Übungen zur Kombinatorischen Gruppentheorie Blatt 8

Aufgabe 1*: Sei $\mathbb{G} = (\mathcal{G}, \Gamma)$ der Graph von Gruppen mit genau zwei Ecken und einer Kante. Die Eckengruppen seien C_2 und C_3 und die Kantengruppe 1. Bestimmen Sie die Fundamentalgruppe und den Bass-Serre-Baum von \mathbb{G} .

Aufgabe 2: Sei $N \subseteq G$ ein Normalteiler einer Gruppe G und sei \overline{T} ein Baum, auf dem G/N operiert, sodass die auf den Kanten induzierte Operation frei ist. Zudem existiere ein Baum T, auf dem G so operiert, dass die auf den Kanten von T induzierte Operation frei ist, und sodass es einen Epimorphismus von (G,T) nach (G,\overline{T}) gibt. (Dies soll die kanonische Verallgemeinerung eines Isomorphismus wie in der Vorlesung sein, nur dass die Abbildung der Bäume lediglich ein Graphenepimorphismus ist.)

Zeigen Sie, dass es einen Baum \mathcal{T} mit den gleichen Eigenschaften wie T gibt, sodass zusätzlich $(G, \mathcal{T}/N)$ und (G, \bar{T}) isomorph sind.

Aufgabe 3: Sei $\mathbb{G} = (\mathcal{G}, \Gamma)$ ein Graph von Gruppen, sodass Γ endlich und jede Eckengruppe endlich erzeugt ist. Zeigen Sie, dass $\pi_1(\mathbb{G})$ endlich erzeugt ist.

Gilt auch für endlich präsentierte Eckengruppen, dass $\pi_1(\mathbb{G})$ endlich präsentiert ist?

Aufgabe 4: Zeigen Sie, dass die Fundamentalgruppe eines minimalen Graphen von Gruppen $\mathbb{G} = (\mathcal{G}, \Gamma)$, wobei Γ mindestens eine Kante hat, ein echtes freies Produkt mit Amalgamation oder eine HNN-Erweiterung ist.

Hinweis: Sie dürfen sich auf abzählbare Fundamentalgruppen beschränken, falls Ihnen das hilft.

^{*} Diese Aufgabe ist auch eine schriftliche Aufgabe und gilt als Ersatz der Aufgabe vom Blatt 7.