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Hyperbolic graphs

Definition

A connected graph G is called
hyperbolic if there exists δ ≥ 0 such
that for any three vertices x , y , z of G
and for any three geodesics (that are
any shortest paths), one between each
two of the vertices, each of the
geodesics lies in the δ-neighbourhood of
the union of the other two.
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Question

Is every connected hyperbolic graph treelike?
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Hyperbolic graphs: an example
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Going to infinity

Definition

A ray is a one-way infinite path.

Two rays in a graph G are equivalent if for any finite vertex
set S ⊆ V (G ) both rays lie eventually in the same component
of G − S .

The equivalence classes of this relation are the ends of the
graph.
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Ends of graphs: examples

one end two ends infinitely many ends
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Going to infinity – as fast as possible

Definition

A ray R is geodesic if dR(x , y) = d(x , y) for all x , y ∈ V (R).

In a hyperbolic graph, two geodesic rays x1x2 . . . and y1y2 . . . are
equivalent if there exists M ∈ N such that for infinitely many i ∈ N
there exists j ∈ N with d(xi , yj) ≤ M.
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Lemma

In hyperbolic graphs, this relation on geodesic rays in an
equivalence relation.

Definition

The hyperbolic boundary ∂G of a hyperbolic graph G is the set of
all equivalence classes of this equivalence relation.
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Hyperbolic boundary vs ends

Remark

The hyperbolic boundary of a locally finite hyperbolic graph is a
refinement of the ends.
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Hyperbolic boundary: examples
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Hyperbolic boundary: examples
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A metric for the boundary

Theorem (Gromov, 1987)

For every locally finite connected hyperbolic graph G , there is a
metric dh on Ĝ := G ∪ ∂G such that (Ĝ , dh) is a compact metric
space.
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Spanning trees

Theorem (Halin, 1964)

Every countable connected graph has an end-faithful spanning tree.

Remark

There is a locally finite hyperbolic graph whose hyperbolic
boundary is homeomorphic to the unit interval.

The hyperbolic boundary of a tree is totally disconnected.

⇒ In general, hyperbolic graphs do not have spanning trees that
are faithful with respect to the hyperbolic boundary.
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Spanning trees in hyperbolic graphs

Two aims for a spanning tree T in a connected locally finite
hyperbolic graph G :

1. T should represent G well;

2. ∂T should represent ∂G well.
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Spanning trees in hyperbolic graphs

Theorem (H.)

Every connected locally finite hyperbolic graph G whose hyperbolic
boundary has finite Assouad dimension has a spanning tree T such
that the following properties hold:

1 There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually
(γ, c)-quasi-geodesic in G ;

2 there exists ∆ ≥ 0 s. t. every geodesic ray in G lies eventually
in the ∆-neighbourhood of the union of all double rays in T ;

3 the identity ι : T → G extends continuously on ∂T to a map
ι̂ : T̂ → Ĝ ;

4 ∂G = ι̂(∂T );

5 there exists M ∈ N such that every η ∈ ∂G has at most M
inverse images under ι̂.
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4 ∂G = ι̂(∂T );

5 there exists M ∈ N such that every η ∈ ∂G has at most M
inverse images under ι̂.

Matthias Hamann Hyperbolic graphs



Spanning trees in hyperbolic graphs

Theorem (H.)

Every connected locally finite hyperbolic graph G whose hyperbolic
boundary has finite Assouad dimension has a spanning tree T such
that the following properties hold:

1 There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually
(γ, c)-quasi-geodesic in G ;

2 there exists ∆ ≥ 0 s. t. every geodesic ray in G lies eventually
in the ∆-neighbourhood of the union of all double rays in T ;

3 the identity ι : T → G extends continuously on ∂T to a map
ι̂ : T̂ → Ĝ ;
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Which graphs satisfy the assumptions?

Theorem (Bonk & Schramm, 2000)

The hyperbolic boundary of any connected hyperbolic graph of
bounded degree has finite Assouad dimension.
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Spanning trees in hyperbolic graphs

Theorem (H.)

Let G be a locally finite connected hyperbolic graph and let T be
a spanning tree of G such that the embedding ι : T → G extends
continuously on the hyperbolic boundary.

Then there exists η ∈ ∂G with at least M + 1 inverse images,
where M is the topological dimension of the hyperbolic boundary.
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