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A construction

Let G be a graph.
Attach to every vertex one copy of G for each type (orbit) of
vertices.
Continue this process for all new vertices.



A construction: example with G = P2
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A construction

We change the construction a bit:

Start with two graphs G ,H.
Pick isomorphic finite connected subgraphs F in G and H.
Attach to every type E of F in G a copy of H where we identify a
type of F in H with E .
Now do the analogous thing for the new copies of H.
Continue this process.



A construction: example G = C3, H = C4



Tree amalgamation

A graph obtained from two graph G1,G2 as in the previous
construction is called a tree amalgamation of G1 and G2.



A construction: schematic picture



Going to infinity: ends

Definition

A ray is a one-way infinite path.

Two rays in a graph G are equivalent if for any finite vertex
set S ⊆ V (G ) both rays lie eventually in the same component
of G − S .

The equivalence classes of this relation are the ends of the
graph.

one end two ends infinitely many ends



Quasi-transitive graphs

Question

How complicated can connected quasi-transitive locally finite
graphs be?

A graph is quasi-transitive if its automorphism group acts on its
vertex set with only finitely many orbits.
A graph is locally finite if every vertex has finite degree.
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A class of graphs

Let G0 be the class of all connected quasi-transitive locally
finite graphs with at most one end.

Let Gi be the class of all graphs obtained by a tree
amalgamation of graphs in

⋃
j<i Gj .

Set G :=
⋃

i∈N Gi .

Remark

Every graph in G is connected, quasi-transitive and locally finite.

Question

Is G the class of all connected quasi-transitive locally finite graphs?
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Accessibility

A quasi-transitive graph is accessible if there is some n ∈ N such
that every two ends can be separated by at most n vertices.

Remark

Every graph in G is connected and accessible.

Theorem (Dunwoody 1993)

There is a connected inaccessible transitive locally finite graph.
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Accessibility

Theorem (H, Lehner, Miraftab, Rühmann)

The class G is the class of all connected accessible quasi-transitive
locally finite graphs.

To prove the theorem, we need to reverse the process of tree
amalgamations:

Theorem (H, Lehner, Miraftab, Rühmann)

If G is a connected quasi-transitive locally finite graph with more
than one end, then it is a non-trivial tree amalgamation of two
connected quasi-transitive locally finite graphs.
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Tree-decompositions

A tree-decomposition of a graph G is a pair (T ,V) of a tree T and
a set V = {Vt | t ∈ V (T ),Vt ⊆ V (G )} such that

1
⋃

t∈V (T ) Vt = V (G );

2 for every edge in G there is some Vt that contains both its
incident vertices;

3 for every t on a t1 − t2 path in T we have Vt1 ∩ Vt2 ⊆ Vt .



Tree-decompositions



New formulations

Theorem (H, Lehner, Miraftab, Rühmann)

The class G is the class of all connected accessible quasi-transitive
locally finite graphs.

Theorem (H, Lehner, Miraftab, Rühmann)

A quasi-transitive locally finite graph G is accessible if it has a
tree-decompositions (T ,V) of finitely many Aut(G )-orbits such
that at most one end of G lives in each Vt .



New formulations

Theorem (H, Lehner, Miraftab, Rühmann)

If G is a connected quasi-transitive locally finite graph with more
than one end, then it is a non-trivial tree amalgamation of two
connected quasi-transitive locally finite graphs.

Theorem (H, Lehner, Miraftab, Rühmann)

If G is a connected quasi-transitive locally finite graph with more
than one end, then it has a non-trivial tree-decomposition (T ,V)
such that

each Vt induces a connected quasi-transitive locally finite
graph and

the automorphisms of G induce an action on (T ,V) with at
most two orbits on V.

Similar theorems have been proved previously by

Dunwoody/Dicks and Dunwoody (1985/1989) via edge cuts

Dunwoody and Krön (2014)
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Extension of group theoretic theorems

Our theorems generalise several group theoretic theorems to
graphs:

1 Stallings’ theorem of splitting multi-ended finitely generated
groups (1971);

2 Dunwoody’s accessibility theorem of finitely presented groups
(1985);

3 Dicks’ and Dunwoody’s characterisation of accessible groups
(1989).

Theorem (H)

A connected quasi-transitive locally finite graphs is accessible if its
cycle space is generated by cycles of bounded length.



Content

1 Constructing infinite transitive graphs

2 Accessibility

3 Canonical tree-decompositions

4 k-blocks



k-blocks

A k-block is a maximal set X of at least k vertices such that no
set of less than k vertices separates any x , y ∈ X .

Remark

Note that the inseparability of X is measured not in X but within
the whole graph.
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Distinguishing k-blocks

Theorem (Carmesin, Diestel, Hundertmark, Stein
2014)

Let k > 0. Every finite graph G has a canonical tree-decomposition
of adhesion at most k that efficiently distinguishes all its k-blocks.

Remark

Previously, Dunwoody and Krön (2014) showed that the k-blocks
are arranged in a tree-like way.



Examples (1)

1 The components are the 1-blocks.

2 The maximal 2-connected subgraphs are the 2-blocks.

3 Every k-connected graph is a k-block.

4 Every k-connected subgraph lies in a k-block.
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Examples (2)

Add at least k vertices joined to a large grid such that each new
vertex has at least k-neighbours all of which lie on the boundary of
the grid.

The new vertices form a k-block.



Existence of k-blocks in graphs

Question

When does a graph have a k-block?



Minimum degree

Theorem (Mader 1974)

Graphs with minimum degree at least 2k contain a (k + 1)-block.

Remark

There are (k-connected) graphs with minimum degree ⌊32k − 1⌋
that have no (k + 1)-block.

Theorem (Carmesin, Diestel, H, Hundertmark 2014)

A k-connected graph with minimum degree more than 3
2k − 1

contains a (k + 1)-block.

Problem

For k ∈ N find the smallest d such that graphs of minimum degree
at least d contains a (k + 1)-block.
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Average degree

Theorem (Carmesin, Diestel, H, Hundertmark 2014)

Graphs with average degree at least 3k contain a (k + 1)-block.

Remark

For every ε > 0 there are graphs with average degree more than
2k − 1− ε that contain no (k + 1)-block.

Problem

For k ∈ N find the smallest d such that graphs of average degree
at least d contains a (k + 1)-block.
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Further directions

Weißauer recently investigated connections between having a
k-block and width parameters.

Otherwise not much is known.


