ACCESSIBILITY IN TRANSITIVE GRAPHS

MATTHIAS HAMANN

UNIVERSITY OF HAMBURG

JANUARY 2016

Folklore

The cycles of a planar graph are the minimal cuts of its dual.

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

The cut space is the set of all finite sums (over GF(2)) of finite cuts.

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

The cut space is the set of all finite sums (over GF(2)) of finite cuts.

A cut is the edge set between A and B for a bipartition $\{A, B\}$ of the vertex set.

The cut space is the set of all finite sums (over GF(2)) of finite cuts.

CYCLE SPACE

DEFINITION

• The cycle space of a graph is the set of all finite sums (over GF(2)) of edge sets of finite cycles.

Remark

- (1) In a finite graph the cut space is the orthogonal space of the cycle space and vice versa.
- (2) In a finite graph with *n* vertices and *m* edges, the cut space has dimension n 1 and the cycle space has dimension m n + 1.

Remark

- (1) In a finite graph the cut space is the orthogonal space of the cycle space and vice versa.
- (2) In a finite graph with *n* vertices and *m* edges, the cut space has dimension n 1 and the cycle space has dimension m n + 1.

(1) has a rather complicated counterpart for infinite graphs for which we have to consider 'infinite cycles' and suitable compactifications of infinite graphs.

Remark

- (1) In a finite graph the cut space is the orthogonal space of the cycle space and vice versa.
- (2) In a finite graph with *n* vertices and *m* edges, the cut space has dimension n 1 and the cycle space has dimension m n + 1.

(1) has a rather complicated counterpart for infinite graphs for which we have to consider 'infinite cycles' and suitable compactifications of infinite graphs.

Is (2) interesting for infinite graphs?

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

A finitely presented group $G = \langle S | \mathcal{R} \rangle$ has a locally finite Cayley graph Γ whose fundamental group is generated by $\{C^g | C \in \mathcal{C}, g \in G\}$ for some finite set \mathcal{C} of closed walks corresponding to the relators in \mathcal{R}

THEOREM (DICKS & DUNWOODY 1989)

The cut space of a locally finite Cayley graph G of a finitely generated accessible group is a finitely generated Aut(G)-module.

THEOREM (DICKS & DUNWOODY 1989)

The cut space of a locally finite Cayley graph G of a finitely generated accessible group is a finitely generated Aut(G)-module.

THEOREM (DUNWOODY 1985)

Let G be a locally finite Cayley graph. If its fundamental group is a finitely generated Aut(G)-module, then so is its cut space.

THEOREM

Let G be a 2-edge-connected transitive graph. If its cycle space is a finitely generated Aut(G)-module, then so is its cut space.

Theorem

Let G be a 2-edge-connected transitive graph. If its cycle space is a finitely generated Aut(G)-module, then so is its cut space.

Can we ask for 'if and only if'?

THEOREM

Let G be a 2-edge-connected transitive graph. If its cycle space is a finitely generated Aut(G)-module, then so is its cut space.

Can we ask for 'if and only if'?

Remark

Bieri and Strebel (1980) gave an example of a finitely generated accessible group that is not finitely presentable, that is, of a Cayley graph G whose cut space is a finitely generated Aut(G)-module but whose fundamental group is not.

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Instead of \mathcal{E} we consider $\mathcal{E}' := \{(A, B) \mid E(A, B) \in \mathcal{E}\}.$

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Instead of \mathcal{E} we consider $\mathcal{E}' := \{(A, B) \mid E(A, B) \in \mathcal{E}\}.$ Order \mathcal{E}' :

$$(A,B) \leq (A',B') :\Leftrightarrow A \subseteq A', B \supseteq B'$$

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Instead of \mathcal{E} we consider $\mathcal{E}' := \{(A, B) \mid E(A, B) \in \mathcal{E}\}.$ Order \mathcal{E}' :

$$(A,B) \leq (A',B') :\Leftrightarrow A \subseteq A', B \supseteq B'$$

Every $(A, B) \in \mathcal{E}'$ induces bipartitions on every cycle and those that induce the same non-trivial one form a finite chain.

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Instead of \mathcal{E} we consider $\mathcal{E}' := \{(A, B) \mid E(A, B) \in \mathcal{E}\}.$ Order \mathcal{E}' :

$$(A,B) \leq (A',B') :\Leftrightarrow A \subseteq A', B \supseteq B'$$

Every $(A, B) \in \mathcal{E}'$ induces bipartitions on every cycle and those that induce the same non-trivial one form a finite chain. Let \mathcal{C} be a set of finitely many cycles with their Aut(G)-images that generates the cycle space.

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Instead of \mathcal{E} we consider $\mathcal{E}' := \{(A, B) \mid E(A, B) \in \mathcal{E}\}.$ Order \mathcal{E}' :

$$(A,B) \leq (A',B') :\Leftrightarrow A \subseteq A', B \supseteq B'$$

Every $(A, B) \in \mathcal{E}'$ induces bipartitions on every cycle and those that induce the same non-trivial one form a finite chain.

Let C be a set of finitely many cycles with their Aut(G)-images that generates the cycle space.

If \mathcal{E}' has *many* orbits, one of them has never a minimal or maximal element of any such chain with $C \in C$.

Every graph G has a nested Aut(G)-invariant set \mathcal{E} of minimal cuts generating its cut space.

Instead of \mathcal{E} we consider $\mathcal{E}' := \{(A, B) \mid E(A, B) \in \mathcal{E}\}.$ Order \mathcal{E}' :

$$(A,B) \leq (A',B') :\Leftrightarrow A \subseteq A', B \supseteq B'$$

Every $(A, B) \in \mathcal{E}'$ induces bipartitions on every cycle and those that induce the same non-trivial one form a finite chain.

Let C be a set of finitely many cycles with their Aut(G)-images that generates the cycle space.

If \mathcal{E}' has *many* orbits, one of them has never a minimal or maximal element of any such chain with $C \in C$. But such a bipartition cannot exist.

A graph is *accessible* if there is some $k \in \mathbb{N}$ such that for any two rays for which some finite edge set separates them eventually there is also one such set of size at most k.

A graph is *accessible* if there is some $k \in \mathbb{N}$ such that for any two rays for which some finite edge set separates them eventually there is also one such set of size at most k.

THEOREM (THOMASSEN & WOESS 1993)

A finitely generated group is accessible if and only if one (and hence every) of its locally finite Cayley graphs is accessible.

A graph is *accessible* if there is some $k \in \mathbb{N}$ such that for any two rays for which some finite edge set separates them eventually there is also one such set of size at most k.

THEOREM (THOMASSEN & WOESS 1993)

A finitely generated group is accessible if and only if one (and hence every) of its locally finite Cayley graphs is accessible.

THEOREM (DUNWOODY 1985)

Every locally finite Cayley graph G whose fundamental group is a finitely generated Aut(G)-module is accessible.

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated by cycles of bounded length is accessible.

Theorem

Every locally finite transitive graph whose cycle space is generated by cycles of bounded length is accessible.

APPLICATIONS

We obtain a combinatorial proof of

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

We obtain a combinatorial proof of

THEOREM (DUNWOODY 1985)

Finitely presented groups are accessible.

THEOREM (DUNWOODY 2007)

Every locally finite transitive planar graph is accessible.

A connected graph G is called hyperbolic if there exists some $\delta \ge 0$ such that for any three vertices x, y, zof G and for any three shortest paths, one between every two of the vertices, each of those paths lies in the δ -neighbourhood of the union of the other two.

THEOREM (GROMOV 1987)

Finitely generated hyperbolic groups are finitely presented (and hence accessible).

THEOREM (GROMOV 1987)

Finitely generated hyperbolic groups are finitely presented (and hence accessible).

Conjecture (Dunwoody 2011)

Every locally finite transitive hyperbolic graph is accessible.

THEOREM (GROMOV 1987)

Finitely generated hyperbolic groups are finitely presented (and hence accessible).

Conjecture (Dunwoody 2011)

Every locally finite transitive hyperbolic graph is accessible.

THEOREM

Every locally finite transitive hyperbolic graph is accessible.