HYPERBOLIC GRAPHS

MATTHIAS HAMANN

UNIVERSITÄT HAMBURG

OBERWOLFACH, JANUARY 2013

A property of trees

A property of trees

A property of trees

A connected graph G is called hyperbolic if there exists $\delta \ge 0$ such that for any three vertices x, y, z of G and for any three geodesics (that are any shortest paths), one between each two of the vertices, each of the geodesics lies in the δ -neighbourhood of the union of the other two.

A connected graph G is called hyperbolic if there exists $\delta \ge 0$ such that for any three vertices x, y, z of G and for any three geodesics (that are any shortest paths), one between each two of the vertices, each of the geodesics lies in the δ -neighbourhood of the union of the other two.

QUESTION

Is every connected hyperbolic graph treelike?

HYPERBOLIC GRAPHS: AN EXAMPLE

• A ray is a one-way infinite path.

- A ray is a one-way infinite path.
- Two rays in a graph G are *equivalent* if for any finite vertex set $S \subseteq V(G)$ both rays lie eventually in the same component of G S.

- A ray is a one-way infinite path.
- Two rays in a graph G are *equivalent* if for any finite vertex set $S \subseteq V(G)$ both rays lie eventually in the same component of G S.
- The equivalence classes of this relation are the *ends* of the graph.

ENDS OF GRAPHS: EXAMPLES

GOING TO INFINITY – AS FAST AS POSSIBLE

DEFINITION

A ray R is geodesic if $d_R(x, y) = d(x, y)$ for all $x, y \in V(R)$.

A ray *R* is geodesic if $d_R(x, y) = d(x, y)$ for all $x, y \in V(R)$. In a hyperbolic graph, two geodesic rays $x_1x_2...$ and $y_1y_2...$ are equivalent if there exists $M \in \mathbb{N}$ such that for infinitely many $i \in \mathbb{N}$ there exists $j \in \mathbb{N}$ with $d(x_i, y_j) \leq M$.

A ray *R* is geodesic if $d_R(x, y) = d(x, y)$ for all $x, y \in V(R)$. In a hyperbolic graph, two geodesic rays $x_1x_2...$ and $y_1y_2...$ are equivalent if there exists $M \in \mathbb{N}$ such that for infinitely many $i \in \mathbb{N}$ there exists $j \in \mathbb{N}$ with $d(x_i, y_j) \leq M$.

Lemma

In hyperbolic graphs, this relation on geodesic rays in an equivalence relation.

A ray *R* is geodesic if $d_R(x, y) = d(x, y)$ for all $x, y \in V(R)$. In a hyperbolic graph, two geodesic rays $x_1x_2...$ and $y_1y_2...$ are equivalent if there exists $M \in \mathbb{N}$ such that for infinitely many $i \in \mathbb{N}$ there exists $j \in \mathbb{N}$ with $d(x_i, y_j) \leq M$.

Lemma

In hyperbolic graphs, this relation on geodesic rays in an equivalence relation.

DEFINITION

The hyperbolic boundary ∂G of a hyperbolic graph G is the set of all equivalence classes of this equivalence relation.

Remark

The hyperbolic boundary of a locally finite hyperbolic graph is a refinement of the ends.

HYPERBOLIC BOUNDARY: EXAMPLES

HYPERBOLIC BOUNDARY: EXAMPLES

THEOREM (GROMOV, 1987)

For every locally finite connected hyperbolic graph G, there is a metric d_h on $\widehat{G} := G \cup \partial G$ such that (\widehat{G}, d_h) is a compact metric space.

SPANNING TREES

Every countable connected graph has an end-faithful spanning tree.

Every countable connected graph has an end-faithful spanning tree.

Remark

• There is a locally finite hyperbolic graph whose hyperbolic boundary is homeomorphic to the unit interval.

Every countable connected graph has an end-faithful spanning tree.

Remark

- There is a locally finite hyperbolic graph whose hyperbolic boundary is homeomorphic to the unit interval.
- The hyperbolic boundary of a tree is totally disconnected.

Every countable connected graph has an end-faithful spanning tree.

Remark

- There is a locally finite hyperbolic graph whose hyperbolic boundary is homeomorphic to the unit interval.
- The hyperbolic boundary of a tree is totally disconnected.
- ⇒ In general, hyperbolic graphs do not have spanning trees that are faithful with respect to the hyperbolic boundary.

Two aims for a spanning tree T in a connected locally finite hyperbolic graph G:

- 1. *T* should represent *G* well;
- 2. ∂T should represent ∂G well.

Every connected locally finite hyperbolic graph G whose hyperbolic boundary has finite Assouad dimension has a spanning tree T such that the following properties hold:

 There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually (γ, c)-quasi-geodesic in G;

- There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually (γ, c)-quasi-geodesic in G;
- there exists Δ ≥ 0 s. t. every geodesic ray in G lies eventually in the Δ-neighbourhood of the union of all double rays in T;

- There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually (γ, c)-quasi-geodesic in G;
- there exists Δ ≥ 0 s. t. every geodesic ray in G lies eventually in the Δ-neighbourhood of the union of all double rays in T;
- **3** the identity $\iota : T \to G$ extends continuously on ∂T to a map $\hat{\iota} : \widehat{T} \to \widehat{G};$

- There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually (γ, c)-quasi-geodesic in G;
- there exists Δ ≥ 0 s. t. every geodesic ray in G lies eventually in the Δ-neighbourhood of the union of all double rays in T;
- **3** the identity $\iota : T \to G$ extends continuously on ∂T to a map $\hat{\iota} : \widehat{T} \to \widehat{G};$

- There are γ ≥ 1, c ≥ 0 such that all rays in T are eventually (γ, c)-quasi-geodesic in G;
- there exists Δ ≥ 0 s. t. every geodesic ray in G lies eventually in the Δ-neighbourhood of the union of all double rays in T;
- **3** the identity $\iota : T \to G$ extends continuously on ∂T to a map $\hat{\iota} : \widehat{T} \to \widehat{G};$
- One of the exists M ∈ N such that every η ∈ ∂G has at most M inverse images under î.

THEOREM (BONK & SCHRAMM, 2000)

The hyperbolic boundary of any connected hyperbolic graph of bounded degree has finite Assouad dimension.

Let G be a locally finite connected hyperbolic graph and let T be a spanning tree of G such that the embedding $\iota : T \to G$ extends continuously on the hyperbolic boundary.

Let G be a locally finite connected hyperbolic graph and let T be a spanning tree of G such that the embedding $\iota : T \to G$ extends continuously on the hyperbolic boundary. Then there exists $\eta \in \partial G$ with at least M + 1 inverse images, where M is the topological dimension of the hyperbolic boundary.