that for any three vertices x , y , z
of G and for any three shortest paths,
one between every two of the vertices,
each of those paths lies in the
δ-neighbourhood of the union of the
other two.

≤δ

yx

z



Application II: hyperbolic graphs

Theorem (Gromov 1987)

Finitely generated hyperbolic groups are finitely presented
(and hence accessible).

Conjecture (Dunwoody 2011)

Every locally finite transitive hyperbolic graph is accessible.

Theorem

Every locally finite transitive hyperbolic graph is accessible.
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