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Block graphs

For a connected graph G , its block graph has the cutvertices of G
and its blocks as vertices � i. e. its maximal 2-connected subgraphs
and separating edges. Every cutvertex is adjacent to the blocks it is
contained in.

Proposition

For every connected graph, its block graph is a tree.

Roughly saying, Tutte proved a similar theorem for the 3-connected
pieces of 2-connected graphs.
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Tree-decompositions

A tree-decomposition of a graph G is a pair (T ,V) of a tree T and
a set V = {Vt | t ∈ V (T ),Vt ⊆ V (G )} such that

1

⋃
t∈V (T ) Vt = V (G );

2 for every edge in G there is some Vt that contains both its
incident vertices;

3 for every t on a t1 − t2 path in T we have Vt1 ∩ Vt2 ⊆ Vt .

For t ∈ V (T ), the set Vt is a part of the tree-decomposition and
its torso is the graph induced by Vt with additional edges between
every two vertices that lie in Vt ∩ Vt′ for any t ′ adjacent to t.
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Tutte's theorem

Theorem (Tutte)

Every �nite 2-connected graph admits a (canonical)

tree-decomposition whose torsos are either 3-connected or cycles.

Richter extended this theorem to in�nite graphs.

How does this extend to to higher connectivity?
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Highly connected pieces

Robertson and Seymour used tangles as highly connected
pieces and showed that they can be distinguished by a tree-
decomposition.

Based upon a notion of Mader, Dunwoody and Krön used
k-blocks as highly connected pieces and showed that they can
be distinguished under certain circumstances by a canonical
tree-decomposition.
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Highly connected pieces

Works of Carmesin, Diestel, H, Hundermark, Lemanczyk, Miraftab
and Stein resulted in:

Theorem

Let G be a locally �nite graph and let P be a set of distinguishable

robust pro�les such that for every P ∈ P there is some

` ∈ N ∪ {∞} such that P is an `-pro�le. Then there is a canonical

tree-decomposition that distinguishes P e�ciently.

Tangles, k-blocks and ends are or induce pro�les.

For graphs of arbitrary degree, the (direct) analogue is no longer
true, but there is a result for them as well.
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Quasi-transitive graphs

A graph is quasi-transitive if its automorphism group has only
�nitely many orbits on its vertex set.

Rays are one-way in�nite paths. In a graph G , two rays are
equivalent if for any �nite vertex set S of G both rays lie eventually
in the same component of G − S . This is an equivalence relation
whose equivalence classes are the ends of G .

Theorem (Folklore)

Every locally �nite quasi-transitive connected graph has either 0, 1,

2 or in�nitely many ends.
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Ends of graphs

one end
two ends

in�nitely many ends
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Ends of graphs

Quasi-transitive connected graphs with no ends are �nite.

Quasi-transitive connected graphs with exactly two ends are
quasi- isometric to Z.
Can we construct all quasi-transitive locally �nite connected
graphs with in�nitely many ends by taking as building blocks
only quasi-transitive locally �nite connected graphs with at
most two ends?
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Mohar's tree amalgamation

Let G and H be connected graphs.

Let FG and FH be subgraphs of G and H, respectively, of the same
(�nite) size.
Let ΓG and ΓH be groups acting quasi-transitively on G and H,
respectively.
Attach to every ΓG -image ϕ(FG ) of FG a new copy of H and
identify ϕ(FG ) with the copy of FH .
Repeat this for each of the new copies of H (except for the
subgraph FH) and so on.
The resulting graph G ∗ H is the tree amalgamation of G and H
and we call G and H its factors.
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A construction: example G = C3, H = C4
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Tree amalgamations vs tree-decomposition

Every tree amalgamation G ∗ H canonically induces a
tree-decomposition on G ∗ H such that the parts Vt

corresponds to the vertex sets of the copies of G and of H.

These induced tree-decompositions have at most two
Aut(G ∗ H)-orbits on the vertices.

Thus, not every canonical tree-decomposition is induced by a
tree amalgamation.

If for G and H there are at least two ΓG -, ΓH -images of FG , of
FH , respectively, then G ∗ H has more than one end.
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Tree amalgamation

With additional control over the groups acting on G and H, we
obtain a quasi-transitive tree amalgamation G ∗ H.

Two questions immediately arise:
1 Is every quasi-transitive locally �nite graph with more than one

end the tree amalgamation of two quasi-transitive locally �nite
graphs?

2 If we start with the class of all �nite and one-ended locally
�nite quasi-transitive graphs and construct tree amalgamations
iteratively, do we end up with the class of all locally �nite
quasi-transitive graphs?
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A splitting theorem

Theorem (H, Lehner, Miraftab, Rühmann)

Every connected, quasi-transitive, locally �nite graph with more

than one end is a non-trivial tree amalgamation of �nite adhesion

of two connected, quasi-transitive, locally �nite graphs.

Rough sketch of the proof.

The key feature in its proof is to use the canonical
tree-decompositions (T , {Vt | t ∈ V (T )}) that distinguish some
pair of ends of the graph G .
Among those take one with exactly one Aut(G )-orbit on E (T ) and
thus at most two Aut(G )-orbits on the set {Vt | t ∈ V (T )}.
Furthermore, pick the tree-decomposition such that the graphs
G [Vt ] are connected.
This tree-decomposition then gives rise to a tree amalgamation
G = G [Vt ] ∗ G [Vt′ ] for adjacent t, t ′ ∈ V (T ).
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A splitting theorem

Theorem (H, Lehner, Miraftab, Rühmann)

Every connected, quasi-transitive, locally �nite graph with more

than one end is a non-trivial tree amalgamation of �nite adhesion

of two connected, quasi-transitive, locally �nite graphs.

Examples of tree amalgamations are given by Cayley graphs of free
products with amalgamations and HNN-extensions of �nitely
generated groups.

Our result implies:

Theorem (Stallings)

Every �nitely generated group with more than one end splits over a

�nite group as free product with amalgamation or HNN-extension.
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Accessible graphs

A quasi-transitive locally �nite connected graph is accessible if it is
obtained from connected �nite or quasi-transitive connected locally
�nite graph with exactly one end by iterated tree amalgamations.

The Cayley graph of a �nitely generated group is accessible if and
only if the group is accessible.
Dunwoody constructed inaccessible groups. Thus, there are
inaccessible quasi-transitive connected locally �nite graphs.
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Examples of accessible graphs

Thomassen and Woess de�ned accessibility via the existence of
some n ∈ N such that every two ends can be separated by at most
n edges.

Theorem (H, Lehner, Miraftab, Rühmann)

A quasi-transitive locally �nite connected graph is accessible if and

only if it is accessible in the sense of Thomassen and Woess.
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Examples of accessible graphs

1 (H, Lehner, Miraftab, Rühmann) Planar quasi-transitive locally
�nite connected graphs are accessible.

2 (H) Hyperbolic quasi-transitive locally �nite graphs are
accessible.
This veri�ed a conjecture of Dunwoody.

3 (H) Quasi-transitive locally �nite connected graphs whose cycle
space is generated by cycles of bounded length are accessible.
This veri�ed a conjecture of Diestel.

These results generalise results for groups as follows:
1 For �nitely generated groups, this is a result of Droms.
2 Gromov showed that hyperbolic groups are �nitely presentable.
3 This generalises Dunwoody's accessibility theorem for �nitely

presented groups.
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3 This generalises Dunwoody's accessibility theorem for �nitely

presented groups.
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Factorising accessible graphs

Let G be an accessible quasi-transitive locally �nite connected
graph with more than one end. We take an arbitrary factorisation
of G . If one of its factors still has more than one end, we repeat
the factorisation for that factor and so on.

Do we necessarily end up with �nite or one-ended graphs or does
this factorisation process may go on inde�nitely?

Theorem (H, Miraftab)

For every accessible quasi-transitive locally �nite connected graph,

each of its factorisation processes stops after �nitely many steps.
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Outline

1 Canonical tree-decompositions

2 Tree amalgamations

3 Accessibility

4 Applications and Outlook
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Applications

Further results were obtained in the following areas:
1 (H) A characterisation on quasi-isometries between

quasi-transitive locally �nite connected graphs in terms of their
factorisations.
This generalises a result on �nitely generated groups by
Papasoglu and Whyte.

2 (H) A characterisation on homeomorphisms between the
hyperbolic boundaries of quasi-transitive locally �nite
hyperbolic graphs in terms of their factorisations.
This generalises a result on �nitely generated groups by Martin
and �wi¡tkowski.

3 (H) A bound on the asymptotic dimension of the tree
amalgamation of quasi-transitive locally �nite connected
graphs in terms of the asymptotic dimension of their factors.
This generalises results on �nitely generated groups by Bell
and Dranishnikov, by Dranishnikov and by Tselekidis.
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Groups vs graphs

So far, the results mentioned here for quasi-transitive graphs were
always generalisations of results for groups.
Due to the geometric nature of graphs, several proofs are simpler
than the corresponding ones for groups.
It would be interesting to obtain a result for graphs whose
group-theoretic counterpart has not been known, yet.
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