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Abstract. Based on a notion by Gray and Kambites of hyperbolicity in the
setting of semimetric spaces like digraphs or semigroups, we will construct
(under a small additional geometric assumption) a boundary based on quasi-
geodesic rays and anti-rays that is preserved by quasi-isometries and, in the
case of locally �nite digraphs and right cancellative semigroups, re�nes their
ends. Among other results, we show that it is possible to equip the space, if it
is �nitely based, together with its boundary with a pseudo-semimetric.

1. Introduction

Gray and Kambites [9] gave a geometric notion for hyperbolic semigroups, or
more generally hyperbolic digraphs or hyperbolic semimetric spaces, that gener-
alises Gromov's notion for groups [10]. The important di�erence to the undirected
situation is that the distance function is not symmetric and this is taken into ac-
count for Gray and Kambites' de�nition, see Section 3.

In [11], we have shown that their notion of hyperbolicity is a quasi-isometry
invariant, if we ask the spaces to satisfy an additional geometric assumption. This
assumption bounds the lengths of geodesics in in- and out-balls of �xed radius,
similar as in the case of metric spaces, where geodesics within balls of radius r have
length at most 2r. See Section 3 for more on this property.

In this paper, we will look at a boundary for hyperbolic spaces that will satisfy
the above mentioned geometric assumption, so we can also use that hyperbolicity
for those spaces is preserved by quasi-isometries.

In hyperbolic metric spaces, the hyperbolic boundary can be de�ned by an equiv-
alence relation on geodesic rays, where two such rays are equivalent if they are
eventually close to each other. For hyperbolic semimetric spaces, this is no longer
true, but the above relation is still a quasiorder on the geodesic rays and anti-rays,
see Section 4. Quasiorders canonically gives rise to an equivalence relation. In
our situation, the corresponding equivalence classes will be our geodesic boundary
points.

We can de�ne the same relation on quasi-geodesic rays and anti-rays and the
boundary points de�ned by that relation are trivially preserved by quasi-isome-
tries. By ∂X we denote the quasi-geodesic boundary of a hyperbolic semimetric
space X. For the geodesic boundary, however, it is still unknown whether they
are preserved by quasi-isometries. While in the case of proper hyperbolic geodesic
metric spaces, we can apply the Arzelà-Ascoli theorem to prove that both bound-
aries are essentially the same, it is not possible to apply an analogue theorem in
the case of semimetric spaces, since that is false, in general, see [5]. But for locally
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�nite digraphs, we can use a compactness argument to show that the quasi-geodesic
boundary and the geodesic boundary coincide and thus conclude that the geodesic
boundary is preserved by quasi-isometries, see Section 5.

For general digraphs, there is another notion for a boundary: ends as de�ned by
Zuther [16]. It turns out that the geodesic boundary is a re�nements of the end
space for locally �nite digraphs. Furthermore, we prove that the ends of locally
�nite digraphs are also preserved by quasi-isometries, see Section 6.

Semimetric spaces X have two natural topologies associated to them: one has
the open out-balls of �nite radius as base and the other the open in-balls of �nite
radius. These two topologies extend to topologies of X ∪ ∂X and quasi-isometries
between hyperbolic semimetric spaces extend to homeomorphisms on the spaces
with their geodesic boundaries with respect to these two topologies (see Section 7).
Furthermore, if X has a �nite base, we can equip X∪∂X with a pseudo-semimetric,
whose induced topologies coincide with the just mentioned ones under small addi-
tional assumptions, see Section 8.

Further results regarding the geodesic boundary include that, for locally �nite
digraphs D, the space D ∪ ∂D is f-complete and b-complete (see Section 9), two
notions that mimic completeness in the setting of semimetrics with respect to the
two topologies that we discussed. Additionally, we prove a result that can be seen as
a partial analogue of the fact that in the case of metric spaces the ends correspond
to the connected components of the hyperbolic boundary. We use that result to
obtain some results on the size of the geodesic boundary, see Section 10.

In the �nal section, Section 11, we apply our results to semigroups. Our addi-
tional geometric assumption implies that the results only hold for right cancellative
semigroups, so we have de�ned the geodesic boundary for hyperbolic semigroups,
too, in that we de�ne it for a locally �nite hyperbolic Cayley digraph of that semi-
group.

As the geodesic boundary of hyperbolic digraphs or semigroups is preserved by
quasi-isometries and thus by changing the �nite generating set of �nitely generated
right cancellative semigroups, the geodesic boundary gives rise to a boundary of
semigroups not just for one particular generating set. The results on the number
of geodesic boundary points implies for �nitely generated cancellative hyperbolic
semigroups that they have either 0, 1, 2 or in�nitely many geodesic boundary points.
Moreover, if the semigroup has exactly one end, then is has either 1 or in�nitely
many geodesic boundary points.

We end by some discussions about �nitely generated right cancellative hyperbolic
semigroups with at most two geodesic boundary points.

2. Preliminaries

In this section, we will de�ne all the basic notions for semimetric spaces and
digraphs.

2.1. Semimetric spaces. A map d : X × X → [0,∞] on a set X is a pseudo-
semimetric if

(i) d(x, x) = 0 for all x ∈ X and
(ii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X,

and we call (X, d) a pseudo-semimetric space. A pseudo-semimetric is a semimetric
if the following holds
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(i') d(x, y) = 0 if and only if x = y for all x, y ∈ X,

and we call (X, d) a semimetric space.
If X is a (pseudo-)semimetric space and x, y ∈ X, then we set

d↔(x, y) := min{d(x, y), d(y, x)}.
Whereas metrics naturally de�ne a topology based on open balls with respect to

the metric, (pseudo-)semimetric spaces X come along with two natural topologies.
One is de�ned via the out-balls and the other via the in-balls: for r ≥ 0 and x ∈ X,
we set the out-ball and the open out-ball of radius r around x as

B+
r (x) := {y ∈ X | d(x, y) ≤ r}, B̊+

r (x) := {y ∈ X | d(x, y) < r}
and the in-ball and the open in-ball of radius r around x as

B−
r (x) := {y ∈ X | d(y, x) ≤ r}, B̊−

r (x) := {y ∈ X | d(y, x) < r},

respectively, and the forward topology Of is generated by the open out-balls B̊+
r (x)

for all r ≥ 0 and x ∈ X and the backward topology Ob is generated by the open
in-balls B̊−

r (x) for all r ≥ 0 and x ∈ X.
For a, b ∈ R with a < b, a map P : [a, b] → X is a directed path if it is continuous

with respect to the forward topologies and with respect to the backward topologies.
We call P (a) the starting point and P (b) the end point of P and we de�ne the length
ℓ(P ) of P as

ℓ(P ) := lim
N→∞

N∑
i=1

d(P (ti−1), P (ti))

with ti := a+ i(b− a)/N for all 0 ≤ i ≤ N . For x, y ∈ X, a directed x-y path is a
directed path with starting point x and end point y and, for U, V ⊆ X, a directed
U -V path is a directed path with starting point in U and end point in V .

Two directed paths P : [a, b] → X andQ : [a′, b′] → X are parallel if P (a) = Q(a′)
and P (b) = Q(b′) and they are composable if P (b) = Q(a′). If they are composable,
then we denote their composition by PQ.

A point x ∈ X lies on P if it lies in the image of P . For x, y on P with x = P (r)
and y = P (R) such that r < R, we denote by xPy the subpath of P with starting
point x and end point y. For r ≥ 0, we denote by B+

r (P ) and by B−
r (P ) the out-ball

and the in-ball of radius r around the image of P , respectively.
Let (X, dX) and (Y, dY ) be two semimetric spaces. Let γ ≥ 1 and c ≥ 0. A map

f : X → Y is a (γ, c)-quasi-isometric embedding if

γ−1dX(x, x′)− c ≤ dY (f(x), f(x
′)) ≤ γdX(x, x′) + c

for all x, x′ ∈ X. It is a (γ, c)-quasi-isometry if additionally for every x ∈ X there
is y ∈ Y such that d(f(x), y) ≤ c and d(y, f(x)) ≤ c and we say that X is quasi-
isometric to Y . If the particular constant are not important, we simply talk about
quasi-isometries or quasi-isometric embeddings. Gray and Kambites [8, Proposition
1] remarked that being quasi-isometric is an equivalence relation. An isometry is a
(1, 0)-quasi-isometry.

For x, y ∈ X, an x-y geodesic or a geodesic from x to y is a directed path P
from x to y with ℓ(P ) = d(x, y) and, for U, V ⊆ X, a U -V geodesic is a directed
U -V path that is a geodesic. For γ ≥ 1 and c ≥ 0, a (γ, c)-quasi-geodesic from x
to y is a directed path from x to y with

ℓ(uPv) ≤ γd(u, v) + c
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for all u, v on P with v on uPy. The semimetric space X is geodesic if there exists
an x-y geodesic for all x, y ∈ X with d(x, y) < ∞.

Let (xi)i∈N be a sequence in X. It f-converges to x ∈ X if it converges to x with
respect to Of and it b-converges to x if it converges to x with respect to Ob. The
sequence is called forward Cauchy, or f-Cauchy, if for every ε > 0 there exists some
N ∈ N such that d(xn, xm) < ε for all m ≥ n ≥ N . It is called backward Cauchy,
or b-Cauchy, if for every ε > 0 there exists some N ∈ N such that d(xm, xn) < ε
for all m ≥ n ≥ N . We call X f-complete if every f-Cauchy sequence b-converges to
a point in X and we call X b-complete if every b-Cauchy sequence f-converges to
a point in X. Note that there are di�erent notions of completeness for semimetric
spaces, see e. g. [5, 12, 15]; some of them di�er from ours, e. g. in that they ask for
f-completeness that f-Cauchy sequences f-converge.

We call X sequentially f-compact if for every sequence (xi)i∈N in X that satis�es
d(xi, xj) < ∞ for all i < j has a b-convergent subsequence. We call X sequentially
b-compact if for every sequence (xi)i∈N in X that satis�es d(xj , xi) < ∞ for all
i < j has an f-convergent subsequence.

Proposition 2.1. Let X be a semimetric space. Then the following hold.

(i) If X is sequentially f-compact, then it is f-complete.
(ii) If X is sequentially b-compact, then it is b-complete.

Proof. Let X be sequentially f-compact. Let (xi)i∈N be an f-Cauchy sequence in X.
Then there is a subsequence (xnk

)k∈N that b-converges to a point x ∈ X. For ε > 0,
there exists N ∈ N such that d(xi, xj) < ε/2 for all j > i > N and, for every i > N ,
there exists k(i) ∈ N with d(xnk(i)

, x) < ε/2. Thus, we have

d(xi, x) < d(xi, xnk(i)
) + d(xnk(i)

, x) < ε

for all i > N . So (xi)i∈N b-converges to x and X is f-complete.
We obtain (ii) by an analogous argument. □

2.2. Digraphs. A digraph D = (V (D), E(D)) is pair of a vertex set V (D) and an
edge set E(D) such that it is an orientation of a multigraph. That means, we are
allowed to have loops and edges between the same vertices but reversely oriented
and we are also allowed to have parallel edges in the same direction. Whereas the
latter is unimportant for most of our arguments, it play a major role, when we want
to apply our result for semigroups. For U ⊆ V (D), we denote by D[U ] the digraph
induced by U , i. e. the digraph with vertex set U and all edges of D both of whose
incident vertices lie in U .

A directed path is a sequence x0 . . . xn of vertices such that xixi+1 ∈ E(D) for
all 0 ≤ i < n and a proper directed path is a sequence x0 . . . xn of pairwise distinct
vertices such that xixi+1 ∈ E(D) for all 0 ≤ i < n. The length ℓ(P ) of a directed
path P is the number of edges of the path.

If x0, x1, . . . are distinct vertices in D with xixi+1 ∈ E(D) we call x0x1 . . . a
ray, so it is a one-way in�nite directed path with starting vertex x0. If we have
xi+1xi ∈ E(D) instead we say that x0x1 . . . is an anti-ray and we have a one-way
in�nite directed path with end vertex x0.

For x, y ∈ V (D), the distance from x to y, denoted by d(x, y), is the length
of a shortest directed path from x to y or, if no such path exists, then it is ∞.
Whereas for graphs, this distance function is a metric, in the case of digraphs it is
only a semimetric. The out-degree of x ∈ V (D) is the number of y ∈ V (D) with
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d(x, y) = 1 and its in-degree is the number of y ∈ V (D) with d(y, x) = 1. A digraph
is locally �nite if all of its in- and out-degrees are �nite.

3. Thin triangles

Let X be a geodesic semimetric space. A triangle consists of three points of X
and three directed paths, one between every two of those points. These paths are
the sides and the three point are the end points of the triangle. We call the triangle
is geodesic if all three sides are geodesics and we call it transitive if two of its sides
are composable and their composition is parallel to the third side.

Let δ ≥ 0. We call a geodesic triangle with sides P,Q,R δ-thin if the following
holds:

if the starting point of P is either the starting or the end point of Q and
the last point of P is either the starting or the end point of R, then P is
contained in B+

δ (Q) ∪ B−
δ (R).

If all geodesic triangles in X are δ-thin then we call X δ-hyperbolic. If the constant
δ in not important for us, we simply call X hyperbolic.

As mentioned in the introduction, in a semimetric space X, the lengths of
geodesics with starting and end point in B+

r (x) for x ∈ X and r ∈ R need not
be bounded. (Contrary to that, in metric spaces, this is always bounded by 2r.)
However, we will generally restrict ourselves to situations, where this is satis�ed.
For that, we de�ne the following two properties.

(B1)
There exists a function f : R → R such that for every x ∈ X, for every
r ≥ 0 and for all y, z ∈ B+

r (x) the distance d(y, z) is either ∞ or
bounded by f(r).

(B2)
There exists a function f : R → R such that for every x ∈ X, for every
r ≥ 0 and for all y, z ∈ B−

r (x) the distance d(y, z) is either ∞ or
bounded by f(r).

Besides in the case of metric spaces, where these properties are satis�ed for the
function f(r) = 2r, they are also satis�ed in hyperbolic digraphs of bounded in-
and bounded out-degree by [11, Lemma 3.2].

The following two results are from [11] and play major roles in calculating dis-
tances in hyperbolic semimetric spaces.

Proposition 3.1. [11, Proposition 3.3] Let δ ≥ 0 and let X be a δ-hyperbolic
geodesic semimetric space that satis�es (B1) for the function f : R → R and (B2)
for the function g : R → R.
(i) If P,Q,R are the sides of a geodesic triangle such that the starting point of P

is either the starting or the end point of Q and the end point of P is either
the starting or the end point of R, then we have

ℓ(P ) ≤ (ℓ(Q)/ε)f(δ + ε) + (ℓ(R)/ε)g(δ + ε)

for all ε > 0.
(ii) If x, y ∈ X with d(x, y) ̸= ∞ and d(y, x) ̸= ∞, then we have

d(x, y) ≤ (d(y, x)/ε)f(δ + ε) + g(δ)

and
d(x, y) ≤ (d(y, x)/ε)g(δ + ε) + f(δ)
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for all ε > 0.

Lemma 3.2. [11, Lemma 3.4] Let δ ≥ 0 and let X be a δ-hyperbolic geodesic
semimetric space that satis�es (B1) and (B2) for the function f : R → R. Let
P,Q,R be the sides of a geodesic triangle such that P and Q are composable and
their composition is parallel to R. Then R lies in the out-ball of radius 6δ+2δf(δ+1)
around P ∪Q and in the in-ball of the same radius around P ∪Q.

The concept of geodesic stability from [11] will be used a couple of times in this
paper, too. So let us brie�y de�ne it and state the main result that we will apply.

Let X be a geodesic semimetric space. We say that X satis�es geodesic stability
if for all γ ≥ 1 and c ≥ 0 there exists a κ ≥ 0 such that, for all x, y ∈ X and all
(γ, c)-quasi-geodesics P and Q from x to y, every point of P lies in B+

κ (Q)∩B−
κ (Q).

Theorem 3.3. [11, Corollary 6.3] Every hyperbolic geodesic semimetric space that
satis�es (B1) and (B2) satis�es geodesic stability.

Another result that we will use is the main result of [11], which says that hy-
perbolicity is a property that is preserved by quasi-isometries, if the geodesic semi-
metric spaces satisfy the properties (B1) and (B2).

Proposition 3.4. [11, Proposition 7.2] Let X and Y be two geodesic semimetric
spaces such that X is hyperbolic and satis�es (B1) and (B2). If X is quasi-isometric
to Y , then Y is hyperbolic.

4. Geodesic boundary

One possibility to obtain the hyperbolic boundary in case of metric spaces is
to consider an equivalence relation of geodesic rays, where two geodesic rays are
equivalent if they are eventually close together. We mimic this construction for
semimetric spaces that satisfy (B1) and (B2) and obtain a quasiorder. Then we use
this quasiorder to de�ne the geodesic boundary. In the case of locally �nite digraphs,
we will see that this boundary is preserved by quasi-isometries, see Section 5, and
that it re�nes the ends, see Section 6.

Let X be a hyperbolic geodesic semimetric space. A ray is a map R : [0,∞) → X
that is continuous with respect to the forward and backward topologies and such
that for every x ∈ X and r ≥ 0 there exists p ≥ 0 such that R([p,∞)) ∩ B+

r =
∅, i. e. R leaves every out-ball of �nite radius eventually. An anti-ray is a map
R : (−∞, 0] → X that is continuous with respect to the forward and backward
topologies and such that for every x ∈ X and r ≥ 0 there exists p ≤ 0 such that
R((−∞, p]) ∩B−

r = ∅. For the sake of simplicity, we also denote by R(i) the point
R(−i) for an anti-ray R and i > 0. Note that this de�nition of rays and anti-rays
in the case of digraphs canonically corresponds to the one of Section 2.2.

For geodesic rays or anti-rays R1 and R2, we write R1 ≤ R2 if there exists some
M ≥ 0 such that for every r ≥ 0 and every x ∈ X there is a directed R1-R2 path
of length at most M outside of B+

r (x) ∪ B−
r (x).

The following lemma is straight forward to see.

Lemma 4.1. Let X be a geodesic semimetric space.

(i) If for all geodesic rays R1 and R2 in X with R1 ≤ R2 there exists m ≥ 0 such
that for every r ≥ 0 and every x ∈ X there is a directed R2-R1 paths of length
at most m outside of B+

r (x) ∪ B−
r (x), then ≤ is symmetric.
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(ii) If for all geodesic rays and anti-rays R1 and R2 in X with R1 ≤ R2 there
exist M ≥ 0 and a directed subpath P of R1 such that d(x,R2) ≤ M for all x
on R1 that do not lie on P , then ≤ is transitive. □

Lemma 4.2. Let X be a δ-hyperbolic geodesic semimetric space for some δ ≥ 0
that satis�es (B1) and (B2) for the function f : R → R. Let M ≥ 0 and let
x1, x2, y1, y2 ∈ X such that

(1) d(x1, y1) ≤ M and d(x2, y2) ≤ M ;
(2) d(x1, x2) < ∞;
(3) either d(y1, y2) < ∞ or d(y2, y1) < ∞.

Then the following hold.

(i) Every y1-y2 geodesic and every y2-y1 geodesic lie in the out-ball of radius
(2M + 5δ) + (2M + 2δ + 1)f(δ + 1) around any x1-x2 geodesic.

(ii) If d(y1, y2) < ∞, then all points a on every x1-x2 geodesic but those with

d(x1, a) ≤ ((M + 6δ + 2δf(δ + 1))f(δ + 1) + δ)f(δ + 1)

or d(a, x2) ≤ (M + δ)f(δ + 1) lie in the out-ball of radius 7δ + 2δf(δ + 1)
around any y1-y2 geodesic.

Proof. By the assumptions, there is a the geodesic triangle with end points x1, x2

and y2 and sides P2, Q and R such that P2 is an x2-y2 geodesic, Q is an x1-y2
geodesic and R is an x1-x2 geodesic. Let P1 be an x1-y1 geodesic, which has length
at most M by our assumption, and let S be a geodesic between y1 and y2.

In order to prove (i), set K := (2M +5δ)+ (2M +2δ+1)f(δ+1). If d(x1, y2) ≤
M + δ, then Proposition 3.1 implies

ℓ(S) ≤ Mf(δ + 1) + (M + δ)f(δ + 1) = (2M + δ)f(δ + 1).

Hence, S lies in the out-ball of radius ((2M + δ)f(δ+1)+M + δ) ≤ K around x1.
Let us now assume that d(x1, y2) > M + δ. Considering the geodesic triangle

with sides R, P2 and Q, we obtain that Q lies in B+
δ (R) ∪ B−

δ (P2). Since every

point in B−
δ (P2) has distance at most δ + M to y2, we obtain that Q lies in the

(2δ +M)-out-ball of R.
Let v1, . . . , vn be points onQ such that d(x1, v1) = M+δ+1, such that d(v1, y2) =

(n− 1)δ+ j for some 0 ≤ j < δ, such that d(vi, vi+1) = δ for all i < n− 1 and such
that vn = y2. Since Q lies in B+

δ (P1) ∪ B−
δ (S) and the length of P1 is at most M ,

there is for every i ≤ n a point wi on S with d(vi, wi) ≤ δ. We may assume that
wn = y2. For every i ≤ n, let Ai be a vi-wi geodesic and, for every i < n, let Bi

be a vi-wi+1 geodesic, which exists as the composition of viQvi+1 and Ai+1 is a
directed vi-wi+1 path. Note that ℓ(Bi) ≤ 2δ. If wi lies on S before wi+1, i. e. the
preimage of wi is smaller than that of wi+1, then every point on wiSwi+1 that lies
in B−

δ (Bi) has distance at most 3δ to wi+1. By hyperbolicity, all other points on

wiSwi+1 lie in B+
δ (Ai). In particular, wiSwi+1 lies in B+

5δ(vi). If wi+1 lies on S

before wi, then every point on wi+1Swi that lies in B−
δ (Ai) has distance at most 2δ

to wi. By hyperbolicity, all other points on wi+1Swi lie in B+
δ (Bi). So we also have

in this case that wi+1Swi lies in B+
5δ(vi). Thus, the directed subpath of S between

w1 and y2 lies in B+
5δ(Q).

Let us consider the geodesic triangle with end points x1, y1 and w1 with P1 as
one side, the directed subpath of S between y1 and w1 as another side and an x1-w1

geodesic as third side. Since d(x1, w1) ≤ M+2δ+1, we conclude by Proposition 3.1
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that the side between y1 and w1 has length at most (2M + 2δ + 1)f(δ + 1). Thus,
S lies in the out-ball of radius

max{5δ,M + (2M + 2δ + 1)f(δ + 1), δ + (2M + 2δ + 1)f(δ + 1)}
≤(M + 3δ) + (2M + 2δ + 1)f(δ + 1)

around Q. Since we already saw that Q lies in the out-ball of radius 2δ + M
around R in this case, we obtain that S lies in the out-ball of radius

(2M + 5δ) + (2M + 2δ + 1)f(δ + 1) ≤ K

around R. Together with the �rst case, this proves (i).
Now let us assume that d(y1, y2) < ∞. Then Q lies in B+

c (P1 ∪ S) for c :=
6δ+2δf(δ+1) by Lemma 3.2. By Proposition 3.1, all points b on Q with d(x1, b) >
(M + c)f(δ + 1) lie in B+

c (S). By hyperbolicity, R lies in B+
δ (Q) ∪ B−

δ (P2) and
by Proposition 3.1 all points a on R but those with d(a, x2) ≤ (M + δ)f(δ + 1)
lie in B+

δ (Q). So all points a on R but those with d(a, x2) ≤ (M + δ)f(δ + 1) or

d(x1, a) ≤ ((M + c)f(δ + 1) + δ)f(δ + 1) lie in B+
c+δ(S). This shows (ii). □

Proposition 4.3. Let X be a hyperbolic geodesic semimetric space that satis�es
(B1) and (B2). Then ≤ is a quasiorder.

Proof. Let R1, R2 be geodesic rays or anti-rays inX with R1 ≤ R2 and letM ≥ 0 be
such that R1 ≤ R2 holds for this M . Let x0, x1, . . . be in�nitely many points on R1

such that xi+1 lies between xi and xi+2 with d(xi, xi+1) ≥ 1, such that there is,
for every i ∈ N, a directed path from xi to some point yi on R2 with d(xi, yi) ≤ M
and such that all of these paths are pairwise disjoint. We may assume that x0 and
y0 are the starting or end points of R1 and R2, respectively. Set

K := (2M + 5δ) + (2M + 2δ + 1)f(δ + 1).

If R1 is directed away from x1, then we apply Lemma 4.2 (i) with (x0, xi, y0, yi)
as (x1, x2, y1, y2) for every i ∈ N. If R1 is directed towards x1, then we apply the
same lemma with (xi, x1, yi, y1) as (x1, x2, y1, y2) for every i ∈ N.

In both situations, Lemma 4.2 (i) implies that R2 lies in the out-ball of radius
K around R1 and hence Lemma 4.1 (ii) implies the assertion. □

As corollary of the proofs of Lemma 4.2 and Proposition 4.3 we obtain that we
may not only choose the constant M to be 6δ but that all of R2 but some directed
subpath of �nite length lies within the out-ball of radius M around R1.

Corollary 4.4. Let X be a hyperbolic geodesic semimetric space that satis�es (B1)
and (B2). If R1 and R2 are geodesic (anti-)rays with R1 ≤ R2, then there is a
(anti-)subray R′

2 of R2 such that R′
2 ⊆ B+

6δ(R1). □

Let X be a hyperbolic geodesic semimetric space that satis�es (B1) and (B2). If
≤ is a quasiorder on the set of geodesic rays and anti-rays of X, then we write R1 ≈
R2 if R1 ≤ R2 and R2 ≤ R1. This new relation is an equivalence relation whose
equivalence classes form the geodesic boundary ∂geoX of X. We de�ne two related
boundaries: the geodesic f-boundary ∂f

geoX consists of the equivalence classes of ≈
restricted to the rays and the geodesic b-boundary ∂b

geoX consists of the equivalence
classes of ≈ restricted to the anti-rays. Every geodesic boundary point is the union
of at most one geodesic f-boundary point and at most one geodesic b-boundary
point.
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Note that ≤ extends to an order on the three sets ∂geoX, ∂f
geo and ∂b

geo. Lemma
4.2 enables us to prove some order-theoretic results on the geodesic boundary.

Proposition 4.5. Let X be a hyperbolic geodesic semimetric space that satis�es
(B1) and (B2). Let η, µ ∈ ∂geoX with η < µ. Then either η or µ contains no ray
and the other one contains no anti-ray.

In particular, there are no chains of length at least 3 in ∂geoX.

Proof. Let η, µ ∈ ∂geoX with η ≤ µ and let R ∈ η and Q ∈ µ. Assume that either
both, R and Q, are rays or that both are anti-rays. Then we use the method of the
proof of Proposition 4.3 and apply Lemma 4.2 (ii) to conclude Q ≤ R. So we have
Q ≈ R and hence η = µ. □

It would be interesting to know whether divergence of geodesics or geodesic
stability is strong enough to give rise to a geodesic boundary.

5. Quasi-geodesic boundary

In this section, we de�ne a di�erent boundary that builds upon a quasiorder on
the set of quasi-geodesic rays and anti-rays. For hyperbolic digraphs satisfying (B1)
and (B2) this new boundary will coincide with the geodesic boundary, see Propo-
sition 5.3. As a corollary we obtain that quasi-isometries preserve the structure of
the geodesic boundary, see Theorem 5.4.

We extend ≤ to the class of quasi-geodesic rays and anti-rays: for quasi-geodesic
rays or anti-rays R1 and R2 in a hyperbolic geodesic semimetric space X, we write
R1 ≤ R2 if there exists some M ≥ 0 such that for every r ≥ 0 and every x ∈ X
there is a directed R1-R2 path of length at most M outside of B+

r (x) ∪ B−
r (x).

Proposition 5.1. For every hyperbolic geodesic semimetric space X that satis�es
(B1) and (B2), the relation ≤ is a quasiorder on the set of quasi-geodesic rays and
anti-rays.

Proof. Let f : R → R be a function such that D satis�es (B1) and (B2) for f . Let
γ ≥ 1 and c ≥ 0. Let R1 and R2 be (γ, c)-quasi-geodesic rays or anti-rays in D
such that R1 ≤ R2. Let x be the starting or end point of R1 and y be the starting
or end point of R2. Let M ≥ 0 and let x0, x1, . . . be points on R1 and y0, y1, . . . be
points on R2 such that d(xi, yi) ≤ M and d↔(x, xi) ≥ i and d↔(y, yi) ≥ i for all
i ≥ 0. We may assume x = x0 and y = y0. Let κ ≥ 0 such that geodesic stability
holds for (γ, c)-quasi-geodesics with respect to the value κ, cp. Theorem 3.3.

Let Ri
1 be the subpath of R1 between x and xi and let Ri

2 be the subpath of R2

between y and yi. Let Pi be a geodesic with the same starting point as Ri
1 and

the same end point as Ri
1 and let Qi be a geodesic with the same starting point

as Ri
2 and the same end point as Ri

2. We apply Lemma 4.2 (i) for the four points
x, xi, y, yi for every i ≥ 1 and use geodesic stability to conclude that R2 lies in the
ball of radius

2κ+ (2M + 5δ) + (2M + 2δ + 1)f(δ + 1)

around R1. This shows with an analogue to Lemma 4.1 (ii) for the relation ≤ on
quasi-geodesic rays and anti-rays instead of geodesic ones that ≤ is transitive. Since
the relation is obviously re�exive, the assertion follows. □
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Similar to Corollary 4.4, we may choose M such that some (anti-)subray R′
2 of

R2 lies within B+
M (R′

1). But contrary to that corollary, in the case of the quasi-geo-
desic boundary, this constant also depends on the quasi-geodesic constants of R1

and R2.
Similar to the case of geodesic rays and anti-rays, if ≤ is a quasiorder on the set of

quasi-geodesic rays and anti-rays, we write R1 ≈ R2 if R1 ≤ R2 and R2 ≤ R1, where
R1 and R2 are quasi-geodesic rays or anti-rays in a hyperbolic geodesic semimetric
space X that satis�es (B1) and (B2). Then ≈ is an equivalence relation whose
equivalence classes form the quasi-geodesic boundary ∂X of the semimetric space.
The quasi-geodesic f-boundary ∂fX are the equivalence classes of ≈ restricted to
the quasi-geodesic rays and the quasi-geodesic b-boundary ∂bX are the equivalence
classes of ≈ restricted to the quasi-geodesic anti-rays. We also have in this case
that every quasi-geodesic boundary point is the union of at most one quasi-geodesic
f-boundary point with at most one quasi-geodesic b-boundary point. Note that we
can extend the quasiorder ≤ to an order on ∂X, on ∂fX and on ∂bX. Analogous
to Proposition 4.5, we obtain the following result.

Proposition 5.2. Let X be a hyperbolic geodesic semimetric space that satis�es
(B1) and (B2). Let η, µ ∈ ∂X with η < µ. Then either η or µ contains no ray and
the other one contains no anti-ray.

In particular, there are no chains of length at least 3 in ∂X. □

In hyperbolic geodesic spaces, we can apply the Arzelà-Ascoli theorem to prove
that every quasi-geodesic ray lies close to and from some geodesic ray, see e. g.
[1, Lemma I.8.28]. Generally, in the case of semimetric spaces an analogue of the
Arzelà-Ascoli theorem is false, but gets true with additional strong requirements,
see [5]. Since we do not satisfy these additional requirements in general, we prove
the desired result on quasi-geodesic and geodesic rays and anti-rays only in the case
of digraphs, where we can apply elementary arguments instead of the Arzelà-Ascoli
theorem.

Proposition 5.3. Let D be a hyperbolic digraph satisfying (B1) and (B2). Then
the following hold.

(i) If all vertices of D have �nite out-degree, then every quasi-geodesic f-boundary
point contains a geodesic f-boundary point.

(ii) If all vertices of D have �nite in-degree, then every quasi-geodesic b-boundary
point contains a geodesic b-boundary point.

(iii) If D is locally �nite, then every quasi-geodesic boundary point contains a ge-
odesic boundary point.

Proof. Let us assume that every vertex of D has �nite out-degree and let Q =
x0x1 . . . be a (γ, c)-quasi-geodesic ray in D for some γ ≥ 1 and c ≥ 0. For every
i ∈ N, let Pi be an x0-xi geodesic. Since x0 has �nite out-degree, in�nitely many
Pi have a common �rst edge. Similarly, among those there are again in�nitely
many with a common second edge and so on. This way we obtain a ray R with
starting vertex x0 and such that every �nite directed subpath is geodesic. Hence,
R is geodesic as well.

By geodesic stability, see Theorem 3.3, there is some κ ≥ 0 such that every Pi

lies in the out-ball and in-ball of radius κ around x0Qxi. Thus, R lies in the out-ball
and in-ball of radius κ around Q. Thus, we have Q ≤ R and R ≤ Q. This shows
(i).
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By a symmetric argument with all directions of the edges reversed, we obtain
(ii) and (iii) follows immediately from (i) and (ii). □

The advantage of the quasi-geodesic boundary is that it is preserved by quasi-iso-
metries since quasi-isometries preserve the set of quasi-geodesic rays and anti-rays.
In the case of locally �nite digraphs, Proposition 5.3 implies that quasi-isometries
also preserve the geodesic boundary. Thus, we immediately have the following
results.

Theorem 5.4. Let f : X1 → X2 be a quasi-isometry between hyperbolic geodesic
semimetric spaces X1 and X2 that satisfy (B1) and (B2). Then f canonically
de�nes three order-preserving bijective maps: one between the quasi-geodesic f-
boundaries, one between the quasi-geodesic b-boundaries and one between the quasi-
geodesic boundaries. □

Theorem 5.5. Let f : D1 → D2 be a quasi-isometry between hyperbolic digraphs
D1 and D2 that satisfy (B1) and (B2). Then the following hold.

(i) If every vertex of D1 and D2 has �nite out-degree, then f canonically de-
�nes an order-preserving bijective map between the geodesic f-boundaries of
the digraphs.

(ii) If every vertex of D1 and D2 has �nite in-degree, then f canonically de�nes
an order-preserving bijective map between the geodesic b-boundaries of the
digraphs.

(iii) If D1 and D2 are locally �nite, then f canonically de�nes an order-preserving
bijective map between the geodesic boundaries of the digraphs. □

6. Ends of digraphs

In this section, we will brie�y introduce the notion of ends of digraphs as in-
troduced by Zuther [16] and then show that the geodesic boundary of hyperbolic
locally �nite digraphs is a re�nement of the set of ends. We note that Bürger
and Melcher [2, 3, 4] recently investigated a di�erent notion of ends of digraphs.
Roughly speaking, their ends are those ends in Zuther's sense that contain rays
and anti-rays. In general, the geodesic boundary is not a re�nement of the ends
in sense of Bürger and Melcher: while each of their ends still contains a geodesic
boundary point, there may be geodesic boundary points no belonging to any of
their ends. Jackson and Kilibarda [13] used a di�erent notion for ends of semi-
groups that is based on the ends of the underlying undirected graph of their Cayley
digraphs. Gray and Kambites [8] proved that the ends in the sense of Jackson and
Kilibarda are invariant under quasi-isometries. In this section, we will also show
that Zuther's notion of ends of digraphs is preserved by quasi-isometries in the case
of locally �nite digraphs.

Our main interest in this section is to prove that the geodesic boundary of
hyperbolic locally �nite digraphs is a re�nement of their ends. By reasons addressed
in the previous section, we do not obtain this result for semimetric spaces: apart
from a notion of ends for semimetric spaces, we would need a suitable notion of the
Arzelà-Ascoli theorem.

In order to de�ne the ends of digraphs, we �rst de�ne a relation on the set R of
all rays and anti-rays in a digraph D. For R1, R2 ∈ R, we write R1 ≼ R2 if there
are in�nitely many pairwise disjoint R1-R2 paths in D. Zuther [16, Proposition 2.2]
showed that ≼ is a quasiorder on R. We write R1 ∼ R2 if R1 ≼ R2 and R2 ≼ R1.
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This is an equivalence relation whose classes are the ends of D. We denote this
set by ΩD. Its restrictions to either the rays or the anti-rays are also equivalence
relations whose classes are the f-ends or b-ends, respectively. Every end is the union
of at most one f-end and at most one b-end. Note that ≼ extends to an order on
the set of ends, of f-ends and of b-ends of D.

In the case of a graph G, it is easy to see that two rays have in�nitely many
pairwise disjoint paths between them if and only if for every �nite vertex set S
those rays have tails that lie in the same component of G − S. Our next result
shows proves an analogous result for digraphs.

Proposition 6.1. Let D be a digraph.

(i) Let every vertex of D have �nite out-degree and let R1, R2 be two rays in D.
Then R1 ≼ R2 if and only if for every x ∈ V (D) and every R ∈ N there is a
directed R1-R2 path outside of B+

R(x).
(ii) Let every vertex of D have �nite in-degree and let R1, R2 be two anti-rays

in D. Then R1 ≼ R2 if and only if for every x ∈ V (D) and every R ∈ N there
is a directed R1-R2 path outside of B−

R(x).
(iii) Let D be locally �nite and let R1 and R2 be rays or anti-rays in D. Then

R1 ≼ R2 if and only if for every x ∈ V (D) and every R ∈ N there is a
directed R1-R2 path outside of B+

R(x) ∪ B−
R(x).

Proof. To prove (i), let x ∈ V (D) and r ∈ N. If R1 ≼ R2, then we have in�nitely
many pairwise disjoint directed R1-R2 paths. All but �nitely many of them do not
meet B+

r (x), since that is a �nite set.
To prove the remaining direction of (i), let x be the starting vertex of R1. Sup-

pose that there are only �nitely many pairwise disjoint directed R1-R2 paths. Since
for each of those �nitely many directed paths P there is a directed subpath of R1

from x to the starting vertex of P , there exists r ∈ N such that all of those directed
R1-R2 paths lie in B+

r (x). This is a contradiction to the assumption that there is
a directed R1-R2 path outside of B+

r (x).
With a similar argument but with x being the last vertex of the anti-ray R2 for

the reverse direction, we obtain (ii).
Let us prove (iii). If there are in�nitely many pairwise disjoint directed R1-

R2 paths, then for every x ∈ V (D) and every r ∈ N, there is an R1-R2 path
outside of the �nite set B+

r (x) ∪ B−
r (x). To prove the other direction, it su�ces

to consider the case that R1 is an anti-ray and R2 a ray, since we can follow the
proof of (i) if R1 is a ray and the proof of (ii) if R2 is an anti-ray. So let us
assume that for every x ∈ V (D) and every r ∈ N there is a directed R1-R2 path
outside of B+

r (x)∪B−
r (x). Let us suppose that there are only �nitely many pairwise

disjoint directed R1-R2 paths P1, . . . , Pn. Let xi be the starting vertex of Pi for all
1 ≤ i ≤ n and let a be the end vertex of R1. Set N := max{ℓ(Pi) | 1 ≤ i ≤ n} and
r := N + max{d(xi, a) | 1 ≤ i ≤ n}. Let x ∈ {x1, . . . , xn} with d(x, a) = r − N .
Then P1, . . . , Pn lie in B+

r (x). By assumption, we �nd an R1-R2 path P outside of
B+
r (x) ∪ B−

r (x). This is disjoint to all paths Pi by its choice. This contradiction
shows R1 ≼ R2. □

Craik et al. [6, Corollary 2.3] proved that Zuther's de�nition of ends of digraphs
extends to a notion of ends of �nitely generated semigroups that is preserved under
changing the �nite generating set. More precisely, for a �nitely generated semigroup
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every right Cayley digraph has the same isomorphism type (as a partially ordered
set) of their ends. We prove a similar result for quasi-isometries of digraphs.

Theorem 6.2.

(i) Quasi-isometries between digraphs all of whose vertices have �nite out-degree
extend canonically to bijective maps between their f-ends that preserve the
order ≼.

(ii) Quasi-isometries between digraphs all of whose vertices have �nite in-degree
extend canonically to bijective maps between their b-ends that preserve the
order ≼.

(iii) Quasi-isometries between locally �nite digraphs extend canonically to bijective
maps between their ends that preserve the order ≼.

Proof. Let D1 and D2 be digraphs and let f : D1 → D2 be a (γ, c)-quasi-isometry
for some γ ≥ 1 and c ≥ 0. Let R1 = x1x2 . . . be a ray in D1. Then there is a
directed f(xi)-f(xi+1) path P 1

i of length at most γ + c in D2. Concatenating all
these directed paths leads to a one-way in�nite directed path W1. This contains a
ray Q1. Note that there are in�nitely many pairwise disjoint Q1-{f(xi) | i ∈ N}
paths and in�nitely many pairwise disjoint {f(xi) | i ∈ N}-Q1 paths. So all possible
rays obtained the same way as Q1 lie in the same f-end. In the same way, we obtain
for a second ray R2 = y1y2 . . . in D1 paths P 2

i from f(yi) to f(yi+1) of length at
most γ + c and a one-way in�nite directed path W2 and a ray Q2 in W2.

Let us assume that R1 ≼ R2 and that all vertices of D1 and D2 have �nite
out-degree. Let x ∈ V (D2) and n ∈ N. Then W1, W2, Q1 and Q2 have all but
�nitely many of their vertices outside of B+

n (x). Let Q
′
1 and Q′

2 be tails of Q1 and
Q2, respectively, such that Q′

1 and Q′
2 do not meet B+

n (x). Let N ∈ N such that
for all i ≥ N there is a Q′

1-f(xi) path and an f(yi)-Q
′
2 path outside of B+

n (x). Let
y ∈ V (D1) such that d(f(y), x) ≤ c and d(x, f(y)) ≤ c. There exists a directed
R1-R2 path P outside of B+

(γ+c)(n+1)+c(y) by Proposition 6.1. We may assume that

it is from xi to yj for some i, j ≥ N . Its f -image induces a directed f(xi)-f(yj)
path outside of B+

n (x). By the choice of i and j, we �nd a Q′
1-Q

′
2 path outside of

B+
n (x). This shows Q1 ≼ Q2.
Note that there is a quasi-isometry g : D2 → D1 such that g ◦ f is almost the

identity: that there exists some ℓ ≥ 0 with d(u, g(f(u))) ≤ ℓ for all u ∈ V (D1)
and d(v, f(g(v))) ≤ ℓ for all v ∈ V (D2). This implies that R1 ≼ R2 if and only if
Q1 ≼ Q2 and �nishes the proof of (i).

To prove (ii), we essentially follow the proof of (i) with reversed directions of
the edges. So e. g. the paths P 1

i go from f(xi+1) to f(xi) and the distances are
measured towards x instead of from x. Also, the proof of (iii) is essentially the
same. □

Let us now prove that the geodesic boundary is a re�nement of the ends.

Proposition 6.3. For every hyperbolic digraph D that sati�es (B1) and (B2) the
following hold.

(i) If every vertex of D has �nite out-degree, then the geodesic f-boundary is a
re�nement of the f-ends.

(ii) If every vertex of D has �nite in-degree, then the geodesic b-boundary is a
re�nement of the b-ends.

(iii) If D is locally �nite, then the geodesic boundary is a re�nement of the ends.
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Proof. Let us assume that every vertex has �nite out-degree and let f : R → R such
that (B1) and (B2) are satis�ed for the function f .

Let R = x0x1 . . . be a ray in D. For every i ∈ N, let Pi be an x0-xi geodesic.
These paths give rise to a ray in that in�nitely many directed paths Pi have a
common �rst edge since x0 has �nite out-degree, among which there are again
in�nitely many Pi that also share a common second edge and so on. The obtained
ray Q = y0y1 . . . with x0 = y0 is geodesic since each �nite directed subpath is
contained in some Pi. Obviously, we have Q ≼ R.

Let k ∈ N and set ik := d(x0, xk). Let ℓ ∈ N such that y0Qyik+2δ+1 is a
subpath of Pℓ. Let us consider the geodesic triangle with sides Pk, Pℓ and an xk-xℓ

geodesic P . Let v be the last vertex of P in B+
δ (Pk) and let w be its out-neighbour

on P . By δ-hyperbolicity, we know that w lies in B−
δ (uk) for some uk on Pℓ. It

follows that d(x0, uk) ≤ ik + 2δ + 1, so uk lies on Q. Thus, the concatenation of
xkPw with a w-uk geodesic shows the existence of an xk-uk geodesic Qk. So we �nd
in�nitely many directed R-Q paths. It remains to show that we can �nd in�nitely
many pairwise disjoint ones.

Let P be a maximal set of these directed paths Qi that are pairwise disjoint.
Suppose that P is �nite. Let i be the maximum distance from x0 to vertices on
elements of P and set n := (δ + i)f(δ + 1) + 1. Let k ∈ N such that y0Qyn is a
subpath of Pk. Considering the geodesic triangle with sides ynPkxk, Qk and ynQuk,
we get by δ-hyperbolicity that Qk lies in B+

δ (ynPkxk)∪B−
δ (ynQuk). Let us suppose

that Qk had a vertex v in B+
i (x0). If v ∈ B+

δ (ynPkxk), then for w ∈ V (ynPkxk) with
d(w, v) ≤ δ, Proposition 3.1 implies d(x0, w) ≤ (δ + i)f(δ + 1), which contradicts
that Pk is a geodesic and thus d(x0, w) ≥ (δ+ i)f(δ+1)+ 1. So v lies in B−

δ (u) for
some u ∈ V (ynQuk). But then d(x0, u) ≤ i+δ, which is also a contradiction. Thus,
Qk is disjoint to every element of P, which contradicts the maximality of P. Thus,
there are in�nitely many pairwise disjoint R-Q paths and hence we have R ≼ Q.
So R and Q lie in the same f-end of D. This shows (i).

Analogously with the directions of the edges reversed, we obtain (ii). Finally,
(iii) is an immediate consequence of (i) and (ii). □

We will use the map of Proposition 6.3 (iii) in Section 10 to understand the
connection between the ends and the (quasi-)geodesic boundary in more detail.

7. Topologies for the quasi-geodesic boundary

In this section, we extend the two topologies Of and Ob to the boundary of
hyperbolic geodesic semimetric spaces and show that quasi-isometries extend to
homeomorphisms with respect to both topologies on the boundaries. Let X be a
hyperbolic geodesic semimetric space that satis�es (B1) and (B2). Let x ∈ X, let
r ≥ 0 and let ω ∈ ∂fX. We set

C−(ω, x, r) := {y ∈ X | ∃R ∈ ω ∀z on R ∃y-z geodesic outside of B+
r (x) ∪ B−

r (x)}.

Analogously, if η ∈ ∂bX, then we set

C+(η, x, r) := {y ∈ X | ∃R ∈ ω ∀z on R ∃z-y geodesic outside of B+
r (x) ∪ B−

r (x)}.

For µ ∈ ∂X with µ = µ1 ∪ µ2 for µ1 ∈ ∂fX and µ2 ∈ ∂bX, we set

C−(µ, x, r) := C−(µ1, x, r)
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and

C+(µ, x, r) := C+(µ2, x, r).

We say that an element µ′ of ∂X ∪ ∂fX ∪ ∂bX lives in C−(µ, x, r) or C+(µ, x, r)
if an element of µ′ lies in C−(µ, x, r) or C+(µ, x, r), respectively. We denote by
C−

∂ (µ, x, r) and C+
∂ (µ, x, r) the sets C−(µ, x, r) and C+(µ, x, r) together with the

quasi-geodesic boundary points living in them.
Generally, not all quasi-geodesic boundary points that live in C−(ω, x, r) or

C+(ω, x, r) have the property that each of their elements contains a subray or anti-
subray that is contained in C−(ω, x, r) or C+(ω, x, r), respectively. However, we
shall show that this is true up to small changes on the constant r.

Lemma 7.1. Let X be a hyperbolic geodesic semimetric spaces that satis�es (B1)
and (B2). Let x ∈ X, let r ≥ 0 and let ω ∈ ∂fX ∪ ∂bX. Set κ := 6δ + 2δf(δ + 1).
Then the following hold.

(i) If ω ∈ ∂fX and R is a quasi-geodesic ray or anti-ray in C−(ω, x, r), then every
quasi-geodesic ray or anti-ray Q ≈ R lies in C−(ω, x, r − κ) eventually, i. e.
there is at most a directed subpath of Q of �nite length outside of C−(ω, x, r−
κ).

(ii) If ω ∈ ∂bX and R is a quasi-geodesic ray or anti-ray in C+(ω, x, r), then
every quasi-geodesic ray or anti-ray Q ≈ R lies in C+(ω, x, r− κ) eventually.

Proof. By symmetry, it su�ces to prove (i). By (B1), we know that at most some
directed subpath of �nite length of Q has its starting and end point in B+

r (x) ∪
B−
r (x). So we may assume that Q lies outside of B+

r (x) ∪ B−
r (x). Let M ≥ 0 such

that Q ≼ R holds with respect to the constant M . If a Q-R geodesic P of length at
most M contains a point of B+

r (x)∪B−
r (x), then either its end point lies in B+

r+M (x)

or its starting point lies in B−
r+M (x). Since there is at most a directed subpath of R

of �nite length with its starting and end point in B−
r+M (x) by (B1), we may replace

R by a subray or anti-subray that lies outside of B+
r+M (x) ∪ B−

r+M (x) and hence
the �rst case does not happen. Analogously, we may replace Q by a subray or
anti-subray of Q that avoids B+

r+M (x) ∪ B−
r+M (x) by (B2). Thus, no Q-R geodesic

intersects B+
r (x) ∪ B−

r (x). Applying Lemma 3.2 shows that if two composable
geodesics lie outside of B+

r (x) ∪ B−
r (x), then any geodesic that is parallel to the

composition lies outside of B+
r−κ(x) ∪ B−

r−κ(x). This shows (i). □

Now we are able to de�ne a base for the topologies on X ∪ ∂X. Let ω ∈ ∂X.
We set

Cf
∂ (ω, x, r) :=

⋃
µ∈∂X,ω≤µ

C+
∂ (µ, x, r)

for all x ∈ X and r ≥ 0. Then we declare all sets Cf
∂ (ω, x, r) as open. These sets

together with the open balls B̊+
r (x) form a base for the topology Of of X ∪ ∂X.

Analogously, we set

Cb
∂(ω, x, r) :=

⋃
µ∈∂X,µ≤ω

C−
∂ (µ, x, r)

for all x ∈ X and r ≥ 0 and obtain a base for the topologyOb ofX∪∂X if we declare
the sets Cb

∂(ω, x, r) as open and take them together with the open balls B̊−
r (x).
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We denote by ∂+(ω), by ∂−(ω), the elements η of ∂X with ω ≤ η, with
η ≤ ω, respectively. It immediately follows from the above de�nition that ev-
ery f-neighbourhood of ω contains ∂+(ω) and every b-neighbourhood of ω con-
tains ∂−(ω).

Let us illustrate the de�nition of the topologies via the following example.

Example 7.2. Let D be the digraph with distinct vertices ui, vi, wi, xi, yi for all
i ∈ N. The edges are the following:
� for every i ∈ N we have the edges uivi, viwi, wixi and xi, yi,
� for every i ∈ N there is an edge vivi+1 and
� for every i ∈ N there is an edge xi+1xi.

Then D is hyperbolic with one quasi-geodesic boundary point η being the equiv-
alence class of the ray v0v1 . . . and the only other quasi-geodesic boundary point
µ being the equivalence class of the anti-ray . . . x1x0. Then the typical open b-
neighbourhood of η that lies in the de�ned base consists of η and the vertices ui

and vi for all i ≥ i0 for some i0 ∈ N. The (typical) open f-neighbourhoods of η in
the base consist of η and µ and the vertices xi and yi for all i ≥ i0 for some i0 ∈ N.
The neighbourhoods of µ are obtained symmetrically with ui swapped with yi and
vi swapped with xi. At �rst, it may be surprising that none of the vertices wi lie
in these typical neighbourhoods, but intuitively, there are no directed wi-η or µ-wi

paths.

Theorem 7.3. Let f : X1 → X2 be a quasi-isometry between hyperbolic geodesic
semimetric spaces that satisfy (B1) and (B2). Then f canonically de�nes a map

f̂ : ∂X1 → ∂X2 that is a homeomorphism with respect to Of and Ob.

Proof. Let γ ≥ 1 and c ≥ 0 such that f is (γ, c)-quasi-geodesic. Theorem 5.4 implies

that f canonically de�nes an order-preserving bijective map f̂ : ∂X1 → ∂X2. Let
us consider a non-trivial set C+(η, x, r) with η ∈ ∂X, x ∈ X and r ≥ 0. Then

f(C+(η, x, r)) ⊆ C+(f̂(η), f(x),
r

γ
− c).

Similarly, we have

f(C−(η, x, r)) ⊆ C−(f̂(η), f(x),
r

γ
− c)

for non-trivial sets C−(η, x, r). Furthermore, every boundary point that lives

in C+(η, x, r) or C−(η, x, r) is mapped by f̂ to a boundary point that lives in

C+(f̂(η), f(x), r
γ − c) or C−(f̂(η), f(x), r

γ − c), respectively. Thus, f̂ is continuous

with respect to both topologies.
Since f is a quasi-isometry, there exists a quasi-isometry g : X2 → X1. Let ĝ

be the bijection ∂X2 → ∂X1 that is canonically de�ned by g, which exists due

to Theorem 5.4. It is easy to see that ĝ ◦ f̂ is the identity on ∂X1. So we have

ĝ = f̂−1. As ĝ is continuous with respect to both topologies, f̂ is a homeomorphism
with respect to both topologies. □

8. A pseudo-semimetric for X ∪ ∂X

A subset S of a semimetric space X is a base of X if for every x ∈ X there exists
s ∈ S with d↔(x, s) < ∞. We call X �nitely based if it has a �nite base. For the
following de�nition, recall that we set R(i) := R(−i) if R is an anti-ray and i > 0.
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Let (X, d) be a �nitely based hyperbolic geodesic semimetric space that satis�es
(B1) and (B2). Let S be a �nite base of X. Let η, µ ∈ X ∪ ∂X and let s ∈ S. If
η, µ ∈ ∂X, set

ρs(η, µ) := sup
R∈η,Q∈µ

{lim inf{d↔(s, P ) | i, j → ∞, P is an R(i)-Q(j) geodesic}}.

If η ∈ X and µ ∈ ∂X, set

ρs(η, µ) := sup
Q∈µ

{lim inf{d↔(s, P ) | i → ∞, P is an η-Q(i) geodesic}}

and

ρs(µ, η) := sup
Q∈µ

{lim inf{d↔(s, P ) | i → ∞, P is a Q(i)-η geodesic}}.

If η, µ ∈ X, set

ρs(η, µ) := lim inf{d↔(s, P ) | P is an η-µ geodesic}.

Set

ρS(η, µ) := min{ρs(η, µ) | s ∈ S}

for all η, µ ∈ X ∪ ∂X.
We will see later that that we may have ρS(η, µ) = ∞ for distinct η, µ ∈ ∂X.

If we now follow the usual approach for hyperbolic geodesic metric spaces, we
would de�ne ρεS(η, µ) := e−ερS(η,µ). However, this is then unde�ned if ρS(η, µ) =
∞. Thus, we need the following slightly di�erent de�nition in that we switch the
supremum with the exponent.

Let ε > 0. For all η, µ ∈ ∂X, we set

ρεs(η, µ) := inf
R∈η,Q∈µ

{e−ε lim inf{d↔(s,P )|i,j→∞, P is an R(i)-Q(j) geodesic}.

For all η ∈ X and µ ∈ ∂X, we set

ρεs(η, µ) := inf
Q∈µ

{e−ε lim inf{d↔(s,P )|i→∞, P is an η-Q(i) geodesic}

and

ρεs(η, µ) := inf
Q∈µ

{e−ε lim inf{d↔(s,P )|i→∞, P is a Q(i)-η geodesic}.

For all η, µ ∈ X, we set

ρεs(η, µ) := inf
R∈η,Q∈µ

{e−ε lim inf{d↔(s,P )|P is an η-µ geodesic}.

Set

ρεS(η, µ) := max{ρεs(η, µ) | s ∈ S}

for all η, µ ∈ X ∪ ∂X.
Finally, we set

dS,ε(η, µ) := inf{
n−1∑
i=0

ρεS(ηi, ηi+1) | n ∈ N, η = η0, η1, . . . , ηn = µ ∈ X ∪ ∂X}.

for all η, µ ∈ X ∪ ∂X.
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Lemma 8.1. Let δ ≥ 0 and let X be a δ-hyperbolic geodesic semimetric space with
�nite base S ⊆ X that satis�es (B1) and (B2) for the function f : R → R. Let

ε > 0 and set ε′ := e2ε(6δ+2δf(δ+1)). Then

ρεS(η1, η2) ≤ ε′ max{ρεS(η1, η3), ρεS(η3, η2)}
holds for all η1, η2, η3 ∈ X ∪ ∂X.

Proof. We assume that η1, η2, η3 ∈ ∂X: the case that some of them lie in X is dealt
with in the same way but a bit simpler. Let R1 ∈ η1, R2 ∈ η2 and R3, R4 ∈ η3. Let
s ∈ S such that ρεs(η1, η3) = ρεS(η1, η3). Set c := 6δ + 2δf(δ + 1). We consider four
points R1(i), R2(j), R3(i

′) and R4(j
′) for i, j, i′, j′ ∈ R such that

d(R1(i), R3(i
′)) < ∞,

d(R3(i
′), R4(j

′)) < ∞ and

d(R4(j
′), R2(j)) < ∞.

Let P12 be an R1(i)-R2(j) geodesic, P13 be an R1(i)-R3(i
′) geodesic, P14 be an

R1(i)-R4(j
′) geodesic, P34 be an R3(i

′)-R4(j
′) geodesic and P42 be an R4(j

′)-R2(j)
geodesic. Applying Lemma 3.2 twice, once to a geodesic triangle with sides P12,
P14 and P42 and once to a geodesic triangle with sides P13, P34 and P14, we obtain
that P12 lies in the out- and in-ball of radius 2c around P13 ∪ P34 ∪ P42. Thus, we
obtain

d↔(s, P12) + 2c ≥ min{d↔(s, P13), d
↔(s, P34), d

↔(s, P42)}.
Since R3 and R4 both lie in η3, we have

lim inf{d↔(s, P ) | k, ℓ → ∞, P is an R3(k)-R4(ℓ) geodesic} = ∞.

Thus, we obtain

ρs(η1, η2) + 2c ≥ min{ρs(η1, η3), ρs(η3, η3), ρs(η3, η2)}
= min{ρs(η1, η3), ρs(η3, η2)}

and hence

ρS(η1, η2) + 2c = ρs(η1, η2) + 2c

≥ min{ρs(η1, η3), ρs(η3, η2)}
≥ min{ρS(η1, η3), ρS(η3, η2)}.

The assertion now follows from the de�nition of ρεS . □

A (pseudo-)semimetric da on X ∪ ∂X is a visual (pseudo-)semimetric with pa-
rameter a > 1 if there is C > 0 such that

1

C
a−ρS(η,µ) ≤ da(η, µ) ≤ Ca−ρS(η,µ)

for all η, µ ∈ X ∪ ∂X.
Now we prove that dS,ε is a visual pseudo-semimetric. This proof is almost ver-

batim the same as for the case of metric spaces as in e. g. [1, Proposition III.H.3.21].

Theorem 8.2. Let δ ≥ 0 and let X be a δ-hyperbolic geodesic semimetric space
with �nite base S ⊆ X that satis�es (B1) and (B2). Let ε > 0 such that ε′ <

√
2

holds for ε′ := e2ε(6δ+2δf(δ+1)). Then dS,ε is a visual pseudo-semimetric on X∪∂X
that satis�es

(3− 2ε′)ρεS(η, µ) ≤ dS,ε(η, µ) ≤ ρεS(η, µ)
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for all η, µ ∈ X ∪ ∂X.

Proof. First, we note that the inequality dS,ε(η, µ) ≤ ρεS(η, µ) holds trivially for all
η, µ ∈ X ∪ ∂X and that the de�nition of dS,ε implies directly that it is a pseudo-
semimetric. We prove by induction on the length of chains (η0, . . . , ηn) that

(1) (3− 2ε′)ρεS(η0, ηn) ≤
n−1∑
i=0

ρεS(ηi, ηi+1).

We set

S(m) :=

m−1∑
i=0

ρεS(ηi, ηi+1).

Since ε′ > 1, we note that (1) holds trivially if n = 1 or S(n) ≥ 3 − 2ε′. So
let us assume that n ≥ 2 and S(n) < 3 − 2ε′. Let m ≤ n be largest such that
S(m) ≤ S(n)/2. Then we have

n−1∑
i=m+1

ρεS(ηi, ηi+1) = S(n)− S(m+ 1) < S(n)/2.

By induction we have

ρεS(η0, ηm) ≤ S(n)

2(3− 2ε′)
and ρεS(ηm+1, ηn) ≤

S(n)

2(3− 2ε′)
.

Trivially, we also have ρεS(ηm, ηm+1) ≤ S(n). Lemma 8.1 applied twice implies

ρεS(η0, ηn) ≤ (ε′)2 max{ρεS(η0, ηm), ρεS(ηm, ηm+1), ρ
ε
S(ηm+1, ηn)}

≤ (ε′)2S(n)max

{
1,

1

2(3− 2ε′)

}
.

Since (ε′)2/2 ≤ 1 and (ε′)2(3− 2ε′) ≤ 1 holds for all 1 ≤ ε′ ≤
√
2, we immediately

obtain (1). Thus, we proved the inequality in the assertion and hence dS,ε is a
visual pseudo-semimetric. □

We note that the digraph of Example 7.2 shows that, in the case of hyperbolicity,
we cannot expect dS,ε to be a semimetric. However, we will prove that in the special
case that X is a one-ended locally �nite digraph, we will prove that the pseudo-
semimetric is in fact a semimetric (Proposition 10.6). We will look more closely
to the situation that dS,ε(η, µ) = 0 for distinct quasi-geodesic boundary points η
and µ in Proposition 9.1.

Let us now relate the topologies that we obtain from the pseudo-semimetric dS,ε
with the topologies from Section 7 in various situations. For that, we call a subset
Y of a semimetric space X independent if d(y, z) = ∞ for all y, z ∈ Z.

Proposition 8.3. Let δ ≥ 0 and let X be a δ-hyperbolic geodesic semimetric space
with �nite base S ⊆ V (D) that satis�es (B1) and (B2) such that either

(i) |S| = 1 or
(ii) for no r ∈ R and x ∈ X the balls B+

r (x) and B−
r (x) contain an in�nite

independent point set.

Let ε > 0 such that ε′ <
√
2 holds for ε′ := e2ε(6δ+2δf(δ+1)). Then the forward and

backward topologies induced by dS,ε coincide with those of Section 7.
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Proof. It su�ces to prove that the neighbourhoods around quasi-geodesic boundary
points ω coincide. Furthermore, both types of topology can be treated analogously;
so we just consider the forward topologies.

Let f : R → R such that X satis�es (B1) and (B2) for that function. For γ ≥ 1
and c ≥ 0, let κ(δ, γ, c, f) ≥ 0 be the constant for geodesic stability, cp. Theorem 3.3.
Let D > 0 and let r ≥ 0 such that

εr > ln
3− 2ε′

D
.

Let y ∈ C+(η, s, r) for some η ∈ ∂+(ω) and s ∈ S. Then there is a quasi-geodesic
R ∈ ω such that for all x on R there is an x-y geodesic outside of B+

r (s) ∪ B−
r (s)

and hence ρs(η, y) ≥ r. Now if we take the �nite intersection

C :=
⋂

{C+(ω, s, r) | s ∈ S},

then we obtain ρS(ω, y) ≥ r for all y ∈ C. So Theorem 8.2 implies

(3− 2ε′)ρεS(η, y) ≤ (3− 2ε′)e−εr < D.

Hence the out-ball of radius D around ω with respect to the pseudo-semimetric
dS,ε contains C and thus also⋂

{C+
∂ (ω, s, r) | s ∈ S}.

Since this is true for every ω, this out-ball contains an f-neighbourhood with respect
to the topology of Section 7.

To show that every C+
∂ (ω, x, r) such that ω contains an anti-ray contains some

forward neighbourhood of ω with respect to dS,ε it su�ces to show that there exists
some k ∈ R with

B+
r (x) ∪ B−

r (x) ⊆ B+
k (S) ∪ B−

k (S).

Let us suppose that this is false. Since S is a base, there is s ∈ S with d↔(s, x) < ∞.
We may assume d(s, x) < ∞; the other case follows with a symmetric argument. So
we have B+

r (x) ⊆ B+
r+d(s,x)(s). For every i ∈ N, let yi ∈ B−

r (x) with d↔(S, yi) ≥ i.

By the pigeonhole principle, there is some s′ ∈ S with either d(s′, yi) < ∞ or
d(yi, s) < ∞ for in�nitely many i ∈ N. If there were in�nitely many i ∈ N with
d(s′, yi) < ∞, then we can consider a geodesic triangle with x, yi and s′ as end
points and apply Proposition 3.1 (i) to bound d(s′, yi) in terms of d(yi, x) and
d(s′, x). This contradicts d↔(S, yi) ≥ i. Hence, we may assume that d(yi, s) < ∞
for in�nitely many i ∈ N. Throwing all other out of the sequence, we may assume
that d(yi, s) < ∞ holds for all i ∈ N.

In the case that (i) holds, we directly obtain a contradiction to the choice of the
points yi: by applying Proposition 3.1 (i) to geodesic triangles with x, s and yi as
end points we can bound d(yi, s) in terms of d(s, x), d(yi, x) and f , but we also
know d↔(yi, s) ≤ d(yi, s) → ∞ for i → ∞. This is not possible. So let us now
assume |S| > 1 and hence that (ii) holds.

Applying Proposition 3.1 (i) to geodesic triangles with x, yi and yj as end points
shows that d↔(yi, yj) is bounded by 2rf(δ+1) if it is not∞. If d↔(yi, yj) ̸= ∞, then
a geodesic triangle with end points s′, yi and yj shows that for �xed i ∈ N we obtain
that d(s′, yj) is bounded in terms of d(s′, yi), d

↔(yi, yj) and f by Proposition 3.1 (i).
Thus, for �xed i ∈ N there are only �nitely many j ∈ N with d↔(yi, yj) < ∞. Now
we can easily �nd an in�nite independent subset of {yi | i ∈ N} which contradicts
(ii). □
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Note that it follows from Proposition 8.3 that the forward and backward topolo-
gies induced by dS,ε do not depend on the particular base for those semimetric
spaces satisfying the assumptions of that proposition. These assumptions are sat-
is�ed by some natural classes of semimetric spaces, e. g. hyperbolic digraphs of
bounded degree and hence right cancellative hyperbolic semigroups, cp. Section 11:
they satisfy (ii) of Proposition 8.3. On the other side, hyperbolic monoids that have
a �nite generating set whose Cayley digraph satis�es (B2) satisfy (i) of Proposi-
tion 8.3.

Let us brie�y discuss the situation that the hyperbolic geodesic semimetric space
is not �nitely based. It is natural if we just replace in the de�nition of ρS the
minimum by the in�mum over an in�nite base. Then it is easy to verify that dS,ε is
a pseudo-semimetric, too. However, the topologies de�ned by dS,ε do not coincide
with the topologies from Section 7 as the following example shows.

Example 8.4. Let G be a 3-regular tree and let R = . . . x−1x0x1 . . . be a double
ray in G, i. e. all xi are di�erent vertices and xi and xi+1 are adjacent for all i ∈ Z.
We orient the edges on R from xi to xi+1 and the other edges incident with vertices
on R away from R, i. e. if y is a neighbour of xi, we orient the edge from xi to y. All
other edges will be replaced by two oppositely directed edges, i. e. an edge between
y, z that do not lie on R will be replaced by one edge directed from y to z and one
edge directed from z to y. The resulting digraph D is clearly hyperbolic and it is
easy to see that it has no �nite base.

The vertex set S := {xi | i ≤ 0} is an in�nite base of D. Let us consider the
semimetric dS,ε where we replaced the de�nition of ρS by

ρS(η, µ) := inf{ρs(η, µ) | s ∈ S}.

Let ω ∈ ∂D such that . . . x−1x0 ∈ ω. Then it follows that ρS(ω, η) = 0 for all
η ∈ X ∪ ∂X with η ̸= ω. So we have dS,ε(ω, η) = 1. Thus, ω has a trivial f-
neighbourhood, while the topology Of from Section 7 has no trivial neighbourhood
of ω.

9. Properties of X ∪ ∂X

In the situation of hyperbolic geodesic spaces, the boundaries are complete met-
ric spaces and if the spaces are proper, the boundaries are compact, see e. g. [1,
Proposition III.H.3.7]. In the situation of semimetric spaces, we get at least for
digraph that local �niteness implies f- and b-completeness, see Theorem 9.4. But
before we proceed to that result, we �rst discuss situations with dS,ε(η, µ) = 0 and
then we prove the existence of geodesic rays, anti-rays and double rays with almost
prescribed starting and end points.

We have already seen in Example 7.2 that dS,ε(η, µ) = 0 is possible, see the
discussion after Theorem 8.2. Let us discuss this situation in a bit more detail.

Proposition 9.1. Let δ ≥ 0 and let X be a δ-hyperbolic geodesic semimetric space
with �nite base S ⊆ X that satis�es (B1) and (B2). Let ε > 0 such that ε′ <

√
2

holds for ε′ := e2ε(6δ+2δf(δ+1)). Let η, µ, ω ∈ X ∪ ∂X. Then the following hold.

(i) If dS,ε(η, µ) = 0 and η ̸= µ, then η, µ ∈ ∂X and η ≤ µ.
(ii) If dS,ε(η, µ) = 0 = dS,ε(µ, η), then η = µ.
(iii) If dS,ε(η, µ) = 0 and η ̸= µ, then either η contains only rays and µ contains

only anti-rays or η contains only anti-rays and µ contains only rays.
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(iv) If dS,ε(η, µ) = 0 and dS,ε(µ, ω) = 0, then we have either η = µ or µ = ω.

Proof. Let η, µ ∈ X ∪ ∂X with dS,ε(η, µ) = 0. By de�nition of dS,ε, it is only
possible to have dS,ε(η, µ) = 0 if η and µ lie in ∂X. Let R ∈ η and Q ∈ µ. They are
(γ, c)-quasi-geodesics for some γ ≥ 1 and c ≥ 0. Let X satisfy (B1) and (B2) for
the function f : R → R. Let κ be the constant for geodesic stability with respect
to δ, γ, c and f , cp. Theorem 3.3. Let P1, P2 be two R-Q geodesics with starting
points x1, x2 and end points y1, y2, respectively. Let R1 be the directed subpath
of R between x1 and x2 and let R2 be geodesic with the same starting and end
points. Let Q1 be the directed subpath of Q between y1 and y2 and let Q2 be
geodesic with the same starting and end points. Let i ̸= j ∈ {1, 2} such that xi

is the starting point of R1 and xj is its end point. Then there exists an xi-yj
geodesic P . By Lemma 3.2, we know that P lies in the out- and in-balls of radius
K := 6δ + 2δf(δ + 1) around R2 ∪ Pj .

Let us �rst consider the case that yi is the starting point and yj is the end point
of Q2. Then P lies in the out- and in-ball of radius K around Pi∪Q by Lemma 3.2.
Since dS,ε(η, µ) = 0, we may assume that we have chosen P2 such that there is some
point a on P with d↔(P1, a) > K and d↔(P2, a) > K. Applying geodesic stability,
there exists bR on R1 and bQ on Q1 with d(bR, bQ) ≤ 2κ+2K. Since dS,ε(η, µ) = 0,
we may choose, for every k ∈ N, the directed paths R, Q, P1 and P2 such that P1,
P2, R1 and Q1 lie outside of B+

k (S)∪B−
k (S). Let Tk be an R1-Q1 geodesic. Let us

suppose that there exists ℓ ∈ N such that B+
ℓ (x)∪B−

ℓ (x) meets all Tk. Then either

B+
ℓ+2K+2κ(x) or B−

ℓ+2K+2κ(x) contains a point of the directed subpaths Q1 or R1

of Q or R that we used for the existence of Tk, which is a contradiction to (B1)
or (B2). Thus, we have R ≤ Q and hence η ≤ µ in this case.

Let us now consider the case that yj is the starting point and yi is the end point
of Q2. Then Q1 lies in

B+
K+δ+κ(R2 ∪ Pj) ∪ B−

δ+κ(P1).

So if we choose P2 and a on Q1 with d↔(P1, a) ≥ κ+ δ and d(P2, a) > K + δ + κ,
then there is a directed R1-Q1 path of length at most 2κ+K+δ. As in the previous
case, we obtain R ≤ Q and η ≤ µ. This �nishes the proof of (i).

Finally, (ii) is an immediate consequence of (i) and (iii) and (iv) directly follow
from (i) and Proposition 5.2. □

We note that there may be three distinct quasi-geodesic boundary points η, µ, ω
with dS,ε(ω, η) = 0 and dS,ε(ω, µ) = 0 as the following short example shows.

Example 9.2. Let D be the digraph that consists of a ray R = x0x1 . . . and two
anti-rays Q1 = . . . y−1y0 and Q2 . . . z−1z0 with edges from xi to yi and zi for all
i ∈ N. The resulting digraph D is hyperbolic and R, Q1 and Q2 lies in distinct
quasi-geodesic boundary points ω, η and µ, respectively. The vertex x0 is a base
of D. Since ω ≤ η and ω ≤ µ, we have d{x0},ε(ω, η) = 0 and d{x0},ε(ω, µ) = 0.

In a digraph D, we call . . . x−1x0x1 . . . a double ray if xixi+1 is an edge of D. It
is geodesic if every �nite directed subpath is geodesic.

Proposition 9.3. Let δ ≥ 0 and let D be a δ-hyperbolic digraph that satis�es (B1)

and (B2) with �nite base S. Let ε > 0 such that e2ε(6δ+2δf(δ+1)) <
√
2. Then the

following hold.
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(i) If every vertex of D has �nite out-degree, then for every x ∈ V (D) and η ∈ ∂D
with dS,ε(x, η) < ∞, then there is a geodesic ray R starting at x such that
R ∈ µ for some µ ∈ ∂D with µ ≤ η.

(ii) If every vertex of D has �nite in-degree, then for every x ∈ V (D) and η ∈ ∂D
with dS,ε(η, x) < ∞, then there is a geodesic anti-ray R ending at x such that
R ∈ µ for some µ ∈ ∂D with η ≤ µ.

(iii) If D is locally �nite, then for all η, µ ∈ ∂D with 0 < dS,ε(η, µ) < ∞ there
exists η′, µ′ ∈ ∂D with η ≤ η′ and µ′ ≤ µ such that there is a geodesic η′-µ′

double ray.

Proof. Let us prove (i). By de�nition of dS,ε, there exists Q ∈ η such that for every
y on Q there is an x-y geodesic in D. Let Q = y0y1 . . . if Q is a ray and Q = . . . y1y0
if Q is an anti-ray. Then there is a geodesic ray R starting at x such that each of its
�nite directed subpaths starting at x lie in in�nitely many of these x-yi geodesics.
Using thin geodesic triangles with end vertices x, y0 and yi we obtain for large i
that almost all of the directed subpath of Q between y0 and yi lies in the out-ball
of radius δ around the x-yi geodesic. Thus, all but a �nite directed subpath of Q
lies in the out-ball of radius δ around R. This shows (i).

With a completely symmetric argument, we obtain (ii).
To prove (iii), let R ∈ η and Q ∈ µ such that either R = x0x1 . . . or R = . . . x1x0

and either Q = y0y1 . . . or Q = . . . y1y0. By Theorem 8.2 and using hyperbolicity,
there exists M ≥ 0 such that for i, j → ∞ all xi-yj geodesics have a vertex of
B+
M (S) ∪ B−

M (S). Similar as before, we obtain a geodesic double ray P such that
each of its inner directed subpaths lies in in�nitely many of these xi-yj geodesics
with the property that neither the involved indices i nor the involved indices j are
bounded. Let P1 be an anti-ray and P2 be a ray in P . Then hyperbolicity implies
R ≤ P1 and P2 ≤ Q, which implies the assertion. □

Now we are ready to prove the main result of this section.

Theorem 9.4. Let δ ≥ 0 and let D be a δ-hyperbolic digraph that satis�es (B1)
and (B2) for the function f : R → R with �nite base S. Let ε > 0 such that

e2ε(6δ+2δf(δ+1)) <
√
2. Then the following hold.

(i) If every vertex of D has �nite out-degree, then D ∪ ∂D is sequentially f-
compact.

(ii) If every vertex of D has �nite in-degree, then D∪∂D is sequentially b-compact.

Proof. Let every vertex of D have �nite out-degree and let (xi)i∈N be a sequence
in V (D)∪ ∂D with dS,ε(xi, xj) < ∞ for all i < j. If x0 ∈ ∂D, then by de�nition of
dS,ε, there exists a vertex x′

0 on an element of x0 with dS,ε(x
′
0, x1) < ∞. Thus, we

have dS,ε(x
′
0, xi) < ∞ for all i ∈ N with i ̸= 0. Since b-convergence of sequences

does not depend on the �rst element of the sequence, we may assume that x0 is a
vertex of D.

For every i ∈ N, if xi ∈ V (D), then let Pi be an x0-xi geodesic. If xi ∈ ∂D,
then there exists a geodesic ray Pi starting at x0 that lies in some x′

i ∈ ∂D with
x′
i ≤ xi by Proposition 9.3 (i). These directed paths and rays de�ne a geodesic

ray R = v0v1 . . . such that in�nitely many Pi share the �rst edge of R among which
in�nitely many share the next edge of R and so on. By switching to a subsequence
of (xi)i∈N, if necessary, we may assume that Pi and R have their �rst i edges in
common. Let η ∈ ∂D with R ∈ η. We shall show that (xi)i∈N b-converges to η.
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For each i ∈ N, let ui be the �rst vertex of Pi such that the next vertex on Pi

does not lie in B+
δ (R), if it exists, and, if Pi ⊆ B+

δ (R), let ui = xi if xi ∈ V (D) and
let ui be on Pi with d(x0, ui) ≥ i, otherwise. Let u′

i be on R with d(u′
i, ui) ≤ δ. If

xi is a vertex, set yi := xi. If xi ∈ ∂D, then let yi be a vertex on uiPixi. Then we
have

dS,ε(yi, xj) ≤ dS,ε(yi, xi) + dS,ε(xi, xj) < ∞
for all j > i. Hence there is a yi-xj geodesic Pij if xj is a vertex. If xj ∈ ∂D, then
there is a geodesic ray with starting vertex yi that lies in a quasi-geodesic boundary
point x′

j ≤ xj by Proposition 9.3 and hence we may assume that we have chosen
yj such that there is a yi-yj geodesic Pij .

Let r > 0. We consider the set C−
∂ (η, x0, r). Set

k := 6δ + 2δf(δ + 1),

ℓ1 := f(δ + 1)r + f(δ),

ℓ2 := (ℓ1 + δ)f(δ + 1)

ℓ3 := ℓ2 + k.

Let i ∈ N such that d(x0, ui) > ℓ3 + δ and set m := d(x0, yi) + 3δ + 1. Let j ∈ N
such that

d(x0, uj) > d(x0, yi) + δ + 2

and x0Rvm lies in B+
δ (Pj). Note that this holds for all but �nitely many j by the

choice of our sequence and the choices of uj and yj . Let z1 be on Pij with

d(x0, z1) = d(x0, yi) + δ + 1.

By hyperbolicity for the geodesic triangle with end vertices x0, yi and yj and sides
Piyi, Pij and Pjyj , there exists a vertex z2 on Pj with d(z1, z2) ≤ δ. By the choice
of z1, of j and of m, we know that d(z2Pj , vm) ≤ δ and in particular d(z2, vm) < ∞.

Let x on vmR. Then there is a yi-x geodesic P . Let Q1 be a u′
i-ui geodesic and

Q2 a u′
i-yi geodesic. We shall show that P lies in C−

∂ (η, x0, r).
Since d(x0, ui) > ℓ3 + δ, we have d(x0, Q1) > ℓ3. If d(x0, Q2) ≤ ℓ2, then the

vertex verifying this distance lies in B−
k (Q1 ∪ uiPiyi) by Lemma 3.2 and thus, we

�nd a vertex on Q1 or uiPiyi that has distance at most ℓ2 + k = ℓ3 from x0.
Since this is impossible, we have d(x0, Q2) > ℓ2. Let z be on P . Then there
exists a vertex y either on Q2 with d(y, z) ≤ δ or on u′

iRx with d(z, y) ≤ δ. In
the latter case, we directly obtain d(x0, z) > ℓ1 and in the �rst case, we apply
Proposition 3.1 (i) and obtain d(x0, z) > ℓ1 as well. So P lies outside of B+

ℓ1
(x0).

Finally, Proposition 3.1 (ii) implies d(P, x0) > r and thus we have shown that P
lies in C−

∂ (η, x0, r). This implies that (xi)i∈N b-converges to η.
By an analogous argument, we obtain (ii). □

If D ∪ ∂D in Theorem 9.4 is a semimetric space, then we obtain the following
corollary of Theorem 9.4 by using Proposition 2.1.

Corollary 9.5. Let δ ≥ 0 and let D be a δ-hyperbolic digraph that satis�es (B1)
and (B2) for the function f : R → R and that has a �nite base S. Let ε > 0 such

that e2ε(6δ+2δf(δ+1)) <
√
2. Then the following hold.

(i) If every vertex of D has �nite out-degree and D ∪ ∂D is a semimetric space,
then D ∪ ∂D is f-complete.
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(ii) If every vertex of D has �nite in-degree and D ∪ ∂D is a semimetric space,
then D ∪ ∂D is b-complete. □

10. The size of the boundary

In the case of hyperbolic spaces, those hyperbolic boundary points that belong
to a common end of the space form a connected set, see e. g. [7, Proposition 7.5.17],
which immediately implies that an end with at least two hyperbolic boundary points
contains continuum many of them. We restrict ourselves to the case of digraphs
here, since we de�ned ends only for them and not for general semimetric spaces.
We cannot hope to prove that the quasi-geodesic boundary is connected, since our
two topologies make if very hard to ask for this: even a digraph is far from being
connected in the topological sense, since e. g. a digraph on two vertices with a unique
edge has the following partition into two open sets: one set is the end vertex of
the edge and the other set consists of the starting vertex of the edge and the inner
points of the edge. Thus, we consider a di�erent notion in our situation, which
we will call semiconnectednes and that basically asks that the sets shall satisfy the
connectedness condition with respect to both topologies simultaneously; see below
for details.

As a �rst step in understanding the relations between the geodesic boundary and
the ends better, we prove the following result.

Proposition 10.1. Let δ ≥ 0 and let D be a locally �nite δ-hyperbolic digraph that
satis�es (B1) and (B2) and that has a �nite base S. Let ε > 0 such that ε′ <

√
2

holds for ε′ := e2ε(6δ+2δf(δ+1)). Let ω1 and ω2 be ends of D with ω1 ≼ ω2 and let
η, µ ∈ ∂D with η ⊆ ω1 and µ ⊆ ω2. Then we have dS,ε(η, µ) < ∞.

In particular, if ω1 = ω2, then we have dS,ε(η, µ) < ∞ and dS,ε(µ, η) < ∞.

Proof. Let R ∈ η and Q ∈ µ. For every n ∈ N there exists a directed R-Q path
Pn outside of B+

n (S) ∪ B−
n (S) by Proposition 6.1. Let P ′

n be a geodesic with the
same starting and end vertex as Pn. It follows from the de�nition of dS,ε that
dS,ε(η, µ) < ∞.

The additional statement follows trivially, since ω1 = ω2 implies ω2 ≼ ω1. □

We call a pseudo-semimetric space X semiconnected if there is no partition
{U, V } of X such that U and V are open with respect to Ob and Of . A semi-
connected component is a maximal semiconnected subset of X. It is easy to see
that distinct semiconnected components are disjoint and hence the semiconnected
components form a partition of the pseudo-semimetric space.

Lemma 10.2. Let δ ≥ 0 and let D be a locally �nite δ-hyperbolic digraph that
satis�es (B1) and (B2) and that has a �nite base S. Let ε > 0 such that ε′ <

√
2

holds for ε′ := e2ε(6δ+2δf(δ+1)). Let φ : ∂D → ΩD be the canonical map with
η ⊆ φ(η) for all η ∈ ∂D. Let ω ∈ ΩD and let A, B be two subsets of ∂D with
φ−1(ω) ⊆ A ∪ B and A ∩ B ∩ φ−1(ω) = ∅ such that A is closed in Of and B is
closed in Ob. If (D ∪ ∂D, dS,ε) is a semimetric space, then

dS,ε(A ∩ φ−1(ω), B ∩ φ−1(ω)) > 0.

Proof. Let us suppose that dS,ε(A∩φ−1(ω), B ∩φ−1(ω)) = 0. By Proposition 10.1
we know that dS,ε(ai, aj) < ∞ and dS,ε(bi, bj) < ∞ for all i, j ∈ N. Then there
are sequences (ai)i∈N, (bi)i∈N in A∩φ−1(ω), in B ∩φ−1(ω), respectively, such that
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dS,ε(ai, bi) → 0 for i → ∞. By Theorem 9.4, there exists a ∈ ∂D such that (ai)i∈N
has a subsequence that f-converges to a. By replacing (ai)i∈N by this subsequence,
we may assume that (ai)i∈N f-converges to a. But then we also replace (bi)i∈N
by a subsequence such that dS,ε(ai, bi) → 0 for i → ∞ is still satis�ed. Applying
Theorem 9.4 once more, there is a subsequence of (bi)i ∈ N that b-converges to
some b ∈ ∂D. Again, we switch to subsequences to obtain that (bi)i∈N b-converges
to b and that dS,ε(ai, bi) → 0 for i → ∞. Thus, we obtain

dS,ε(a, b) ≤ dS,ε(a, ai) + dS,ε(ai, bi) + dS,ε(bi, b) → 0 for i → ∞.

Since dS,ε is a semimetric, we conclude a = b. We have a ∈ A and b ∈ B since A
is closed in Of and B is closed in Ob. Thus, A∩B is not empty, which contradicts
the assumptions. Thus, the assertion follows. □

Theorem 10.3. Let δ ≥ 0 and let D be a locally �nite δ-hyperbolic digraph that
satis�es (B1) and (B2) and that has a �nite base S. Let ε > 0 such that ε′ <

√
2

holds for ε′ := e2ε(6δ+2δf(δ+1)). Let φ : ∂D → ΩD be the canonical map with
η ⊆ φ(η) for all η ∈ ∂D. If (D ∪ ∂D, dS,ε) is a semimetric space, then there is, for
every ω ∈ ΩD, a unique semiconnected component containing φ−1(ω).

Proof. Let ω ∈ ΩD and suppose that φ−1(ω) does not lie in a unique semiconnected
component. Let X ⊆ ∂D be the union of all semiconnected components that
meet φ−1(ω). Since X is not semiconnected, there is a partition {A′, B′} of X such
that both A′ and B′ are open in Of and in Ob. Then their complements A and
B in ∂D are closed with respect to both topologies, cover φ−1(ω) and are disjoint
inside φ−1(ω). Thus, we can apply Lemma 10.2 and obtain

(2) dS,ε(A ∩ φ−1(ω), B ∩ φ−1(ω)) > 0.

Let η ∈ A ∩ φ−1(ω) and µ ∈ B ∩ φ−1(ω). Since dS,ε is a semimetric, Propo-
sition 9.3 (iii) implies the existence of a geodesic η-µ double ray R. Let R1 be an
anti-subray of R that lies in η and let R2 be a subray of R that lies in µ. Since η
and µ belong to the same end, there exists, for every n ∈ N, a directed R1-R2 path
Pn that lies outside of B+

n (S) ∪ B−
n (S). For every n > N there exists a vertex xn

on Pn that lies outside of A′ and B′. Moreover, we may choose xn such that

dS,ε(A ∩ φ−1(ω), xn) > dS,ε(A ∩ φ−1(ω), B ∩ φ−1(ω)) and

dS,ε(xn, B ∩ φ−1(ω)) > dS,ε(A ∩ φ−1(ω), B ∩ φ−1(ω)).

Since there are directed paths from R1 to xi and from xi to R2 for every i ∈ N, we
have dS,ε(η, xi) < ∞ and dS,ε(xi, µ) < ∞. Thus, Proposition 9.3 (i) and (ii) imply
the existence of geodesic η-xi anti-rays Q

i
1 and geodesic xi-µ rays Qi

2. Since dS,ε is
a visual semimetric by Theorem 8.2, since D is locally �nite and by the choices of
the xn, there exists a vertex that lies on in�nitely many of these anti-rays Qi

1 and a
vertex that lies on in�nitely many of these rays Qi

2. Hence, there exists a geodesic
double ray Q1 and a subset I ⊆ N such that some anti-subray of Q1 lies in all Qi

1

for i ∈ N and every other vertex lies on all but �nitely many of the anti-rays Qi
1

for i ∈ I. Let ν1 ∈ ∂D such that some subray of Q1 lies in ν1. By changing the
sequence (xi)i∈N, we may assume that I = N. Analogously, we use the geodesic
rays Qi

2 to de�ne a geodesic double ray Q2 with similar properties as Q1 that goes
from some ν2 ∈ ∂D to µ.

Let P be a Q1-Q2 geodesic. Let x be its starting vertex and x′ be its end vertex.
For every large enough i ∈ N, we consider the geodesic triangle with end vertices
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x, x′, xi and sides xQi
1xi, xiQ

i
2x

′ and P . Since there are only �nitely many vertices
close to or from P , we �nd in�nitely many disjoint directed Q1-Q2 paths of length at
most δ. Thus, we have dS,ε(ν1, ν2) = 0 and since dS,ε is a semimetric, we conclude
ν1 = ν2.

Let Q+
1 be a subray of Q1 and let Q

−
2 be an anti-subray of Q2. For every n ∈ N all

but �nitely many xi have a geodesic Ti from Q+
1 to them outside of B+

n (S)∪B−
n (S).

Thus, for all but �nitely many i ∈ N, the composition of Ti with xiPi is a directed
path from Q+

1 to R2 outside of B+
n (S) ∪ B−

n (S). Similarly, we �nd for every n ∈ N
a directed path from R1 to Q−

2 outside of B+
n (S)∪B−

n (S). Since R1 and R2 belong
to the same end ω, we conclude that ν1 lies in φ−1(ω), too.

Since Q+
1 ≤ Q−

2 ≤ Q+
1 , the sequence (xi)i∈N f-converges to ν1: we �nd for every

n ∈ N for all but �nitely many i ∈ N a directed path from xi to Q+
1 outside of

B+
n (S) ∪ B−

n (S). Similarly, (xi)i∈N b-converges to ν2. So if ν1 were in either A
or B, some subsequence of (xi)i∈N must lie in either A′ or B′. Since this is false by
the choice of the vertices xi, we conclude that ν lies in neither A nor B. This is a
contradiction to the fact that A ∪B covers φ−1(ω). □

In order to �nd the preimages of semiconnected components of ∂D in ΩD, we
pose Problem 10.4, for which we need the following de�nition.

The components of an order (X,≤) are the maximal subsets Y of X such that
for all x, y ∈ Y there are z1, . . . zn ∈ Y with x = z1 and y = zn and such that either
zi ≤ zi+1 or zi+1 ≤ zi for all 1 ≤ i < n.

Problem 10.4. Let D be a locally �nite hyperbolic digraph that satis�es (B1)
and (B2) and that has a �nite base and let φ : ∂D → ΩD be the canonical map.
Are the semiconnected components of ∂D the preimages under φ of the components
of the ends with respect to ≼?

Now we are turning our attention to the question of how large the geodesic
boundary of locally �nite digraphs can be. In order to count the geodesic boundary
points, we need the following result on the number of elements of semiconnected
semimetric spaces.

Proposition 10.5. Every semiconnected semimetric space with at least two ele-
ments contains in�nitely many elements.

Proof. Let us suppose that a semiconnected semimetric space X has more than
one but only �nitely many elements. Then any partition of its elements into two
sets has the property that both of its sets are open in Of and in Ob, which is
impossible. □

As another preliminary result, we prove that for one-ended locally �nite hyper-
bolic digraphs in our usual setting, the pseudo-semimetric is indeed a semimetric.

Proposition 10.6. Let δ ≥ 0 and let D be a locally �nite δ-hyperbolic digraph that
satis�es (B1) and (B2) and that has a �nite base S. Let ε > 0 such that ε′ <

√
2

holds for ε′ := e2ε(6δ+2δf(δ+1)). If there are η, µ ∈ ∂D with dS,ε(η, µ) = 0 and
dS,ε(µ, η) < ∞, then η = µ.

In particular, if D is one-ended, then dS,ε is a semimetric.

Proof. Let η, µ ∈ ∂D with dS,ε(η, µ) = 0 and dS,ε(µ, η) < ∞ and let us suppose
that η ̸= µ. By Proposition 9.3 (iii) there exists a geodesic double ray R from µ′

to η′, where µ′, η′ ∈ ∂D with d(µ, µ′) = 0 and d(η′, η) = 0. Proposition 9.1 (iv)
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implies η′ = η and µ = µ′. Let R1 be a subray of R and let R2 be a anti-subray
of R. Since dS,ε(η, µ) = 0, we have R1 ≤ R2 by Proposition 9.1 (i). Hence, there
exists M ∈ N such that outside all balls B+

r (S) and B−
r (S) there exists an R1-R2

geodesic of length at most M . This contradicts Proposition 3.1 (ii) as the reverse
distance between the end vertices of these geodesics strictly increases. Thus, we
have η = µ.

The additional statement immediately follows from Proposition 10.1. □

Corollary 10.7. Let D be a one-ended locally �nite hyperbolic digraph that satis�es
(B1) and (B2) and that has a �nite base. Then ∂D has either a unique or in�nitely
many elements.

Proof. Let δ ≥ 0 such that D is δ-hyperbolic. Let S be a �nite base of D and let
ε > 0 such that ε′ <

√
2 holds for ε′ := eε(6δ+2δf(δ+1)). Then Proposition 10.6

implies that dS,ε is a semimetric. So we can apply Theorem 10.3 and obtain that
∂D is semiconnected. The assertion follows from Proposition 10.5. □

11. Hyperbolic semigroups

Let S be a semigroups and let A be a �nite generating set of S. The (right)
Cayley digraph of S (with respect to A) has S as its vertex set and edges from x
to xa for all x ∈ S and a ∈ A. This way, S is a semimetric space. If S is �nitely
generated, then we call it hyperbolic if it has a �nite generating set such that its
Cayley digraph with respect to that generating set is hyperbolic.

A straight-forward argument shows that di�erent �nite generating sets de�ne
quasi-isometric Cayley digraphs, see Gray and Kambites [8, Proposition 4] and
thus, we obtain that the property of being hyperbolic does not depend on the
particular generating set for right cancellative �nitely generated semigroups, see [11,
Proposition 8.1].

Theorems 5.4, 5.5 and 7.3 imply that the homeomorphism types of the (quasi-)
geodesic f-boundary of �nitely generated semigroups whose Cayley digraphs satisfy
(B2) does not depend on the particular generating set and, if the semigroup is
right cancellative, then the same holds for the (quasi-)geodesic boundary. Thus, we
denote by ∂fS, for a �nitely generated semigroup S, the quasi-geodesic f-boundary
of S and, if S is right cancellative, we denote by ∂S the quasi-geodesic boundary
of S.

The results of Section 10 together with results on the number of ends of semi-
groups by Craik et al. [6] enable us to obtain some results on the size of the quasi-
geodesic boundary of hyperbolic semigroups. First, we immediately have the fol-
lowing corollary of Corollary 10.7.

Corollary 11.1. Let S be a one-ended �nitely generated right cancellative hyper-
bolic semigroup. Then ∂S has either exactly one or in�nitely many elements. □

The possible numbers of ends of left cancellative semigroups were determined by
Craik et al. [6, Theorem 3.7] to be in {0, 1, 2,∞}. This immediately implies the
following corollary for cancellative semigroups. (Note that if the geodesic boundary
satis�es the separation axiom T1 with respect to Of or Ob, then it does so for the
other topology as well and it is a semimetric space.)
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Corollary 11.2. Let S be a �nitely generated cancellative hyperbolic semigroup
such that its geodesic boundary is a T1 space with respect to either Of or Ob. Then
|∂S| ∈ {0, 1, 2,∞}. □

An obvious question arising is whether the assumption of T1 separability is nec-
essary.

Problem 11.3. Does there exist a �nitely generated right cancellative hyperbolic
semigroup whose geodesic boundary is not a semimetric space?

In the situation of hyperbolic groups, those with few boundary points, i. e. with
at most two, are called elementary and their structure can be described pretty
easily in that they are either �nite or quasi-isometric to Z, cf. [14, Theorem 2.28].
In analogy to the case of groups, we call a �nitely generated right cancellative
hyperbolic semigroup elementary if it has at most two geodesic boundary points.

The right cancellative hyperbolic semigroups without geodesic boundary points
have no end as well by Proposition 6.3 (iii). So they are �nite.

An example for a �nitely generated right cancellative hyperbolic semigroup with
a unique geodesic boundary point is N and, in analogy to the group case, one might
think that all other examples are quasi-isometric to N. However, this is not the
case as the following example shows.

Example 11.4. Consider the monoid S :=
〈
a, b | a2 = b2, ab = ba

〉
. It is straight-

forward to check that this is hyperbolic and that it has a unique geodesic boundary
point. To see that S is not quasi-isometric to N, it su�ces to note that d(a, b) =
∞ = d(b, a) but that there are no two elements of N with such a property.

Still, the monoid of the previous example has a structure that reminds very much
of N but the connection is weaker than quasi-isometry.

Let us now consider the case of precisely two geodesic boundary points. It follows
directly from Corollary 11.1 that �nitely generated right cancellative hyperbolic
semigroups have exactly two ends. If the semigroup is cancellative, then it is a
two-ended group by Craik et al. [6, Corollary 3.8], so it is quasi-isometric to Z.
It remains open to look at the case of right cancellative semigroups that are not
cancellative: do those still look like Z in a way as in the case of exactly one geodesic
boundary point the semigroups look like N?
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