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Chapter 0

Introduction

Groups play a major role in many (if not all) mathematical subjects. Mostly,
they occur as automorphisms groups but sometimes, e. g. in Galois theory they
occur directly. The intention of this class is to understand the groups themselves
better. But beforehand let us discuss the following question.

What is geometric group theory?

Generally speaking, geometric group theory considers groups as geometric
objects and tries to relate their geometric and algebraic properties. Sometimes,
instead of looking at the geometric properties of groups, we use their actions on
other geometric objects to obtain results for the groups.

For example the statement ‘Subgroups of free groups are free.’ is purely
algebraic while an elegant proof uses a geometric characterisation of free groups
via their action on trees.

Our most important objects will be Cayley graphs: for every group and each
of its generating sets we can construct a Cayley graph. It will be important for
us that the structure of different Cayley graphs for the same finitely generated
group but for different finite generating sets will change the geometry of the
Cayley graphs only locally: they are quasi-isometric to each other. This implies
that every geometric property that is invariant under quasi-isometries is true
for one of these Cayley graphs if and only if it is true for all of them. Thereby,
we can view this property as a property of the group.

This way we can talk about ends or growth of groups. As an example
between the geometric and algebraic properties of groups we will prove Stallings’
theorem. It says that a finitely generately generated group has more than one
end if and only if it is one of two well described group products.

1
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Chapter 1

Basics

Remark. A group is a pair (G, ·) consisting of a set G and a binary function
· : G×G→ G satisfying the ollowing properties.

• associative: (f · g) · h = f · (g · h) for all f, g, h ∈ G;

• neutral element: there exists e ∈ G with e · g = g = g · e for all g ∈ G;

• inverse elements: for every g ∈ G there exists g−1 ∈ G such that gg−1 = e =
g−1g.

Usually, we omit the function · and write gh instead of g · h.

1.1 Group actions

In this section, we will make the following sentence precise from the groups
theoretic point of view: ‘A group acts on a mathematical object like automor-
phisms.’

Definition. A group G acts (from the right) on a set X if there is a function
• : X ×G→ X such that

(1) x • 1 = x for all x ∈ X and

(2) (x • g) • h = x • (gh) for all g, h ∈ G and x ∈ X.

We call the function the (right) action of G on X.

Analogously, G acts (from the left) on X if there is a function • : G×X →
X such that

(1′) 1 • x = x for all x ∈ X and

(2′) g • (h • x) = (gh) • x for all g, h ∈ G and x ∈ X.

We call the function the (left) action of G on X.

3
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Comment. Usually, we will omit the function • for group actions.
Let us look at some examples for group actions.

Example 1.1.1. Let G be a group and U ≤ G a subgroup.

(1) G acts from the right (left) via multiplication from the right (left) on itself.

(2) G acts on itself via conjugation, i. e. x • g := xg := g−1xg.

(3) G acts from the right via multiplication from the right at the set of right
cosets of U , i.e . at the set {Ug | g ∈ G} where Ug := {ug | u ∈ U}.

(3′) G acts from the left via multiplication from the left at the set of left cosets
of U , i.e . at the set {gU | g ∈ G} where gU := {gu | u ∈ U}.

(4) Let F be a field and V a F -vector space. Then the multiplicative group
(F ∗, ·) of F acts on V via Scalar multiplication.

Definition. Let a group G act on a set X. It acts faithfully if for all g ∈ G
with g ̸= 1 there exists x ∈ X such that xg ̸= x.

Example 1.1.2 (continuation of Example 1.1.1).

(1) Multiplication (from the left and from the right) are faithful actions.

(2) Conjugation is a faithful action if and only if the center C(G) := {g ∈ G |
gh = hg ∀h ∈ G} of G is trivial.

(3) Multiplication on the sets of cosets is not faithful. (Example?)

(4) Scalar multiplication on non-trivial vector spaces is a faithful action.

Remark. Usually, we consider left actions and then omit ‘left’. Contrary, when
we use a right action, we shall explicitly state that.

Lemma 1.1.3. Let G be a group and X be a set. Then G acts (non-trivially)
on X if and only if there is a (non-trivial) group homomorphism G→ SX .1

Additionally, G acts faithfully on X if and only if this group homomorphism
is injective.

Proof. First, let G act non-trivially on X. For every g ∈ G, set φg : X → X,
x 7→ gx. Let g ∈ G. Because of x = 1x = gg−1x for every x ∈ X, we have
φgφg−1 = idX and hence φg ∈ SX . This Permutation must be non-trivial as the
Operation is non-trivial. Furthermore, since (φgφh)(x) = φg(φh(x)) = ghx =
φgh(x) holds for all g, h ∈ G and x ∈ X, we obtain the homomorphism property
of the map φ : G → SX , g 7→ φg. If the action is faithful, then there exists for
every g ∈ G an x ∈ X with gx ̸= x and thus we have φg(x) ̸= φ1(x). So φ is
injective.

1Reminder: SX is the symmetric group on X.
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Now let φ : G→ SX be a non-trivial group homomorphism. For every g ∈ G
we set gx := φ(g)(x). Then we have 1x = φ(1)(x) = id(x) = x and

(gh)x = φ(gh)(x) = (φ(g)φ(h))(x) = φ(g)(φ(h)(x)) = g(hx)

for all g, h ∈ G and x ∈ X. Hence, this defines an action of G on X that is
non-trivial since there exists g ∈ G with φ(g) ̸= id, so there exists x ∈ X with
φ(g)(x) ̸= id(x) = x. If φ is injective, then there is no g ∈ G such that φ(g) = id.
Hence, there exists for every g ∈ G some x ∈ X with gx = φ(g)(x) ̸= x and
thus the action is faithful.

We can already obtain as corollary from our results above an important
theorem (of Cayley). If states that – in order to understand all groups, it
suffices to understand the subgroups of all symmetric groups. Unfortunately, it
is false if we believe that this makes everything easier.

Theorem 1.1.4 (Theorem of Cayley). Every group is isomorphic to a subgroup
of some symmetric group.

Proof. According to Example 1.1.2 (1), the group G acts faithfully on itself
via multiplication. So Lemma 1.1.3 implies the existence of an injective group
homomorphism φ : G→ SG. We directly obtain G ∼= φ(G) ≤ SG.

In our next section (Section 1.2), we shall prove an even stronger version of
Cayley’s theorem, which says that the group G can be found as subgroup of the
automorphism group of some connected directed graph.

Lemma 1.1.3 is a reason for us to look at actions on other mathematical
objects, not only sets.

Definition. A group G acts on a mathematical object X (a graph, a vector
space, etc.), if it acts on the underlying set of X and if every g ∈ G does not only
define an element of SX according to Lemma 1.1.3 but also an automorphism
of X.

Analogously to the definition of faithful actions on sets we call the action
of G on X faithful if G acts faithfully on the underlying set of X.

Remark. According to Lemma 1.1.3, a group G acts (faithfully) on a mathe-
matical objectX if there exists a (injective) group homomorphismG→ Aut(X).

Example 1.1.5. The action in Example 1.1.1 (2) is a faithful action of G on
the group G and in Example 1.1.1 (4) it is an action of F ∗ on the vector space V .

In the following we will use the sentence ‘A group G acts on X.’ interchange-
ably for ‘A group G acts on a mathematical object X.’.

Definition. Let G be a group acting on X and let x ∈ X.

(1) The stabiliser of x in G is the set

Gx := {g ∈ G | gx = x}.
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(2) The orbit of x under G is the set

Gx := {gx | g ∈ G}.

Remark 1.1.6. Let G be a group acting on X. Then all stabilisers of elements
x ∈ X are subgroups of G.

We obtain the following relation between stabilisers and orbits.

Theorem 1.1.7. Let G be a group acting on X. Then for every x ∈ X the
map from Gx into the set of left cosets of Gx defined by gx 7→ gGx is bijective.

Proof. Let g, h ∈ G. Then the following equivalences hold.

gx = hx

⇔ h−1gx = x

⇔ h−1g ∈ Gx

⇔ h−1gGx = Gx

⇔ gGx = hGx

Definition and Remark 1.1.8. Let G be a group and U ≤ G be a subgroup.
The index of U in G is the number of left cosets of U in G (or equivalently the
number of right cosets of U in G) and we denote it by |G : U |. It is easy to see
that |G| = |U | · |G : U |.

Corollary 1.1.9. Let G be a finite group acting on X. The we have for every
x ∈ X:

|G| = |Gx| · |Gx|

Proof. We obtain
|G| = |Gx| · |G : Gx| = |Gx| · |Gx|

directly by Remark 1.1.8 and Theorem 1.1.7.

Let us discuss another relation between stabilisers and orbits.

Lemma 1.1.10. Let G be a group acting on X. Let x, y ∈ X such that gx = y
for some g ∈ G. Then we have (Gx)

g = Gy and Gx = (Gy)
g−1

.

Proof. Let g ∈ G such that gx = y and let h ∈ Gx. Then we have

hgy = g−1hgy = g−1hx = g−1x = y.

So we get hg ∈ Gy and thus Gg
x ⊆ Gy. Using and analogue argument, we obtain

Gg−1

y ⊆ Gx and hence (Gx)
g = Gy and Gx = (Gy)

g−1

.

Definition. Let G be a group acting on X. G moves x ∈ X freely if Gx = 1.
The action of G on X is free if G moves every x ∈ X freely.
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Comment. In this course we do not consider graphs as topological objects, in
particular we do not consider them as CW-complexes. That is why we have to
strengthen the previous definitions for graphs a bit.

Definition. Let G be a group acting on a graph Γ = (V,E). The action is free
on X if not only the action induced on V but also the action induced on E is
free.

1.2 Cayley graphs

In this section, we introduce an important object on which groups acts in a
canonical way and which we will use extensively: their Cayley graphs. Before
we introduce them, we need some more definitions.

Definition. Let G be a group. A subset S ⊆ G generates G if every elements
of G can be written as a (finite!) product of elements in S or their inverses.
The set S is called a generating set of G. If S is a generating set of G, then
we write G = ⟨S⟩.

The group G is finitely generated if there is a finite subset of G generat-
ing G.

Example 1.2.1. Every symmetric group Sn for n ∈ N is generated by its
transpositions.

Comment. Example 1.2.1 is wrong if we look at symmetric groups on infinitely
many elements. (Why?)

Definition. A directed graph or digraph is a pair (V,E) with E ⊆ V × V .
If we speak of paths, walks etc. in a digraph (V,E), then we always consider

those in the underlying undirected (multi)graphs of (V,E) via the map
f : E → [V ]2, (x, y) 7→ {x, y}.

Definition. Let G be a group that is generated by S ⊆ G. Then

ΓG,S = (G, {(g, gs) | g ∈ G, s ∈ S})

defines a digraph, the Cayley digraph of G and S. Der underlying undirected
graph without multiple edges and without loops is the Cayley graph of G
and S. We also denote the Cayley graph by ΓG,S . It will be clear from the
context whether ΓG,S is directed or not.

Remark 1.2.2.

(i) The digraph ΓG,S has no loops if and only if 1 /∈ S.

(ii) The underlying undirected graphs of ΓG,S has at most double edges. It
has them if and only if S contains s−1 for some s ∈ S. That latter holds
in particular, if S contains an involution, i. e. an element of order 2.
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Example 1.2.3. Let Cn be the cyclic group on n elements and let S be a
generating set of Cn.

(1) If S = Cn, then the Cayley digraph is complete: for all g ̸= h ∈ Cn there is
an edge (g, h) and an edge (h, g). Additionally, every loop (g, g) exists.

(2) If |S| = 1, the the Cayley digraph is a directed cycle on n vertices.

1

(12)
(132)

(13)

(123)(23)

(23)

(23)(23)

(12)

(12)

(12)

1 (123)

(132)

(123)

(123)(123)

(123)(123)

(123)

(12)(12)

(12)

(23)(12)

(13)

Figure 1.1: Two Cayley digraphs for the symmetric group S3

Example 1.2.4. Let us consider two Cayley digraphs for the group S3. Let
S = {(12), (23)} and S′ = {(12), (123)}. Both Cayley digraphs can be found
in Figure 1.1, where edges without directions are used to replace double edges
with one possible orientation each. The edges are labelled with the elements of
S or S′ they originate from.

Theorem 1.2.5 (Cayley, strong version). For every group G there exists a
connected graph on which G acts faithfully.

If G is finitely generated, then we may choose the graph to be locally finite.2

Proof. Let S be a generating set of G and let ΓG,S be their Cayley graph. Then
G acts faithfully on Γ via g : G → G, h 7→ gh. Note that an edge (h1, h2) is
mapped onto an edge (gh1, gh2) and has (g−1h1, g

−1h2) as its preimage. The
action is faithful by Example 1.1.2 (1).

If G is finitely generated, then we may choose S to be finite. Since every
vertex g is adjacent to only the edges gs and gs−1 for all s ∈ S, every vertex
of Γ has finite degree.

Comment. To obtain a faithful right action, we can use in the definition of a
Cayley graph the edge set {(g, sg) | g ∈ G, s ∈ S}. The reason, why we prefer
edges (g, gs) is implied by the following remark.

Remark 1.2.6. For every walk v0e0v1 . . . ek−1vk in a Cayley graph ΓG,S there
is a sequence s0 . . . sk−1 of elements elements of S ∪ S−1 (with S−1 := {s−1 |

2A graph is locally finite if every vertex has finite degree.
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s ∈ S}) in the following way: si = v−1
i vi+1. That means that the edge ei lies in

the Cayley graph because of the generator si or s
−1
i . For the product of the si,

we obtain s0 · · · sk−1 = v−1
0 vk.

Using Lemma 1.1.3, we can formulate Theorem 1.2.5 analogously to Theo-
rem 1.1.4 in the following way:

Theorem 1.2.7. Every (finitely generated) group is a subgroup of the automor-
phism group of some connected (locally finite) graph.

For finitely generated groups, we can even strengthen this:

Theorem 1.2.8. Every finitely generated group is isomorphic to the automor-
phism group of some graph.

We may choose this graph to be connected and locally finite.

Proof. Let S = {s1, . . . , sn} be a finite generating set of the group G. Let ΓG, S
be the Cayley digraph of G and S. For every i ∈ {1, . . . , n} let Ti be a tree
consisting of a path Pi of length 3 such that a path of length 1 starts at an inner
vertex xi of Pi and such that a path of length i + 1 starts at the other inner
vertex yi. Obviously, every automorphism of Ti that fixes the end vertices of Pi

setwise must fix the whole tree pointwise. Note that all trees Ti are distinct.
In ΓG,S we replace every directed edge from g to gsi by Ti, where g is the end
vertex of Pi that is adjacent to xi and gsi is the end vertex of Pi that is adjacent
to yi. Let Γ be the resulting graph. Obviously, Γ is connected and locally finite.

Let φ be an automorphism of Γ. Then φmust fix all vertices of Γ setwise that
were not already in ΓG,S and it must fix setwise the vertices that were in ΓG,S .
Thus, φ induces a bijective map of the vertex set of ΓG,S . Since the trees Ti are
distinct, the tree that replaced a directed edge e of ΓG,S must be mapped onto a
tree of the same kind. Thus, φ induces an automorphism φ of ΓG,S . Let g ∈ G
such that φ(1) = g. Since φ maps edges that belong to a generator si to edges
that belong to si, too, and since it must keep their orientations, the neighbour
si of 1 is mapped by φ to the neighbour gsi of g. Inductively, g and φ coincide
on ΓG,S and every other automorphism ψ of Γ that maps 1 to g must coincide
with φ, too. We obtain an injective map Φ from the automorphism groups of Γ
to G. Every g ∈ G induces an automorphism φg of Γ with Φ(φg) = g. So Φ
is surjective. It is easy to verify that Φ is a group homomorphism. Thus, the
automorphism group of Γ is isomorphic to G.

Definition. Let G be a group acting on X. It acts transitively on X if for
all x, y ∈ X there exists g ∈ G such that gx = y.

If X = (V,E) is a (di-)graph, then G acts (vertex-)transitively on X (or
edge-transitively on X), if the action induced on V (or on E) is transitive.

Remark 1.2.9. Every group acts transitively and free on each of its Cayley
digraphs, since the left multiplication of a group on itself is transitive and free.

Proposition 1.2.10. Let G be a group and S a generating set of G. The left
multiplication on G induces a free action on the Cayley graph of G and S if and
only if S contains no involution.
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Proof. Every s ∈ S with s2 = 1 fixes the edge 1s = ss2. Thus, the action cannot
be free.

Conversely, let us assume that the action is not free. Obviously, the action
induced on the vertices is free. Hence, the action induced on the edges is not
free. So there exist g ∈ G with g ̸= 1 and an edge uv such that g(uv) = uv.
Wlog let s ∈ S such that u = vs. If gu = u, then we directly obtain g = 1.
Hence, we have

v = gu = g(vs) = (gv)s = us = vs2

and thus s2 = 1. Since s ̸= 1, it must be an involution.

1.3 Sabidussi’s theorem

In this section, we shall obtain a first result how to deduce information about a
group by using its action on a graph. We will obtain a result that can be seen
as a reverse to Cayley’s theorem.

Definition. Let G be a group acting on a connected graph Γ. A fundamental
domain of this action is a connected subgraph that contains exactly one element
of each orbits on the vertices.

A priori it is not obvious that every action on a graph admits a fundamental
domain. This is the content of the following theorem.

Theorem 1.3.1. For every action of a group on some connected graph there
exists a fundamental domain.

Proof. Let G be a group acting on a connected graph Γ = (V,E). We may
assume that Γ has at least one vertex. Let FG be the set of all connected
subgraphs of Γ that contain at most one vertex of each orbit. Obviously, FG

is not empty (it contains the empty graphs and every subgraph on exactly one
vertex) and every chain in FG has an upper bound (the union of its elements).
Zorn’s lemma implies the existence of a maximal element F in FG. Let us show
that F is a fundamental domain.

Let ussuppose that this is false. Then there exists a vertex x ∈ V such that
the orbit Gx contains no vertex from F . Let P be a path in Γ starting at x
and ending at a vertex of F . Thenthere are two adjacent vertices u, v on P
such that Gu contains no vertex of F but Gv ∩ V (F ) ̸= ∅. Let g ∈ G such that
gv ∈ V (F ). Then gu lies in the same orbit as u; in particular is lies outside of F
and G(gu) contains no vertex of F . But gu has a neighbour gv in F . Thus,
F ′ = (V (F )∪ {gu}, E(F )∪ {{gv, gu}}) is a connected subgraph of Γ that must
lie in FG by its construction. This contradicts the maximality of F . So F is a
fundamental domain.

Theorem 1.3.2. Let F be a fundamental domain of the action of a group G
on a connected graph Γ. Let S be the set of those g ∈ G that satisfy

V (gF ) ∩ (V (F ) ∪N(V (F ))) ̸= ∅,
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i. e. such that gF contain a vertex or a neighbour of a vertex of F . Then S is
a generating set of G.

Proof. Let g ∈ G. We shall write g as a finite product of elements of S∪S−1. For
this, let v ∈ V (F ) and let P be a v-gv path. Let (F = g0F, g1F, . . . , gnF = gF )
be a finite sequence of images of F under elements of G with the following
properties.

(1) Every vertex of P lies in some giF .

(2) Either giF and gi+1F have a common vertex or giF has a vertex that has
a neighbour in gi+1F .

The existence of such a sequence can be seen as follows: For every vertex xi
on P = x1 . . . xm we choose some gi such that xi ∈ V (giF ). Then the claim
follows for the sequence (g0F, g1F, . . . , gmF, gm+1F ) with g0 = 1 and gm+1 = g.

Let us show inductively that every gi can be written a a product of elements
of S. By the choice of the gi, this holds trivially for g0 and g1. By (2), either
the subgraphs F = g−1

i giF and g−1
i gi+1F have a common vertex or some vertex

in F has a neighbour in g−1
i gi+1F . In both cases we obtain by the definition

of S that g−1
i gi+1 is an element of S. By induction gi+1 is an element of ⟨S⟩.

We conclude g = gn ∈ ⟨S⟩ and G = ⟨S⟩.

Remark. The generating set obtained in Theorem 1.3.2 is usually not a minimal
one (even if we ignore the neutral element) as the following example shows.
Let Γ be the complete graph on three vertices and let G be its automorphism
group. Then the fundamental domain is a single vertex and every automorphism
of Γ has to be put into the generating set S. Thus, S contains the whole
automorphism group G, which is isomorphic to the symmetric group S3. Since
there are minimal generating sets on two elements, S cannot be one of them.

As an application, we shall prove Sabidussi’s theorem, which characterises
Cayley graphs.

Theorem 1.3.3 (Sabidussi). A connected graph on which some group acts tran-
sitively and free is a Cayley graph.

Proof. Let Γ be a connected graph and let G be a group that acts transitively
and freely on Γ. Let v ∈ V (Γ). Since G acts transitively on Γ, the graph ({v}, ∅)
is a fundamental domain.

Let S ⊆ G be a minimal subset of G such that S ∪ S−1 is the generating
set of Theorem 1.3.2. We want to show that Γ is the Cayley graph ΓG,S of G
and S. For this, we define a map

φ : ΓG,S → Γ, g 7→ gv.

Since the action on Γ is transitive, φ must be surjective and, since G acts freely,
φ is injective, so it is bijective. It remains to show that φ preserves the adjacency
relation. Let {u,w} ⊆ V (Γ) a vertex set consisting of two distinct elements. As
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G acts transitively on Γ, there exists g ∈ G with gu = v. By considering {v, gw}
instead of {u,w}, we may assume that u = v. There exists h ∈ G with w = hv.
If vw ∈ E(Γ), then h ∈ S ∪ S−1 by the choice of S and hence φ(v) and φ(w)
are adjacent. If vw /∈ E(Γ), then h /∈ S ∪ S−1 and φ(v) and φ(w) cannot be
adjacent. Thus, φ is a graph isomorphism.



Chapter 2

Free groups

2.1 Free groups and trees

Definition. Let S be a set. A finite sequence of the form w = sε11 . . . sεnn with
si ∈ S and εi ∈ {±1} is a word over S ∪ S−1. We call |w| := n the lenth of w.

The word is reduced if there is no i ≤ n − 1 with sεii = s
−εi+1

i+1 . For s, si ∈ S,
ε, εi ∈ {±1}, we call a word sε11 . . . sεnn an elementary reduction of the word
sε11 . . . sεii s

εs−εs
εi+1

i+1 . . . s
εn
n . A word v is a free reduction of a word u if there is

a finite sequence u = w1, . . . , wn = v of words such that wi+1 is an elementary
reduction of wi and if v is reduced.

A group G is free with free generating set S ⊆ G if ⟨S⟩ = G and there is
no non-trivial reduced word w over S ∪ S−1 such that w = 1 in G. We call |S|
the rank of G.

If w = sε11 . . . sεnn and v = tε11 . . . tεmm are words over S ∪ S−1, then we the
word wv = sε11 . . . sεnn tε11 . . . tεmm is the concatenation of w and v.

Comment. In particular, no free generating set S contains 1 since the word 1
is distinct from the trivial word over S, which is the empty word.

Example 2.1.1. The additive group Z is a free group of rank 1.

Comment. A priori it is not obvious that the rank of a free group is well-
defined. We shall prove that in Section 2.2.

First, we want to ensure that free groups exist.

Theorem 2.1.2. Let S be a set. Then there exists a free group with S as free
generating set.

We will sketch the standard proof of Theorem 2.1.2 before proving a slightly
stronger result that contains Theorem 2.1.2.

Sketch of the proof of Theorem 2.1.2. We will define a relation ∼ on the set of
words over S∪S−1 via v ∼ w if and only if there is a sequence v = w1, . . . , wn =
w such that either wi is an elementary reduction of wi+1 or vice versa. Obviously,

13
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this is equivalence relation. It can be proved tha every equivalence class of this
relation contains exactly one reduced word. Then we can define a multiplication
on this set in the following way: [α][β] := [αβ] for any two words α, β over
S ∪ S−1, where αβ is their concatenation. It can be shown that the set of
equivalence classes with this multiplication forms a free group.

Strictly speaking, S is not a free generating set for F , since S is no subset
of F . But since every s ∈ S is a reduced wird, we can identify every s and [s]
to satisfy this formality.

Comment. Since the equivalence classes of the equivalence relation in the
sketch of the proof of Theorem 2.1.2 contain a unique recued word, it is possible
(and also reasonable) to think of the elements of free groups as reduced words.
Of course, one has to keep in mind that the product of two such elements is
not simply their concatenation but the free reduction of that. Note that this
concatenation is uniquely determined since every equivalence class of ∼ contains
a unique reduced word.

Theorem 2.1.3. Let S be a set. There exists a free group G with S as free
generating set that acts transitively and free on a tree T .

Proof. We define a graph T . Its vertex set V is the set of reduced words over S∪
S−1 (including the empty word) and its edge set E is defined as follows: we add
for every reduced word s1 . . . sn with si ∈ S∪S−1 the edge {s1 . . . sn, s1 . . . sns}
for all s ∈ S with s ̸= s−1

n and the edge {s1 . . . sn, s1 . . . sn−1} (without multi-
edges). To show that T is connected, it suffices to verify that every reduced
word lies in the same component as the empty word1. Since the sequence
∅, s1, s1s2, . . . , s1 . . . sn of vertices defines a path from the empty word to the
word s1 . . . sn, the graph T is connected.

Let us suppose that T contains a cycle C. This cycle contains a vertex u =
u1 . . . un whose word has maximum length for all vertices on C. By definition
of the edges, the neighbours of u on C must have length |u| − 1 and both must
be the word u1 . . . un−1. But then, C was not a cycle. Thus, T is a tree.

For every s ∈ S ∪ S−1 we define a map φs : V → V such that

φs(s1 . . . sn) =

{
s2 . . . sn, if s = s−1

1 ,

ss1 . . . sn, if s ̸= s−1
1 .

Obviously, φs maps edges to edges and non-adjacent vertices to non-adjacent
vertices, that is, it is an automorphism of T . Also, the equality φ−1

s = φs−1 is
easily verifiable.

Let ΦS = {φs | s ∈ S} and let G be the subgroup of Aut(T ) that is generated
by ΦS . We will show that G is a free group that acts transitively and freely
on T and that ΦS generates G freely.

Let φs1 . . . φsn be a reduced word over ΦS ∪ Φ−1
S . Then we have si ̸= s−1

i+1,
since φ−1

s = φs−1 and since the word is reduced. So s1 . . . sn is a reduced

1The empty word will be denoted by ∅.
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word over S ∪ S−1 and we have φs1 . . . φsn(∅) = s1 . . . sn ̸= ∅. We obtain
φs1 . . . φsn ̸= id and hence G is a free group freely generated by ΦS .

Since the s1 . . . sn is the image of the empty word under φs1 . . . φsn , the
action of G must be transitive. Let v ∈ V and let φ ∈ F such that φ(v) = v.
Since G acts transitively on T , we may assume by Lemma 1.1.10 that v is the
empty word. Let φs1 . . . φsn be the shortest word over ΦS ∪ Φ−1

S such that
φs1 . . . φsn = φ. In particular, we have φ−1

si ̸= φsi+1 and s−1
i ̸= si+1 for all

i < n. Thus, s1 . . . sn is a reduced word. Hence, ∅ = φ(∅) = s1 . . . sn. Since
s1 . . . sn is reduced, we obtain n = 0 and φ = id. This implies that G acts freely
on the vertices of T . It remains to show that G also acts freely on the edges
of T . Let e ∈ E. Since G acts transitively on T , we may apply Lemma 1.1.10
once more to assume that e = {∅, s} for some s ∈ S ∪ S−1. Let us suppose
that there exists φ = φs1 . . . φsn such that φ(e) = e and φ ̸= id, where the
n is shortest possible. Since G acts freely on the vertices of T , we know that
φ(∅) ̸= ∅. So we have φ(∅) = s and φ(s) = ∅. We also get φs(∅) = s and, since
the action of G on T is free on the vertices of T , we conclude φ = φs. But we
have φs(s) = ss ̸= ∅ = φ(s). This contradiction shows that G acts freely on T .

Just like in the sketch of the proof of Theorem 2.1.2, we can use a formal
trick to guarantee that G is generated by S instead of ΦS .

Before we take a closer look at the relation between trees and free groups,
let us show an important characterisation of free groups.

Theorem 2.1.4 (Universal property). The following two statements are equiv-
alent for every group F with subset S ⊆ F .

(i) F is a free group with free generating set S.

(ii) for every group G and every map φ : S → G there exists a uniquely
determined group homomorphism φ : F → G that extends φ.

In the proof of this theorem, we consider the elements of the free group as
being equivalence classes of words just as in the sketch of the proof of Theo-
rem 2.1.2.

Proof of Theorem 2.1.4. First, let us assume that F is a free group and S a
free generating set of F . Let G be another group and let φ : S → G be a
map. We set φ(s) := φ(s) and φ(s−1) := (φ(s))−1 and for every word w =
s1 . . . sn over S∪S−1 we set φ(w) := φ(s1) . . . φ(sn). By definition, φ is a group
homomorphism as soon as we make sure that it is well-defined. If the word
s1 . . . sn is an elementary reduction of the word s1 . . . sitt

−1si+1 . . . sn, the we
have the following:

φ(s1 . . . sn) = φ(s1) . . . φ(sn)

= φ(s1) . . . φ(si)φ(t)φ(t
−1)φ(si+1) . . . φ(sn)

= φ(s1 . . . sitt
−1si+1 . . . sn).
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Thus, φ is well-defined on the equivalence classes of words and hence induces
a group homomorphism F → G that extends φ. Furthermore, every group
homomorphism must have the two properties φ(s−1) = (φ(s))−1 and φ(w) =
φ(s1) . . . φ(sn). That is, why φ is uniquely determined.

Let us assume that (ii) holds. Let G be a free group with free generating
set S and let φ : F → G a group homomorphism with φ(s) = s for all s ∈ S.
Let us suppose that F is not free. Then there exists a non-trivial reduced word
s1 . . . sn over S ∪ S−1 such that s1 . . . sn = 1. We obtain

1 = φ(s1 . . . sn) = φ(s1) . . . φ(sn) = s1 . . . sn.

Hence there is a non-trivial reduced word w = φ(s1) . . . φ(sn) in G with w = 1,
a contradiction to the definition of a free group. Thus, F is a free group with
free generating set S.

A direct consequence of the universal property of free groups is the following
(even though we still do not know whether the rank of free groups is well-
defined).

Corollary 2.1.5. Every two free groups of the same rank are isomorphic.

Proof. Let F,G be two free groups of the same rank. We may assume that
both groups are freely generated by the same set S. By Theorem 2.1.4 there
are two group homomorphisms φ : F → G and ψ : G → F such that φ|S = id
and ψ|S = id. Then we must have φ(ψ(s)) = s. Since F is generated by S, we
have φψ = id and thus φ and ψ are group homomorphisms that are inverse to
each other.

Free groups and trees have more connections that the one obtained in The-
orem 2.1.3.

Lemma 2.1.6. Every Cayley graph of a free group and one of its free generating
sets is a tree.

Proof. Let G be a free group with free generating set S and let Γ be the der
Cayley graph of G and S. If Γ contains a cycle, the it also contains a cycle that
contains the vertex 1 since G acts transitively on Γ by Remark 1.2.9. This cycle
belongs to a closed walk starting and ending at 1. According to Remark 1.2.6,
this walk corresponds to a word over S∪S−1. Since this word must be reduced,
G cannot be free. Since every Cayley graph is connected, this contradiction
shows that Γ is a tree.

In general, the reverse statement of Lemma 2.1.6 does not hold as the fol-
lowing examples show.

Example 2.1.7. 1. The Cayley graph of the cyclic group C2 = ⟨a⟩ with {a}
as generating set if a tree on two vertices.

2. The Cayley graph of the group Z with S = {1,−1} as generating set is a
tree, too.
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Essentially, the problems highlighted in Example 2.1.7 are the only ones
preventing a successful reverse statement of Lemma 2.1.6 as we will see in the
following lemma.

Lemma 2.1.8. Let G be a group and let S be a generating set of G that satisfies
st ̸= 1 for all s, t ∈ S. If the Cayley graph ΓG,S is a tree, then G is a free group
and S a free generating set of G.

Proof. Let F be a free group with free generating set S. We will show that F
and G are isomorphic. According to Theorem 2.1.4, there is a group homomor-
phism φ : F → G, whose restriction to S is the identity. This homomorphism is
surjective since S generates G. In order to show that F and G are isomorphic,
it suffices to verify that φ is injective. Let us suppose that there is a reduced
word over S ∪ S−1 in ker(φ) that is not the empty word. Let s1 . . . sn be such
a word of minimum length. Because of φ(s) = s ̸= 1 for all s ∈ S, we must
have n ≥ 2. If n = 2, then we have 1 = φ(s1s2) = φ(s1)φ(s2) = s1s2. Since
s1s2 is reduced, this contradicts the assumption st ̸= 1 for all s, t ∈ S. So we
may assume n ≥ 3. Due to minimality of n, the group elements φ(s1 . . . si) for
all 0 ≤ i ≤ n are distinct since if there are i < j < n with s1 . . . si = s1 . . . sj ,
then si+1 . . . sj is a word of shorter length over S ∪ S−1 with φ(si+1 . . . sj) = 1.
Since the group elements φ(s1 . . . si) for all 0 ≤ i ≤ n are distinct, they induce
a cycle in ΓG,S . This contradiction to the assumption on ΓG,S shows that φ is
injective.

We can even use the action on trees to characterise free groups.

Theorem 2.1.9. A group is free if and only if it acts freely on a tree.

Proof. By Proposition 1.2.10, every free group acts free on any of its Cayley
graphs. So Lemma 2.1.6 shows the first implication.

Let the group G act freely on the tree T . Let T ′ be a fundamental domain
of this action, which exists by Theorem 1.3.1. Since G acts freely on T , there
exists a unique g ∈ G with T ′ ∩ gT ′ ̸= ∅, which is g = 1; this is true, since
gv ̸= v for all v ∈ V (T ′) and all g ̸= 1 and since by definition of fundamental
domains, gv ∈ V (T ′) implies gv = v.

An edge is essential if exactly one of its incident vertices lies in T ′. Since
T ′ is a fundamental domain, there is for every essential edge w some ge ∈ G
such that the vertex of e that does not lie in T ′ is contained in geT

′. Set

S̃ := {ge ∈ G | e is essential}.

We shall prove that the set S̃ has the following properties:

(i) 1 /∈ S̃;

(ii) S̃ contains no involution;

(iii) if e, e′ are essential edges with ge = ge′ , then e = e′;
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(iv) for every g ∈ S̃ we have g−1 ∈ S̃;

(v) for every g ∈ G with V (gT ′) ∩ (V (T ′) ∪N(V (T ′))) ̸= ∅ we have g = 1 or

g ∈ S̃.

While (i) immediately follows from the definition of S̃, we need small proofs
for the remaining claims. Property (ii) is true, since every involution ge maps
the subtree geT

′ to T ′ and thus must fix the uniquely determined edge e in T
between T ′ and geT

′, which contradicts the fact the action is free. Since T is
a tree and thus contains a unique edge connecting the subtrees T ′ and geT

′ we
obtain (iii). Since e connects the subtrees T ′ and geT

′, the edge g−1
e e connects

the subtrees g−1
e T ′ and T ′ and we obtain (iv). Let g ∈ G with V (gF )∩ (V (F )∪

N(V (F ))) ̸= ∅. If g ̸= 1, then we already verified gF ∩ F = ∅. Thus, gT ′

contains a vertex incident with an essential edge e, which must not be the in T ′

but in geT
′. So we have g−1

e gT ′ ∩ T ′ ̸= ∅. As we already verified above, we
obtain g−1

e g = 1 and thus g = ge. This shows (v).

Let S ⊆ S̃ be a minimal subset such that S ∪ S−1 = S̃. This is possible
by (iv). By (ii) S and S−1 are disjoint. Theorem 1.3.2, and (v) imply that

S̃ ∪ {1}, and hence also S, generates G. It remains to show that S is a free
generating set. For this, according to Lemma 2.1.8, it suffices to show that the
Cayley graph ΓG,S is a tree. Let us suppose that ΓG,S is not a tree. Since it is
connected, it contains a cycle h0 . . . hnh0 for some n ≥ 2. The edge hnh0 and
all edges hihi+1 correspond to some element sn := h0h

−1
n or si := hi+1h

−1
i from

S ∪ S−1 and these in turn belong to unique essential edges ei for all 1 ≤ i ≤ n
by (iii).

For every j < n the subtree sjT
′ contains a vertex vj incident with the

edge ej and a vertex wj incident with the edge sjej+1. Since T ′ is connected,
there exists a path Pj from hjvj to hjwj in hjsjT

′ = hj+1T
′. Analogously, T ′

contains a path P0 from v0, the vertex in T ′ incident with en, to the vertex w0

in T ′ incident with the edge e1. Then

v0P0w0v1P1w1 . . . vnPnwnv0

is a cycle in T . This contradiction together with Lemma 2.1.8 shows that G is
a free group.

We obtain the following corollary from the proof of Theorem 2.1.9.

Corollary 2.1.10. Let T ′ be a fundamental domain of a free action of a free
group G on a tree T . Then there is a free generating set X of G such that the
set S defined in Theorem 1.3.2 satisfies the following:

S = X ∪X−1 ∪ {1}.

As corollary of Theorem 2.1.9, we obtain a central result on free groups,
more specifially on their subgroups.

Corollary 2.1.11 (Nielsen-Schreier Theorem). Every subgroup of a free group
is free.
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Proof. Let H be a subgroup of a free group G. Then G acts free on a tree T by
Theorem 2.1.9. As a subgroup of G, also H acts freely on T and thus is a free
group by Theorem 2.1.9.

We want to finish this section with a lemma that guarantees the existence
of free subgroups in arbitrary groups under certain conditions.

Lemma 2.1.12 (Ping-Pong-Lemma). Let G be a group acting on X. Let
(Ai)i∈I , (Bi)i∈I with |I| ≥ 2 be two families of non-empty subsets of X such that
all Ai and Bj are pairwise disjoint. If there are gi ∈ G such that X∖Bi ⊆ giAi

for all i ∈ I, then ⟨gi | i ∈ I⟩ is a free subgroup of G.

Proof. From X ∖ Bi ⊆ giAi we obtain X ∖ g−1
i Bi ⊆ Ai and hence X ∖ Ai ⊆

g−1
i Bi and gi(X ∖Ai) ⊆ Bi.

Let sn . . . s1 be a word over S ∪ S−1 for S := {gi | i ∈ I}. Let i, j ∈ I with
s1 ∈ {gj , g−1

j } and sn ∈ {gi, g−1
i }. If i = j, then let k ∈ I ∖ {i}; otherwise set

k := j. Let ε ∈ {1,−1} with s1 = gεj . If k ̸= j, then pick x ∈ Ak ∪ Bk. If
k = j and ε = 1, then pick x ∈ Bj . If k = j and ε = −1, then pick x ∈ Aj .
Using induction on ℓ, we obtain sℓ . . . s1x ∈ Bm, if sℓ = gm for some m ∈ I, or
sℓ . . . s1x ∈ Am, if sℓ = g−1

m for some m ∈ I. Thus, sn . . . s1x lies in either Ai or
Bi and in particular it does not lie in the set Ak ∪Bk, which contains x. Thus,
the element sn . . . s1 of G is distinct from 1. So ⟨S⟩ is free and freely generated
by S.

2.2 The rank of free groups

In this section, we will show that the rank of free groups is well-defined.

Theorem 2.2.1. Every two generating sets of a free group have the same car-
dinality.

Proof. Let G be a free group. If S and S′ are infinite free generating sets of G,
then we must have |S| = |G| = |S′|.

Let S be a finite free generating set of G. Every homomorphism φ : G→ C2

is uniquely determined by the restriction of φ to the set S. Also, every map S →
C2 can be extended to a homomorphism. Thus, there are 2|S| homomorphisms
from G to C2. Since this number only depends on G and not on the particular
generating set, we have 2|S| = 2|S

′| for every generating set S′ of G. So S and
S′ have the same number of elements.

Theorem 2.2.1 implies that the rank of free groups is well-defined. One might
assume that the ranks of subgroups of a free group G (which are free groups
themselves by Corollary 2.1.11) are bounded by the rank of G. This however is
far from being true as our next result shows.

Proposition 2.2.2. Let G be a free group of rank n ∈ N and let H be a subgroup
of G of index k ∈ N. Then H is a free group of rank k(n− 1) + 1.
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Proof. Let T be the Cayley graph of G and a free finite generating set S. By
Lemma 2.1.6, we know that T is a tree. Since G acts freely on its Cayley
graph, H acts freely on T , too. Since H has finite index in G and since G acts
transitively on T , there are at most |G : H| orbits of the action of H on T .
Thus, every fundamental domain T ′ of the action of H on T , which exists by
Theorem 1.3.1, is finite and has the size k = |G : H|. Since S is finite, T is
locally finite and hence the free generating setX ofH defined in Corollary 2.1.10
is finite. It remains to show that the size of X is k(n− 1) + 1.

The sum of all degrees in T of all vertices T ′ is 2n|T ′| = 2nk, since T is a
2n-regular tree. The subtree T ′ contains |T ′| − 1 = k − 1 edges, so there are
2kn− 2(k− 1) = 2(k(n− 1)+ 1) edges with on of its incident vertices in T ′ and
the other outside of T ′.

We can apply the previous result to arbitrary finitely generated groups to
get informations about some of their subgroups.

Corollary 2.2.3. Let G be a finitely generated group. Every subgroup of G of
finite index is finitely generated.

Proof. Let H ≤ G be a subgroup of G such that |G : H| ∈ N. Let S be a
finite generating set of G and let F be a free group with free generating set S.
Then there is a surjective homomorphism φ : F → G such that φ|S = id. Let
H ′ be the preimage of H under φ. We shall show that |F : H ′| ≤ |G : H| for
the index of H ′ in F . For this, let g, h ∈ F with gH ′ ̸= hH ′. Then we have
h−1g /∈ H ′. So we have φ(h−1)φ(g) = φ(h−1g) /∈ H und hence φ(g)H ̸= φ(h)H.
Thus, distinct cosets of H ′ will be mapped by φ to distinct cosets of H. Hence,
we have |F : H ′| ≤ |G : H|. By Proposition 2.2.2, the group H ′ is finitely
generated. Since φ|H′ maps H ′ to H surjectively and since this map is defined
by its definition on a generating set of H ′ by Theorem 2.1.4, the image of this
generating set must generate H. Thus, H is finitely generated.

2.3 Group presentations

A corollary of Theorems 2.1.2 and 2.1.4 is the following.

Corollary 2.3.1. Every group is the image of some free group.

This is the reason for us to define presentations of groups.

Definition. Let G be a group that is the image of a free group F under some
homomorphism φ. Let S be a free generating set of F . A word w over S ∪
S−1 with φ(w) = 1 is a relator. A subset R ⊆ ker(φ) is a set of defining
relators if ⟨R⟩⊴ = ker(φ), where ⟨R⟩⊴ is the smallest normal subgroup of F
that contains R.2 If uv ∈ ker(φ), then we call φ(uv) = 1 a relation. A set of
relations is a set of defining relations if the corresponding relators form a set
of defining relators.

2Reminder: (1) A subgroup U is normal if Ug = U for all g ∈ G. (2) Kernels of homo-
morphisms are normal subgroups.
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Remark. The smallest normal subgroup that contains the set R in a group G
must contain R−1 and all rg = g−1rg for all r ∈ R and g ∈ G. The finite prod-
ucts of elements of R ∪R−1 and Rg ∪ (R−1)g already form a normal subgroup.
This must be ⟨R⟩⊴.

Definition. Let S be a set and let R be a subset of the free group F that is
freely generated by S. Then we call ⟨S | R⟩ a presentation of a group G if
G ∼= F/⟨R⟩⊴ and we write G = ⟨S | R⟩. Alternatively, R could be a set of
defining relations, as well. Then we call ⟨S | R⟩ a presentation of G if ⟨S | R′⟩
is a presentation of G, where R′ is the set of those relators that belong to R.

We call ⟨D | R⟩ a finite presentation if S and R are finite or, if we emphasis
the group, we call it finitely presented if S and R are finite.

Example 2.3.2. (1) A free group F with free generating set S has the presen-
tation ⟨S | ∅⟩.

(2) Finite cyclic groups Cn have a presentation ⟨g | gn⟩.

Theorem 2.3.3. Let S be a set and let R a set of words over S ∪ S−1. Then
there is a group with presentation ⟨S | R⟩.

Proof. Let F be a group with free generating set S. Then the group F/⟨R⟩⊴
has ⟨S | R⟩ as a presentation.

Similar to free groups, also groups with presentations have a universal prop-
erty.

Theorem 2.3.4 (Universal property). Let G = ⟨S | R⟩ and let F be a free
group with free generating set S. Let H be a group and let φ : F → H be a
group homomorphism. If φ(r) = 1 for all r ∈ R, then there is a unique group
homomorphism ψ : G→ H with φ(s) = ψ(s) for all s ∈ S.

Proof. Let us define a map ψ : G→ H in that we set ψ(s) := φ(s) and ψ(s−1) :=
(φ(s))−1 for all s ∈ S and ψ(s1 . . . sn) := φ(s1) . . . φ(sn) for all s1, . . . , sn ∈
S ∪ S−1. Then ψ is uniquely determined by the equalities φ(s) = ψ(s) and
it remains to show that ψ is a group homomorphism. The homomorphism
properties directly follow from the definition of ψ. So we just have to show
that ψ is well-defined. By assumption, we have ⟨R⟩ ≤ ker(φ). Since ker(φ) is a
normal subgroup, we also obtain ⟨R⟩⊴ ≤ ker(φ). Thus, ψ is well-defined.

The proof showing the free group of fixed rank are uniquely determined up
to isomorphisms (Corollary 2.1.5) carries over almost verbatim to our situation
here and we obtain the following.

Corollary 2.3.5. Every two groups with the same presentation are isomorphic.
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2.4 Tietze transformations

In this section, we are interested in the relations between different presentations
of the same group. For this, we define four ways how to obtain new presentations
out of old ones without changing the group.

Definition. Let G = ⟨S | R⟩. Tietze transformations are the following four
possible modifications of the presentation ⟨S | R⟩:

(1) For R′ ⊆ ⟨R⟩⊴, we can add redundant relators

⟨S | R⟩ −→ ⟨S | R ∪R′⟩.

(2) For R′ ⊆ R with ⟨R⟩⊴ = ⟨R′⟩⊴, we can remove redundant relators

⟨S | R⟩ −→ ⟨S | R′⟩.

(3) For a set S′ with S ∩ S′ = ∅ and a set {ws | s ∈ S′} of words over S ∪ S−1,
we can add redundant generators

⟨S | R⟩ −→ ⟨S ∪ S′ | R ∪ {s−1ws | s ∈ S′}⟩.

(4) If S = S1 ∪̇S2 and R = R′ ∪̇ {s−1ws | s ∈ S2}, where R′ is a set of relators
over S1 and {ws | s ∈ S2} is a set of words over S1 ∪ S−1

1 , we can remove
redundant generators

⟨S | R⟩ −→ ⟨S1 | R′⟩.

We obtain the following directly from the definition.

Remark 2.4.1. If ⟨S′ | R′⟩ can be obtained from ⟨S | R⟩ using Tietze trans-
formations, then the two groups are isomorphic.

If we consider the reverse direction of Remark 2.4.1, then it is not immedi-
ately obvious that distinct presentation of the same group can be transformed
into each other using Tietze transformations. But that this holds nonetheless,
we will prove in the next theorem.

Theorem 2.4.2. Two presentation define isomorphic groups if and only if there
is a finite sequence of Tietze transformations that transforms one into the other.

Comment. In the literature, sometimes Tietze transformations are defined by
adding or removing only one generator or relator. Then the finiteness condi-
tion in Theorem 2.4.2 has to be dropped. Instead, you will find the following
additional statement: If both presentations are finite, then the sequence can be
chosen to be finite, too.
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Proof of Theorem 2.4.2. If a presentation is obtained from another presentation
by finitely many Tietze transformations, the Remark 2.4.1 implies that both
groups are isomorphic.

For the reverse direction, let G1 := ⟨S1 | R2⟩ and G2 := ⟨S2 | R2⟩ be
presentations of isomorphic groups and let φ : G1 → G2 be an isomorphism.
We may assume that S1 and S2 are disjoint. For s ∈ S1 let ws be a word over
S2 ∪ S−1

2 such that φ(s) = ws and for s ∈ S2 let ws be a wordover S1 ∪ S−1
1

such that φ−1(s) = ws. Let i ̸= j ∈ {1, 2}. Wie consider the following Tietze
transformations:

⟨Si | Ri⟩ −→ ⟨S1 ∪ S2 | Ri ∪ {s−1ws | s ∈ Sj}⟩
−→ ⟨S1 ∪ S2 | Ri ∪ {s−1ws | s ∈ Sj} ∪ {s−1ws | s ∈ Si} ∪Rj⟩

Thus, we can transform both groups using Tietze transformations into a third
group. Since Tietze transformations are closed under reverting a transforma-
tion, we can transform ⟨S1 | R1⟩ into ⟨S2 | R2⟩ by a finite sequence of Tietze
transformations.

We are interested in if we can transform an arbitrary presentation of a finitely
presented group into a finite presentation and if so how we can do it. First, we
deal with the generating set.

Theorem 2.4.3. Let G = ⟨S | R⟩ be a finitely generated group. Then there
is a finite subset S′ of S and a set R′ of relators over S′ ∪ S′−1 such that
G ∼= ⟨S′ | R′⟩.

Proof. Let X be a finite generating set of G. Then there exists for every x ∈ X
a word w over S ∪ S−1 such that w = x. Thus, it suffices to take some finite
subset S′ of S to write every x ∈ X as word over S′∪S′−1. For every s ∈ S∖S′

we may choose words vs, ws over S′ ∪ S′−1 such that s = vs and s−1 = ws and
such that the free reduction of vsws is the empty word. We replace in every
word in R each subword s by vs and each subword s−1 by ws, then we obtain
a set R′ of relators such that ⟨S | R⟩ = ⟨S′ | R′⟩.

Theorem 2.4.4. Let G = ⟨S | R⟩ be a finitely presented group and let S be
finite. Then there exists a finite subset R′ of R such that G is isomorphic to
⟨S | R′⟩.

Proof. Let ⟨X | Q⟩ be a finite presentation of G. For s ∈ S let ws be a word
over X ∪ X−1 such that s = ws and for x ∈ X ∪ X−1 let vx be a word over
S ∪ S−1 such that x = vx. Using Tietze transformations, we can modify the
presentations as follows.

⟨X | Q⟩ −→ ⟨S ∪X | Q ∪ {s−1ws | s ∈ S}⟩
−→ ⟨S ∪X | Q ∪ {s−1ws | s ∈ S} ∪ {x−1vx | x ∈ X}⟩.

Additionally, we can apply two Tietze transformations to replace the set Q by
a set Q[S] that was obtained as follows: for every q ∈ Q we replace every



24 CHAPTER 2. FREE GROUPS

x ∈ X ∪X−1 in q by vx. Analogously, let w′
s be obtained from ws by replacing

every x ∈ X ∪X−1 by vx for every s ∈ S.

⟨S ∪X | Q ∪ {s−1ws | s ∈ S} ∪ {x−1vx | x ∈ X}⟩
−→ ⟨S ∪X | Q[S] ∪ {s−1w′

s | s ∈ S} ∪ {x−1vx | x ∈ X}⟩.

We remark that Q[S] is a finite set since Q is finite. Now, some generators are
obsolete and we remove them.

⟨S ∪X | Q[S] ∪ {s−1w′
s | s ∈ S} ∪ {x−1vx | x ∈ X}⟩

−→ ⟨S | Q[S] ∪ {s−1w′
s | s ∈ S}⟩.

Since Q[S] and S are finite sets, the presentation ⟨S | Q[S]∪{s−1w′
s | s ∈ S}⟩ is

a finite presentation of G. Since each of those finitely many relators in the set

Q[S] ∪ {s−1w′
s | s ∈ S}

lies in ⟨R⟩⊴, we find a finite subset R′ of R such that G = ⟨S | R′⟩.

Remark 2.4.5. In an exercise we shall see that, generally, for presentations
⟨S | R⟩ of some finitely presentable group G it is not possible to find finite
subsets S′ ⊆ S and R′ ⊆ R such that G = ⟨S′ | R′⟩.

2.5 Group products

In this section, we will discuss several possibilities how to obtain new groups
from old ones. Most of the time, these will be products; just the ‘HNN extension’
has a different role.

Definition. Let (Gi)i∈I be a family of groups. The direct product
∏

i∈I Gi

of the Gi is defined on the cartesian product of the Gi where multiplication is
given componentwise (gi)i∈I · (hi)i∈I := (gihi)i∈I .

Example 2.5.1. (1) Zn with componentwise addition is the direct product of n
copies of Z.

(2) If m,n ∈ N are coprime, then Cm × Cn = Cmn.

2.5.1 Free products (with amalgamation)

Definition. Let (Gi)i∈I be a family of disjoint groups with Gi = ⟨Si | Ri⟩. Let
A be a group and, for every i ∈ I, let ιi : A → Gi be a monomorphism. Then
the group 〈⋃

i∈I

Si |
⋃
i∈I

Ri ∪
⋃

i ̸=j∈I

{
(ιi(a))

−1(ιj(a)) | a ∈ A
}〉
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is the free product of the (Gi)i∈I with amalgamation over A and we
write G = ∗A,i∈IGi. If A = 1, then we call the product simply the free product
and write G = ∗i∈IGi.

If the groups Gi are not disjoint, we can make them disjoint artificially, e. g.
by identifying every g ∈ Gi with (g, i). Thereby, we can define free product of
groups that need not be disjoint families (Gi)i∈I .

Theorem 2.3.3 implies the existence of free products with amalgamation
immediately.

Theorem 2.5.2. Let (Gi)i∈I be a family of groups. Let A be a group and,
for every i ∈ I, let ιi : A → Gi be a monomorphism. Then the free product of
amalgamation ∗A,i∈IGi exists.

Example 2.5.3. Let F be a free group with free generating set S. Let S be
a partition of S. For every X ∈ S let FX be a free group with free generating
set X. Then F ∼= ∗X∈SFX .

Definition. Let (Gi)i∈I be a family of groups. Let A be a group and, for
every i ∈ I, let ιi : A → Gi be a monomorphism. For every i ∈ I let Xi be a
transversal of ιi(A) inGi, i. e. a subset ofGi that contain exactly one element of
each right coset of ιi(A) inGi, where 1 is the element inX for the left coset ιi(A).
A reduced form is a finite sequence g1 . . . gn with gj ∈

⋃
i∈I Gi ∖ {1} such

that gj ∈ Gi implies gj+1 /∈ Gi. A normal form over (Gi)i∈I and A is a finite
sequence ag1 . . . gn with a ∈ A and gj ∈

⋃
i∈I Xi∖{1} such that gj ∈ Xi implies

gj+1 /∈ Xi. We call n the length of the reduced form or the normal form. A
(reduced form or) normal form is trivial if n = 0 and a = 1.

Remark 2.5.4. Let (Gi)i∈I be a family of groups. Let A be a group and,
for every i ∈ I, let ιi : A → Gi be a monomorphism. If A = 1, then Gi is a
transversal of ιi(A) in Gi and thus, for free products, a reduced form is always
a normal form. That is why we will use both notions interchangeably.

Theorem 2.5.5. Let (Gi)i∈I be a family of groups. Let A be a group and, for
every i ∈ I, let ιi : A→ Gi be a monomorphism. Let Xi be transversals of ιi(A)
in Gi. Then every g ∈ ∗A,i∈IGi has a unique normal form over (Gi)i∈I and A.

In particular, there exists no non-trivial normal form for 1.

Proof. First, we show the existence of a normal form and then its uniqueness.
Let g = s1 . . . sn with sj ∈

⋃
i∈I Si for all 1 ≤ j ≤ n. If there exists i ∈ I

with s1, . . . , sn ∈ Si, then there exists x ∈ Xi such that the coset ιi(A)x in Gi

contains g. There exists a ∈ A with g = ιi(a)x and then ax is a normal form
over g. For general g, we apply induction on the number of subwords of s1 . . . sn
that lie in some common Si. Let sj . . . sn be such that all sj , . . . , sn lie in a
common Si but such that sj−1 does not lie in Si. As we already saw, there
exists a ∈ A and x1 ∈ Xi such that ιi(a)x1 = sj . . . sn. Let i′ the index such
that sj−1 ∈ Si′ . Because of ιi(a) = ιi′(a), there exists s′j , . . . , s

′
k ∈ Si′ such that

ιi′(a) = s′j . . . s
′
k. By induction, s1 . . . sj−1s

′
j . . . s

′
k has a normal form bxℓ . . . x2.
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If x2 /∈ Si, then bxℓ . . . x1 is a normal form of g. Otherwise, ιm(b)xℓ . . . x1, where
m ∈ I with xℓ ∈ Xm, has fewer maximal subwords in some common Sp for some
p ∈ I and we can apply induction directly to obtain a normal form b′yℓ′ . . . y1
of ιm(b)xℓ . . . x1, which is also a normal form of g.

To show uniqueness of the normal form, we will apply an argument that is
similar to the on we used for the existence of free groups in Theorem 2.1.3. Let
Ω be the set of normal form over (Gi)i∈I and A. For g ∈

⋃
i∈I Gi, let φg : Ω → Ω

such that

ag1 . . . gn 7→


bxgn . . . g1, if gn /∈ Gi,

b′g′ngn−1 . . . g1, if gn ∈ Gi and gn ̸= x−1,

bgn−1 . . . g1, if gn ∈ Gi and gn = x−1,

where g ∈ Gi and ιi(b)x = gιi(a) such that b ∈ A and x ∈ Xi or in the second
case b′ ∈ A and g′n ∈ Gi such that ιi(b

′)g′n = gιi(a)gn. It is easy to see that
φg and φg−1 are inverse functions. So both of them lie in SΩ. We consider
the subgroup H = ⟨φg | g ∈

⋃
i∈I Gi⟩ of SΩ. Note that each Gi acts on Ω

and for every i ̸= j the maps φιi(a) and φιj(a) coincide. So we can extend the
canonical map

⋃
i∈I Si → H, g 7→ φg to a homomorphism ∗A,i∈IGi → H by

Theorem 2.3.4 (universal property for group presentations). This implies that
for every g ∈ G its image φg is unique determined. If cx1 . . . xk is a normal
form of g, then φg(1) = φcφx1

. . . φxk
(1) = cx1 . . . xk. If c

′y1 . . . yℓ is a different
normal form of g, then we have

c′y1 . . . yℓ = φc′φy1
. . . φyℓ

(1) = φg(1) = φcφx1
. . . φxk

(1) = cx1 . . . xk.

Since c′y1 . . . yℓ and cx1 . . . xk are the same element in Ω, we must have c = c′,
k = ℓ and xi = yi for all 1 ≤ i ≤ k. This shows the uniqueness of the normal
form.

For free products with amalgamation over a non-trivial group, the reduced
forms need not be unique. But for free products, this still holds, as we mentioned
in Remark 2.5.4. Thus, we obtain the following corollary.

Corollary 2.5.6. Let (Gi)i∈I be a family of groups. For every g ∈ ∗i∈IGi there
exists a unique reduced form over (Gi)i∈I .

As another corollary of Theorem 2.5.5, we obtain the existence of monomor-
phisms ψi : Gi → ∗A,i∈IGi.

Corollary 2.5.7. Let (Gi)i∈I be a family of groups. Let A be a group and, for
every i ∈ I, let ιi : A → Gi be a monomorphism. Then there exist canonical
monomorphisms ψi : Gi → ∗A,i∈IGi.

Proof. Obviously, there are canonical homomorphisms φi : Gi → ∗A,i∈IGi. Let
Xi be a transversal of ιi(A) in Gi. Since there exists for every g ∈ Gi exactly
one a ∈ A and x ∈ Xi with ιi(a)x = g and since ax is a non-trivial normal form
of φi(g), we obtain φi(g) ̸= 1. Thus, φi is injective.
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We obtain additional properties for the free product with amalgamation
directly from Theorem 2.3.4, the universal property for group presentations and
Corollary 2.3.5.

Theorem 2.5.8 (universal property). Let (Gi)i∈I be a family of groups. Let
A be a group and, for every i ∈ I, let ιi : A → Gi be a monomorphism and
let ψi : Gi → ∗A,i∈IGi be the canonical monomorphisms. Let G be a group and
let φi : Gi → G for all i ∈ I be homomorphisms such that φiιi = φjιj for all
i, j ∈ I. Then there exists exactly one homomorphism φ : ∗A,i∈I Gi → G such
that φψi = φi for all i ∈ I.

Corollary 2.5.9. Let (Gi)i∈I be a family of groups. Let A be a group and, for
every i ∈ I, let ιi : A → Gi be a monomorphism. Then ∗A,i∈IGi is uniquely
determined up to isomorphisms.

Definition. Let (Gi)i∈I be a family of groups. A reduced form g1 . . . gn is
cyclically reduced if n = 1 or if g1 and gn do not lie in the same Gi.

Lemma 2.5.10. Let (Gi)i∈I be a family of group.

(1) Every element of ∗i∈IGi is conjugated to a cyclically reduced form.

(2) If g = g1 . . . gn and h = h1 . . . hm are two cyclically reduced forms such that
g and h are conjugated in ∗i∈IGi, then m = n and each reduced form is a
cyclic permutation of the other.

Proof. Statement (1) follows directly by iterated conjugations with g−1
i as long

as necessary. This process terminates since the length of the reduced form gets
strictly smaller for each conjugation.

Let f ∈ ∗i∈IGi with g = hf and let f1 . . . fk be a normal form of f . If k = 0,
then (2) is a consequence of Corollary 2.5.6. Since f and h are in reduced form
and g is in cyclically reduced form, and thus in normal form, and since

g1 . . . gn = f−1
k . . . f−1

1 h1 . . . hmf1 . . . fk,

Corollary 2.5.6 implies that f−1
k . . . f−1

1 h1 . . . hmf1 . . . fk is not a normal form.
So either f1 and h1 or f1 and hm lie in the same factor Gi, which contains neither
f2 nor h2 nor hm−1. Then we must have f1 = h1 or hm = f−1

1 : otherwise we
obtain a contradiction to the uniqueness of reduced form for the two cases k = 1
and k ̸= 1. Thus, we have

g1 . . . gn = f−1
k . . . f−1

2 h2 . . . hmh1f2 . . . fk

or
g1 . . . gn = f−1

k . . . f−1
2 hmh1 . . . hm−1f2 . . . fk

and by induction, we have m = n and the two reduced forms g1 . . . gn and
h1 . . . hn are cyclic permutations of each other.

Definition. An element of a group is a torsion element if it has finite order.
A group is torsion free if its only torsion element is 1.
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We will prove two results on torsion elements or their absence in (sub-)groups
of free products.

Theorem 2.5.11. Let (Gi)i∈I be a family of groups. Every torsion element of
∗i∈IGi is conjugated to a torsion element of one of the Gi.

Proof. Let g ∈ ∗i∈IGi be conjugated to an element h with cyclically reduced
form h = h1 . . . hn. The element h exists by Lemma 2.5.10 (1). It suffices to
prove n = 1. If n > 1, then h1 . . . hn . . . h1 . . . hn is the normal form of hk. It is
distinct from 1 and thus h and g have infinite order.

Theorem 2.5.12. Let G and H be finite groups. Then every torsion free sub-
group of G ∗H is a free group.

Proof. First, we will construct a tree that admits an action of G ∗H. Let T be
the graph with vertex set

V (T ) = {gG, gH | g ∈ G ∗H},

i. e., the vertices are the cosets of G and H. The edge set of T is

E(T ) = {{gG, gH} | g ∈ G ∗H}.

To prove that T is connected, it suffices to find a path from G to gG or gH for
every g ∈ G. Let g1 . . . gn be a normal form of g. We may assume that g1 ∈ H.
Then

G,H = g1H, g1G = g1g2G, g1g2H = g1g2g3H, . . . , (g1 . . . gn)G

is a path that starts at G and ends at (g1 . . . gn)G = gG (or at (g1 . . . gn)H =
gH). Thus, T is connected. Every path from G to gG defines a sequence
h1 . . . hm with hm /∈ G such that two consecutive hi, hi+1 are not both in G
or not both in H. Thus, h1 . . . hm is a normal form of an element of gG and
there exists hm+1 ∈ G with h1 . . . hm+1 = g. The uniqueness of the normal
form of g (Theorem 2.5.5) implies that the path from G to gG in T is uniquely
determined. Thus, T is a tree. By Example 1.1.1 (3′) the group G∗H acts on T
by multiplication.

Let us show that every vertex and every edge has a finite stabiliser in G∗H.
First, we have a look at the vertices. Since G ∗H acts transitive on the cosets
of G as well as on the cosets of H, it suffices to that the stabilisers of G and of H
are finite by Lemma 1.1.10. The stabiliser of G in G ∗ H is G, since gG = G
holds if and only if g ∈ G. Thus, it is finite. Analogously, the stabiliser of H is
finite. By the definition of the edges, we directly get that G∗H acts transitively
on the edges. Thus, by Lemma 1.1.10, it suffices to show that the stabiliser of
{G,H} is finite. Theorem 2.5.5 implies that neither gG = H nor gH = G holds
for any g ∈ G ∗H. Thus, the stabiliser of {G,H} is a subgroup of G and of H;
in particular, it must be finite. Thus, all stabilisers of vertices and edges are
finite.
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Let F be a torsion free subgroup of G∗H. Then F acts on T and this action
must be free, since the elements in the stabilisers of vertices or edges have finite
order and there are none of such elements in F . Theorem 2.1.9 implies that F
is a free group.

Remark. Theorem 2.5.12 also holds for free products of any finite number of
groups, also with amalgamation. But in that proof, the construction of the tree
has to be altered a bit. (How?)

2.5.2 HNN extensions

In this section, we will define an extension of groups that is not a product.
The idea of this extension is to realise an isomorphism between subgroups as
conjugation in the larger group.

Definition. Let G = ⟨S | R⟩ be a group and let A,B ≤ G. Let φ : A → B be
an isomorphism. Then the group G∗φ with presentation

⟨S ∪ {t} | R ∪ {at = φ(a) | a ∈ A}⟩

is the HNN extension3 of G.

Remark 2.5.13. In view of Theorems 2.3.3 and 2.3.4 and Corollary 2.3.5,
we obtain the existence of HNN extensions, their universal property and their
uniqueness (up to isomorphisms).

Next, we will define a normal form for HNN extension similar to the normal
form for free products with amalgamations.

Definition. Let G∗φ with φ : A → B be an HNN extension of G. Let X be
a transversal of A and let Y be a transversal of B in G. A reduced form is
a finite word g0t

ε1g1 . . . t
εngn with n ≥ 0 and εi = ±1 such that no subword

t−1git with gi ∈ A and no subword tgit
−1 with gi ∈ B exists. A normal form

over G and t is a finite word g0t
ε1g1 . . . t

εngn with n ≥ 0 and εi = ±1 such that
g0 ∈ G and such that the following hold.

(i) If εi = 1, then gi ∈ Y .

(ii) If εi = −1, then gi ∈ X.

(iii) If gi = 1 for some i > 0, then εi ̸= −εi+1.

We call n the length of the reduced form or normal form. A reduced form or
normal form is trivial if n = 1 and g0 = 1.

We will show that every element of G∗φ has a unique normal form. This
will allow us to prove that we can embed G into G∗φ canonically.

3HNN stands for the authors of the article in which this extension was treated in depth
first: Graham Higman, Bernhard H. Neumann and Hanna Neumann.
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Theorem 2.5.14. Let G∗φ = ⟨S ∪ {t} | R ∪ {at = φ(a) | a ∈ A}⟩ be an HNN
extension of the group G = ⟨S | R⟩ with isomorphism φ : A → B. Then every
g ∈ G∗φ has a unique normal form.

Proof. Let X be a transversal of A and let Y be a transversal of B in G. We
divide the proof into two parts: the existence and the uniqueness of the normal
form. First, we will show the existence of a normal form for each g ∈ G∗φ. We
can write g as product of the generators of G∗φ. So there exists gi ∈ G and
εi = ±1 such that g = g0t

ε1g1 . . . t
εngn. We may assume that g0t

ε1g1 . . . t
εngn is

a reduced form, since we can replace every at or bt
−1

for a ∈ A, b ∈ B by φ(a)
or φ−1(b), respectively. Let us first consider the case εn = −1. Let hn ∈ X
and a ∈ A with ahn = gn. Then there exists b ∈ B with b = at. Thus, we
have t−1ahn = t−1att−1hn = bt−1hn and set g′n−1 := gn−1b. The case εn = 1 is
analogous. By induction on n, we know that g0t

ε1g1 . . . t
εn−1g′n−1 has a normal

form h0t
ε1 . . . hm. Thus, g has the normal form h0t

ε1 . . . hmt
εn−1g′n−1; note that

the case hm = 1 and εm = −εn−1 cannot happen: if hm = 1, then g′n−1 ∈ B (if
εn = −1) or g′n−1 ∈ A (if εn = 1) by induction and hence we have gn−1 ∈ B or
gn−1 ∈ A, which contradicts that g0t

ε1g1 . . . t
εngn is a reduced form. We note

that we have m = n − 1 since the number of t or t−1 does not change during
the induction.

Let us now show the uniqueness of the normal form. For this, we apply the
same method as in the proofs of Theorems 2.1.3 and 2.5.5. Let Ω be the set of
normal forms over G and t. We define an action of G∗φ on Ω. For g ∈ G we
define the map φg : Ω → Ω,

g0t
ε1g1 . . . t

εngn 7→ (gg0)t
ε1g1 . . . t

εngn,

for t we define the map φt : Ω → Ω,

g0t
ε1g1 . . . t

εngn 7→


ag1t

ε2g2 . . . t
εngn, if y = 1 and ε1 = −1,

atytε1g1 . . . t
εngn, if y ̸= 1 and ε1 = −1,

atytε1g1 . . . t
εngn, if ε1 = 1,

where g0 = by with b ∈ B, y ∈ Y and at = b, and for t−1 we define the map
φt−1 : Ω → Ω,

g0t
ε1g1 . . . t

εngn 7→


bg1t

ε2g2 . . . t
εngn, if x = 1 and ε1 = 1,

bt−1xtε1g1 . . . t
εngn, if x ̸= 1 and ε1 = 1,

bt−1xtε1g1 . . . t
εngn, if ε1 = −1,

where g0 = ax with a ∈ A, x ∈ X and bt
−1

= a. Obviously, all φg are elements
of SΩ, since φg and φg−1 are maps that are inverse to each other. Also, it is
easy to see that φt and φt−1 are inverse to each other, so they lie in SΩ, too. We
consider the subgroup H = ⟨φg | g ∈ G ∪ {t}⟩ of SΩ. We note that the image
φg ∈ SΩ is defined for every g ∈ G and that φb = φt−1φaφt holds for all a ∈ A
and for b = φ(a). As in the proof of Theorem 2.5.5, we can extend the canonical
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map S∪{t} → H, g 7→ φg via the universal property for presentations of groups
(Theorem 2.3.4) to a homomorphism G∗φ → H. Thus, for every g ∈ G∗φ its
image φg ∈ H is uniquely determined. If g0t

ε1g1 . . . t
εngn is a normal form of g,

then
φg(1) = φg0φtε1φg1 . . . φtεnφgn(1) = g0t

ε1g1 . . . t
εngn.

If h0t
δ1h1 . . . t

δmhm is another normal form of g, then

h0t
δ1h1 . . . t

δmhm

= φh0φtδ1φh1 . . . φtδmφhm(1)

= φg(1)

= φg0φtε1φg1 . . . φtεnφgn(1)

= g1t
ε1g2 . . . t

εngn.

The two elements h0t
δ1h1 . . . t

δmhm and g0t
ε1g1 . . . t

εngn must be the same el-
ement in Ω and thus the same normal form. So we have m = n, gi = hi and
εi = δi for all 0 ≤ i ≤ n. This shows the uniqueness of the normal form.

Corollary 2.5.15. Let G∗φ be an HNN extension for a group G and an iso-
morphism φ : A→ B. The the following statements hold.

(1) The canonical map ψ : G → G∗φ is a monomorphism and t generates an
infinite subgroup.

(2) (Britton’s lemma) Let w := g1t
ε1g2 . . . t

εn−1gn be a reduced form over G
and t. If n > 1, then w ̸= 1.

Proof. For every g ∈ G, the word g is a normal form. If g ∈ ker(ψ), then g = 1
in G∗φ. So 1 would have two distinct normal forms: 1 and g, which contradicts
Theorem 2.5.14. For n ∈ N, every tn or t−n has the normal form 1t1t . . . 1t1 or
1t−11t−1 . . . 1t−11, respectively. Thus, t has infinite order. This shows (1).

Let g0t
ε1g1 . . . t

εngn be a reduced form over G and t. By our construction of
the normal form from the reduced form in the proof of Theorem 2.5.14, we have
not changed the number of occurrences of t in that process. Since 1 ∈ G∗φ has
no non-trivial normal form by Theorem 2.5.14, we obtain (2).

Corollary 2.5.16. Let G∗φ be an HNN extension of G for the isomorphism
φ : A→ B. Then the subgroup of G∗φ that is generated by G and Gt is isomor-
phic to the free product of those two groups with amalgamation over A, where
ι1 = φ and ι2 is the conjugation with t, i. e. ⟨G,Gt⟩ ∼= G ∗A Gt.

Proof. First, we note that the relators in the definition of the free product with
amalgamation of G and Gt are already satisfied in ⟨G,Gt⟩. Thus, K := ⟨G∪Gt⟩
is a homomorphic image of G ∗A Gt. Let ag1h

t
1g2 . . . gmh

t
m be a non-trivial

normal form in G ∗A Gt with m ≥ 1, where g1 = 1 or hm = 1 may hold. This
is a reduced form in G∗φ and by Britton’s lemma (Corollary 2.5.15 (2)) it is
distinct from 1. Thus, K is already the free product with amalgamation of G
and Gt.
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Theorem 2.5.17 (Higman-Neumann-Neumann). Let G be a countable group.
Then there exists a group H that has a generating set consisting of two elements
such that G ≤ H.

Proof. Let G = {g0, g1, . . .} with g0 = 1 and with repetitions if necessary. Let F
be a free group with free generating set {a, b}. The sets {b−iabi} and {a−ibai}
both freely generate free subgroups A and B of F (cf. Exercise 2 on Sheet 2).
We consider the subgroup K of G ∗ F generated by {gia−ibai | i ∈ N}. Then
the extension of the maps φ : G → F, g 7→ 1 and the identity on F extends
to a homomorphism from G ∗ F → F by Theorem 2.5.8, the projection to F .
Thus, any non-trivial reduced word in K that represents 1 is mapped onto a
non-trivial reduced word in B. Since B is free, this contradiction shows that K
must be free as well and has {gia−ibai | i ∈ N} as a free generating set.

We consider the map ψ : A → K that is induced uniquely by ψ(b−iabi) =
gia

−ibai. Let H be the HNN extension of G ∗ F with the isomorphism ψ.
By Corollaries 2.5.15 and 2.5.7, we find a canonical isomorphic image of G in
G ∗ F and in H. Since the image of every gn is generated by t, a, b, we have
⟨t, a, b⟩ = H. Since g0 = 1, we have

tat−1 = tg0b
−0ab0t−1 = a−0ba0 = b.

So we have H = ⟨t, a⟩ and thus (an isomorphic image of) G lies in a group
generated by two elements.



Chapter 3

Quasi-Isometries

3.1 Word metric and quasi-isometries

Definition. Let G be a group and let S be a generating set of G. The word
metric dS of G with respect to S is the metric of the Cayley graph of G and S.

Remark 3.1.1. Let G be a group and let S be a generating set of G. Then
dS(g, h) is the length of a shortest word that represents g−1h for all g, h ∈ G,
i. e., we have

dS(g, h) = min{n ∈ N | ∃s1 . . . sn ∈ S ∪ S−1 : g−1h = s1 . . . sn}.

Remark 3.1.2. Let G be a group and let S be a generating set of G. Left /
right multiplication is an action of G on the metric space (G, dS). In particular,
the multiplication with an element induces an isometry on G.

We directly observe that distinct generating sets can lead to distinct word
metrics.

Example 3.1.3. Let S1 = {1} and S2 = Z be two generating sets of Z. Then
we have dS1

(g, h) = |g − h| and dS2
(g, h) = 1 for all g ̸= h ∈ Z.

If we look at distinct locally finite Cayley graphs for the same finitely gen-
erated group, then the word metrics are ‘essentially’ the same. To make this
precise, we introduce the notion of quasi-isometries.

Definition. Let (X, dX) and (Y, dY ) be two metric spaces.

(1) Let f : X → Y be a map.

– The map f is a quasi-isometric embedding if there are constants
γ ∈ R≥1 and c ∈ R≥0 such that

1

γ
dX(x, x′)− c ≤ dY (f(x), f(x

′)) ≤ γdX(x, x′) + c

for all x, x′ ∈ X.

33
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– The map f is quasi-dense if there is a constant c ∈ R≥0 such that

dY (y, f(X)) ≤ c

for all y ∈ Y .

– The map f is a quasi-isometry if it is a quasi-dense quasi-isometric
embedding.

(2) The metric spaces X and Y are quasi-isometric if there exists a quasi-
isometry f : X → Y . Then we write X ∼QI Y .

(3) Let f : X → Y and g : Y → X be quasi-isometries. They are quasi-
inverses of each other if there exists c ≥ 0 such that for all x ∈ X and all
y ∈ Y we have d(x, g(f(x))) ≤ c and d(y, f(g(y))) ≤ c.

Proposition 3.1.4. (i) The relation ∼QI is an equivalence relation on the
class of metric spaces.1

(ii) For every quasi-isometry there exists a quasi-inverse.

Proof. Exercise

Proposition 3.1.5. Let G be a finitely generated group and let S1, S2 be two
finite generating sets of G. The identity idG : (G, dS1) → (G, dS2) is a quasi-
isometry between these two metric spaces.

Proof. We may assume that G is not trivial. Thus, neither S1 nor S2 is empty.
Since idG is surjective, it is obviously quasi-dense and it remains to show that
it is a quasi-isometric embedding. Set

γ1 := sup{dS2(1, s) | s ∈ S1 ∪ S−1
1 }.

Since S1 is finite but not empty, we have γ1 ∈ N ∖ {0}. Let g, h ∈ G. Let
s1, . . . , sn ∈ S1 ∪ S−1

1 for n = dS1
(g, h) such that gs1 . . . sn = h. Then we have

dS2(g, h) = dS2(g, gs1 . . . sn)

≤ dS2(g, gs1) + dS2(gs1, gs1s2)

+ . . .+ dS2(gs1 . . . sn−1, gs1 . . . sn)

= dS2(1, s1) + dS2(1, s2) + . . .+ dS2(1, sn)

≤ γ1n

= γ1dS1(g, h).

Analogously, there exists

γ2 := sup{dS1
(1, s) | s ∈ S2 ∪ S−1

2 }

and we have dS1(g, h) ≤ γ2dS2(g, h). Set γ := max{γ1, γ2}. Then idG is a
quasi-isometric embedding for the constants γ and c = 0.

1Formally, relations are defined only on sets; here we think of their canonical definition for
classes.
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Because ∼QI is an equivalence relation and distinct word metrics of finitely
generated groups and finite generating sets lead to quasi-isometric metric spaces,
the following definition is well-defined.

Definition. Let G and H be finitely generated groups.

(1) We call G quasi-isometric to a metric space X if for one2 finite generating
set S of G the metric space (G, dS) (and thus the Cayley graph of G and S)
is quasi-isometric to X.

(2) The groups G and H are quasi-isometric if there is a metric space X that
is quasi-isometric to both groups.

Example 3.1.6. For every n ∈ N, the group Zn is quasi-isometric to the
euclidean space Rn, since the canonical embedding is a quasi-dense map that is
a quasi-isometric embedding with respect to the word metric for the standard
generating set S of Zn.

Example 3.1.7. Let G and H be finite groups. Then G and H are quasi-
isometric for constants γ = 1 and c = max{|G|, |H|}.

3.2 Švarc-Milnor lemma

Definition. Let X be a metric space.

(1) Let ℓ ∈ R≥0. A geodesic of length ℓ is an isometric embedding f : [0, ℓ] →
X. Its starting point is f(0) and its end point is f(ℓ).

(2) The metric space X is geodesic if there exists a geodesic of length d(x, y)
with starting point x and end point y for all x, y ∈ X.

(3) A quasi-geodesic is a quasi-isometric embedding f : I → X of a closed
interval I = [t1, t2] ⊆ R. Then f(t1) is the starting point and f(t2) is the
end point.

(4) The metric space X is quasi-geodesic if there are two constants c ∈ R≥1

and γ ∈ R≥0 such that there is a quasi-geodesic with constants γ and c and
with starting point x and end point y for all x, y ∈ X.

Remark. (1) Every geodesic metric space ist quasi-geodesic.

(2) Every quasi-geodesic metric space with constants γ = 1 and c = 0 is
geodesic.

Example 3.2.1. (1) Let Γ be a graph. Between every two of its vertices x, y,
there exists a path of length d(x, y). Thus, graphs are quasi-geodesic metric

2and hence (by Proposition 3.1.5) for every
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spaces for γ = 1 = c. In general, Γ is not a geodesic metric space. Never-
theless, we interpret them as geodesic metric space: by interpreting edges
as isometric copies of [0, 1],3 the graph becomes a geodesic metric space.4

(2) The space R2 with the euclidean metric is a geodesic metric space.

(3) The space R2 ∖ {0} with the metric induced by the euclidean metric on R2

is not geodesic, but it is quasi-geodesic for γ = 1 and every c > 0.

Theorem 3.2.2 (Švarc-Milnor lemma). Let G be a group acting on a metric
space X.5 Let X be quasi-geodesic for γ ∈ R≥1 and c ∈ R>0 and assume that
there exists a subset B ⊆ X with the following properties.

(i) the diameter of B is finite;

(ii)
⋃

g∈G gB = X;

(iii) For B′ := {x ∈ X | d(x,B) ≤ 2c}, the set S := {g ∈ G | B′ ∩ gB′ ̸= ∅} is
finite.

The following statements are true.

(1) The set S generates G; in particular, G is finitely generated.

(2) For all x ∈ X, the map ψx : G→ X, g 7→ gx is a quasi-isometry.

Proof. We will show (1) in a similar way as used for Theorem 1.3.2. Let g ∈ G.
We want to write g as a finite product of elements of S. Let x ∈ B and let
φ : [0, ℓ] → X be a quasi-geodesic for constants γ and c that starts at x and end
at gx. Set n := ⌈γℓ

c ⌉. Set tj := j · c
γ for all j ∈ {0, . . . , n − 1} and tn := ℓ and

set xj := φ(tj) for all j ∈ {0, . . . , n}. By (ii) there exists for every 0 ≤ j ≤ n
some gj ∈ G with xj ∈ gjB. We may assume that g0 = id and gn = g, because
x0 = x and xn = gx.

We have

d(xj , xj+1) ≤ γ · |tj − tj+1|+ c ≤ γ · c
γ
+ c = 2c.

Thus, xj+1 lies in gjB
′. Since it is also contained in gj+1B

′, we obtain

gjB
′ ∩ gj+1B

′ ̸= ∅

and hence sj := g−1
j gj+1 ∈ S. So we have g = s0 · · · sn−1 ∈ ⟨S⟩, which im-

plies (1). The additional statement is an immediate consequence of (iii).
For the proof of (2), we may assume x ∈ B by (ii). We immediately obtain

from (i) and (ii) that ψx is quasi-dense in X for the constant diam(B): for

3e. g. as in the case of planar graphs
4This will not play a major role for us. It will not be important whether we consider them

as geodesic of just quasi-geodesic metric spaces.
5Note that every g ∈ G induces an isometry on X.
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every y ∈ X there exists by (ii) a g ∈ G with y ∈ gB and thus we obtain
d(y, ψx(G)) ≤ d(y, gx) ≤ diam(B) by (i).

Let φ : [0, ℓ] → X be a quasi-geodesic starting at x and ending at gx for
constants γ and c as in the first part of the proof and let n ∈ N as we defined
it in that part. Then we obtain

d(ψx(1), ψx(g)) = d(x, gx)

= d(φ(0), φ(ℓ))

≥ 1

γ
ℓ− c

≥ 1

γ
· c(n− 1)

γ
− c

=
c

γ2
n−

(
c

γ2
+ c

)
≥ c

γ2
dS(1, g)−

(
c

γ2
+ c

)
.

For the second inequality, let s1 . . . sn ∈ S with g = s1 . . . sn and n = dS(1, g).
Because of sjB

′ ∩B′ ̸= ∅ for all 1 ≤ j ≤ n− 1, we have

d(ψx(1), ψx(g)) = d(x, gx)

≤ d(x, s1x) + d(s1x, s1s2x) + . . .

+ d(s1 . . . sn−1x, s1 . . . snx)

= d(x, s1x) + d(x, s2x) + . . .+ d(x, snx)

≤ n · 2diam(B′)

≤ 2diam(B′) · dS(1, g).

For γ′ := max{γ2

c , 2diam(B′)} and c′ := c
γ2 + c, the map ψx is a quasi-isometric

embedding. Thus, we obtain (2).

Corollary 3.2.3. Let G be a finitely generated group and let H be a subgroup
of G of finite index. Then H is finitely generated and H ∼QI G.

Proof. Let S be a finite generating set of G. The left multiplication of H on G is
an action ofH on the metric space (G, dS). By definition of dS , the space (G, dS)
is a quasi-geodesic metric space for γ = c = 1 according to Example 3.2.1 (1).
Let B be a transversal of the right cosets of H in G. Since |G : H| is finite, B is
finite as well. Since B and S are finite, also the set B′ := {g ∈ G | dS(g,B) ≤ 2}
is finite. Hence and since H acts freely on G, the set {h ∈ H | B′ ∩ hB′ ̸= ∅}
is finite. Because of HB = G, all assumptions of Theorem 3.2.2 are satisfied
and obtain that H is finitely generated and that the embedding id : H → G is
a quasi-isometry.

Corollary 3.2.4. Let G be a group and let H be a subgroup of G of finite index.
Then G is finitely generated if and only if H is finitely generated.
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3.3 Quasi-isometry invariants

In the rest of this chapter, we are interested in properties that are preserved by
quasi-isometries. These are algebraic properties as well as geometric ones. For
the geometric properties, we will also have a look at what algebraic results for
groups they imply.

Definition. A quasi-isometry invariant (with values in a set U) is an as-
signment P of finitely generated groups in U with P(G) = P(H) for all finitely
generated groups G ∼QI H.

We have seen in Example 3.1.7 that being finite is a quasi-isometry invariant.
Now we will show that finite presentability is one, too.

Theorem 3.3.1. Finite presentability is a quasi-isometry invariant for finitely
generated groups.

Proof. Let G be a finitely presented group and let H be a finitely generated
group. Let SG and SH be finite generating sets of G and H, respectively, and
let RG be a finite sets of relators of G such that G = ⟨SG | RG⟩. Let φ : G→ H
be a quasi-isometry and let ψ : H → G be a quasi-inverse of φ, where γ ≥ 1 and
c ≥ 0 are the constants for the quasi-isometries and c is the constant for the
quasi-inverse. We may assume that φ(1) = 1 and ψ(1) = 1. For all g, h ∈ G,
let wg,h be a shortest word over SH ∪ S−1

H such that φ(g)wg,h = φ(gh). We
choose wg,h such that wgh,h−1 is the inverse word6 of wg,h. Analogously, we

define words vh,s over SG ∪ S−1
G for g, h ∈ H.

Let w = s1 . . . sn be a word over SH ∪ S−1
H with w = 1. We replace every

letter si by ws1...si−1,si . Thereby, we obtain a word v = v1 . . . vk over SG ∪ S−1
G

with v = 1. Note that there are subwords v1 . . . vij for all j ≤ n such that
v1 . . . vij = ψ(s1 . . . sj) and such that ij < ij′ for j < j′. We say that v visits all
ψ(∅), . . . , ψ(s1 . . . sn) in that order.

Since v lies in the normal subgroup generated by RG in the free group
generated by SG, there are r1, . . . rm ∈ RG and words p1, . . . pm such that
p−1
1 r1p1 . . . p

−1
m rmpm has v as a reduction. We apply the same method we used

to obtain v from w to all ri and pi using the words vh,s in order to get words
r′i and p′i over SH ∪ S−1

H . Then w′ := p′1
−1r′1p

′
1 . . . p

′
m

−1r′mp
′
m is a word over

SH ∪ S−1
H that represents 1. Note that w′ visits φ(ψ(∅)), . . . , ψ(φ(s1 . . . sn)) in

that order.
For 1 ≤ i ≤ n, let xi be a shortest word such that s1 . . . sixi = φ(ψ(s1 . . . si)).

Note that the length of xi is at most c, since φ and ψ are quasi-inverse. Let
yi be the subword of w′ from the word that represents φ(ψ(s1 . . . si−1)) to
φ(ψ(s1 . . . si)). Note that the length of yi is at most γ + c. Then zi :=
xiyi+1x

−1
i+1s

−1
i+1 is a word of length at most γ + 3c + 1 that represents 1. If

we consider the word

w′′ = z0(s1z1s
−1
1 ) . . . (s1 . . . sn−1zn−1s

−1
n−1 . . . s

−1
1 )s1 . . . sn,

6If sε11 . . . sεnn is a word, then we call the word s−εn
n . . . s−ε1

1 its inverse.
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then it can be reduced to w′. Thus, w lies in the normal subgroup of the free
group generated freely by SH that is generated by all zi and all r′i. Since each
zi has length at most γ + 3c+ 1 and each r′i has length at most ℓ(γ + c), where
ℓ denotes the length of the longest relator in RG. Since there are only finitely
many words over SH ∪ S−1

H of length at most max{ℓ(γ + c), γ + 3c + 1}, we
obtain that H is finitely presented.

3.4 Ends of groups

In this section, we will look at ends of (finitely generated) groups. For this
definition, we rely on the notion of ends of graphs, but will avoid making precise
what an end of group is but instead just define the number of ends.

Definition. Let Γ = (V,E) be a graph. A ray in Γ is a one-way infinite path.
For every ray R in Γ and every finite set U ⊆ V of vertices there is a unique
component C of Γ−U that contain infinitely many vertices of R. Then we say
that R lies in C eventually. Two rays in Γ are equivalent if there is no finite
subset U ⊆ V such that the rays lie in distinct components of Γ−U eventually.
It follows easily that this defines an equivalence relation. Its equivalence classes
are the ends of Γ.

We shall show first that ends behave well with respect to quasi-isometries.

Lemma 3.4.1. Let Γ and ∆ be two locally finite graphs. If f : Γ → ∆ is a
quasi-isometry, then f induces a bijection on the ends of the graphs.

In particular, both graphs have the same number of ends.

Proof. Let γ ≥ 1 and c ≥ 0 such that f is a (γ, c)-quasi-isometry. Let R be a ray
of Γ. By joining every two vertices of f(R) by a path of length at most γ+c, we
obtain a one-way infinite walk W . Note that the distance between occurrences
of the same vertex is bounded by some constant κ, since f is a quasi-isometry.
Thus, every two rays in W are equivalent.

Let Q be a ray that is equivalent to R. Then for every r ∈ N they are
connected by a path that lies outside the balls of radius r around the first
vertex of R. This implies that we find paths outside of every ball of radius
r/γ − c around the f -image of the first vertex of R between every two rays R′,
Q′ that are defined by f(R) and f(Q) in ∆. Thus, every end of Γ is mapped to
an end of ∆.

Since f has a quasi-inverse g, every two equivalent rays ∆ define equivalent
rays in Γ, too. Thus, the map induced on the ends is bijective.

Even though we will not talk about specific ends of groups Lemma 3.4.1
shows that the number of ends for each Cayley graph of a locally finite group
and any of its finite generating sets is the same.

Definition. Let G be a finitely generated group. The number of ends of G
is the number of ends of each of its locally finite Cayley graphs. We denote this
number by e(G).
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We obtain from Lemma 3.4.1 more than just the basis of our definition of
numbers of ends of groups, as we will se in the following corollary.

Corollary 3.4.2. The number of ends is a quasi-isometry invariant for finitely
generated groups.

Natural questions that arise now are e. g. which values e(G) can have and
whether, for given number of ends, we can characterise the groups that have
this number of ends.

Lemma 3.4.3. Let Γ be a transitive connected locally finite graph.7 If Γ has at
least three ends, then it has infinitely many ends.

Proof. Let us suppose that Γ has finitely many but more than two ends. Then
there exists a finite subgraph ∆ of Γ such that for every component C of Γ−∆
all rays in C are equivalent. Since Γ is locally finite, there exists in every
component C of Γ−∆ a vertex x such that d(x,∆) is larger than the diameter
of ∆. Mapping y ∈ V (∆) to x by an automorphism φ implies that ∆ ∩ φ(∆)
is empty by the choice of x. Now there are at least three infinite components
of Γ − φ(∆) that contain ends. Since two of these components must lie in the
same component of Γ−∆, this contradicts the choice of ∆ that is separates all
ends.

We directly obtain the following theorem from Lemma 3.4.3.

Theorem 3.4.4. If G is a finitely generated group, then e(G) ∈ {0, 1, 2,∞}.

Example 3.4.5. Let G be a finitely generated group.

(1) We have e(G) = 0 if and only if G is finite.

(2) If G = Zn for some n ∈ N≥2, then e(G) = 1.

(3) If G = Z, then e(G) = 2.

(4) If G is a free group of rank at least 2, then e(G) = ∞.

We will prove in a later chapter that a finitely generated group with more
than one end is either a free product with amalgamation or an HNN extension
over a finite groups (Stallings’ theorem).

In the rest of this section, we will characterise finitely generated groups that
have exactly two ends.

Definition. A group is virtually cyclic if it has a cyclic subgroup of finite
index.

Theorem 3.4.6. Let G be a finitely generated infinite group. Then the following
statements are equivalent.

(1) G is virtually cyclic;

7I. e. there is a group acting transitively on Γ.
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(2) G ∼QI Z;

(3) e(G) = 2.

Proof. The implication (1)⇒(2) is a consequence of Corollary 3.2.3. Corol-
lary 3.4.2 and Example 3.4.5 (3) imply the direction (2)⇒(3).

Let us assume that e(G) = 2. Let Γ = (V,E) be a Cayley graph of G and
some finite generating set S of G. Then there exists a finite connected subgraph
∆ ⊆ Γ such that Γ ∖∆ has exactly two components C1, C2 both of which are
infinite.

Claim 1. For every g ∈ G either C1 ∩ gC1 and C2 ∩ gC2 or C1 ∩ gC2 and
C2 ∩ gC1 are infinite. The other two intersections are finite.

Proof of Claim 1. Since ∆ ∪ g∆ separates the four involved intersections,
but it covers together with them covers the vertex set of Γ and since ∆
separates two infinite components, there are precisely two infinite inter-
sections. But not both of them can lie in any of C1, gC1, C2 or gC2, since
its complement is infinite. Thus, we obtain the assertion.

Set
H := {g ∈ G | C1 ∩ gC1 and C2 ∩ gC2 are infinite}.

Claim 2. The set H is a subgroup of G with |G : H| ≤ 2.

Proof of Claim 2. Obviously, H contains for every elements also the inverse
one. If g, h ∈ H, then g(C1 ∩ hC1) is infinite. Since C2 ∩ g(C1 ∩ hC1) is
finite by Claim 1, we obtain that C1∩g(C1∩hC1) and hence C1∩ghC1 is
infinite. Thus, H is closed under multiplication. Hence, it is a subgroup.

Let us assume G ̸= H. We shall show |G : H| = 2. Let g, h ∈ G∖H. By
Claim 1 and the definition of H, the sets C1∩gC2 and C2∩gC1 are infinite
and the same holds if we replace g by h. Thus, the set C1∩g(C1∩hC2) ⊆
C1 ∩ gC1 must be finite. Since C1 ∩ g(C2 ∩ hC2) is finite, too, C1 ∩ ghC2

must be finite as well. By Claim 1 the element gh lies in H. Thus, g and h
are in the same coset of H, which implies |G : H| = 2.

Claim 3. For h ∈ H with ∆ ∩ h∆ = ∅ and for C1 := V ∖ C1, we have either

(i) C1 ∩ hC1 = ∅ and C1 ∩ hC1 ̸= ∅ or

(ii) C1 ∩ hC1 ̸= ∅ and C1 ∩ hC1 = ∅.

Proof of Claim 3. The claim follows directly from the connectedness of ∆.

By the choice of H and by Claim 1, the set |C1 ∩ hC1| − |C1 ∩ hC1| is finite
for all h ∈ H. We define the function

φ : H → Z, φ(h) := |C1 ∩ hC1| − |C1 ∩ hC1|.
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Claim 4. The function φ is a homomorphism.

Proof of Claim 4. Let g, h ∈ H. We have

φ(gh) = |C1 ∩ ghC1| − |C1 ∩ ghC1|
= |C1 ∩ gC1 ∩ ghC1|+ |C1 ∩ gC1 ∩ ghC1|

− |C1 ∩ gC1 ∩ ghC1| − |C1 ∩ gC1 ∩ ghC1|
= |C1 ∩ gC1 ∩ ghC1|+ |C1 ∩ gC1 ∩ ghC1|

− |C1 ∩ gC1 ∩ ghC1| − |C1 ∩ gC1 ∩ ghC1|
+ |C1 ∩ gC1 ∩ ghC1|+ |C1 ∩ gC1 ∩ ghC1|
− |C1 ∩ gC1 ∩ ghC1| − |C1 ∩ gC1 ∩ ghC1|

= |C1 ∩ gC1| − |C1 ∩ gC1|
+ |gC1 ∩ ghC1| − |gC1 ∩ ghC1|

= φ(g) + |C1 ∩ hC1| − |C1 ∩ hC1|
= φ(g) + φ(h).

Thus, φ is a homomorphism.

Claim 5. The kernel of φ is finite.

Proof of Claim 5. Since ∆ is a finite subgraph of Γ and since G acts freely
on Γ, there are only finitely many h ∈ H with ∆ ∩ h∆ ̸= ∅. For all other
h ∈ H, we obtain by Claim 3 that φ(h) and 0 are distinct.

Let h ∈ H ∖ φ−1(0). Then φ(h) and hence h have infinite order. Thus, we
have ⟨h⟩ ∼= Z. Since the index of ⟨φ(h)⟩ in Z is finite and ker(φ) is also finite by
Claim 5, the subgroup ⟨h⟩ has finite index in H and thus in G by Claim 2.

3.5 Growth of groups

Definition. Let G be a finitely generated group and let S be a finite generating
set of G. For r ∈ N and g ∈ G we set

BG,S
r (g) := {h ∈ G | dS(g, h) ≤ r}.

Then
βG,S : N → N, r 7→ |BG,S

r (1)|

is the growth function of G with respect to S.

Note that |BG,S
r (1)| = |BG,S

r (g)| for all g ∈ G.

Example 3.5.1. (1) Let G be a finitely generated group and let S be a finite
generating set of G. Then G is finite if and only if βG,S becomes stationary.
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(2) Let S1 be the standard generating set of Z. Then βZ,S1(r) = 2r + 1 for all
r ∈ N.

(3) Let S2 := {2, 3} be another generating set of Z. Then

βZ,S2
(r) =


1, if r = 0,

5, if r = 1,

6r + 1 otherwise.

(4) Let S be the standard generating set of Z2. Then

βZ2,S(r) = 1 + 4 ·
r∑

j=1

j = 2r2 + 2r + 1.

(5) Let F be a finitely generated free group of rank at least 2 and let S be a
free generating set of F . Then βF,S is an exponential function.8

Example 3.5.1 shows that distinct generating sets of the same group lead to
distinct growth functions. We will see later that all these functions are similar
for each groups.

Proposition 3.5.2. Let G be a finitely generated group and let S be a finite
generating set of G.

(1) (Sub-multiplicativity) For all r, r′ ∈ N we have

βG,S(r + r′) ≤ βG,S(r) · βG,S(r
′).

(2) Let F be a free group with free generating set S. For all r ∈ N we have

βG,S ≤ βF,S .

Proof. Exercise

Definition. Let f, g : R≥0 → R≥0 be maps.

(i) If f is increasing then it is a generalised growth function.

(ii) Let f and g be generalised growth functions. The map g dominates f if
there are c ∈ R≥0 and γ ∈ R>0 such that

f(r) ≤ γg(γr + c) + c

for all r ∈ R≥0. Then we write f ≼ g.

(iii) Let f and g be generalised growth functions. They are equivalent if f ≼ g
and g ≼ f . Then we write f ∼ g.

8Proof: Exercise
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Example and Definition 3.5.3. Let G be a finitely generated group and let S
be a finite generating set of G. Then the map

f : R≥0 → R≥0, r 7→ βG,S (⌈r⌉)

is a generalised growth function. If H is another finitely generated group and T
a finite generating set of H, then βG,S dominates/is equivalent to βH,T if
the same holds for their generalised growth functions.

Lemma 3.5.4. (1) Domination of (generalised) growth functions is a quasi-
order.9

(2) Equivalence of (generalised) growth functions is an equivalence relation.

Proof. Exercise

Now we are going to prove that distinct finite generating sets of the same
group essentially lead to the same growth functions: they are equivalent.

Proposition 3.5.5. Let G and H be finitely generated groups with finite gen-
erating sets S of G and T of H. If there is a quasi-isometric embedding
φ : (G, dS) → (H, dT ), then

βG,S ≼ βH,T .

Proof. Let γ ∈ R≥1 and c ∈ R≥0 be the constants for the quasi-isometric
embedding φ. Let e := φ(1G). Then we have

dT (e, φ(g)) ≤ γdS(1G, g) + c ≤ γr + c

for all g ∈ BG,S
r (1G) and hence

φ(BG,S
r (1G)) ⊆ BH,T

γr+c(e).

Let g, g′ ∈ G with φ(g) = φ(g′). Then we have

1

γ
dS(g, g

′)− c ≤ dT (φ(g), φ(g
′))

and hence
dS(g, g

′) ≤ γ(dT (φ(g), φ(g
′)) + c) = γc.

Thus, we have

βG,S(r) = |BG,S
r (1G)|

≤ |BG,S
γc (1G)| · |BH,T

γr+c(e)|

≤ |BG,S
γc (1G)| · |BH,T

γr+c(1H)|
= βG,S(γc) · βH,T (γr + c).

Since the first factor does not depend on r, we obtain βG,S ≼ βH,T .

9A quasiorder is a reflexive and transitive relation.
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Proposition 3.1.5 implies the following two corollaries.

Corollary 3.5.6. Distinct growth functions of the same finitely generated group
are equivalent.

Corollary 3.5.7. Quasi-isometric groups have equivalent growth functions.

Definition. Let G be a finitely generated group. The growth type of G is the
equivalence class of the generalised growth functions that contains all growth
functions of G (with respect to finite generating sets. The groups G has . . .

(i) . . . exponential growth if the growth type contains the map x 7→ ex;

(ii) . . .polynomial growth if, for every finite generating set S of G, there
exists an a ∈ R≥0 such that

βG,S ≼ (x 7→ xa);

(iii) . . . intermediate growth if it has neither exponential nor polynomial
growth.

Example 3.5.8. (1) Let n ∈ N. The growth type of the group Zn is polyno-
mial.10

(2) Let F be a finitely generated free group of rank n ≥ 2. Then the growth
type of F is exponential.

Remark 3.5.9. (1) By Corollary 3.5.6, the growth type of a finitely generated
group is a quasi-isometry invariant.

(2) Since free groups of rank at least 2 have exponential growth, we obtain
by Proposition 3.5.2 that every group has at most exponential growth. A
theorem of van den Dries and Wilkies implies that every polynomial func-
tion is dominated by the growth functions of finitely generated groups of
intermediate growth.

Remark 3.5.10. We already know groups with polynomial and with exponen-
tial growths. There are examples of groups of intermediate growth, e. g. the
so-called Grigorchuk group.

Theorem 3.5.11. Let G be a finitely generated group with finite generating
set S and let H be a finitely generated subgroups of G with finite generating
set T . Then

βH,T ≼ βG,S .

Proof. The set S′ := S ∪ T is a finite generating set of G. Let r ∈ N. Then we
have

dS′(1, h) ≤ dT (1, h) ≤ r

for all h ∈ BH,T
r (1). Thus, we have BH,T

r (1) ⊆ BG,S′

r (1). This implies together
with Corollary 3.5.6

βH,T ≼ βG,S′ ≼ βG,S .
10Proof: exercise
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Corollary 3.5.12. If a finitely generated group G has a free subgroup of rank 2,
then G has exponential growth.

Definition. Let G be a group.

(i) Let G1 := G. For n ∈ N, we define Gn recursively as commutator

[Gn−1, G] := {h−1g−1hg | h ∈ Gn−1, g ∈ G}

of Gn−1 and G. We call G nilpotent if there exists n ∈ N such that
Gn = 1. (The sequence (Gn)n∈N is called a central series.)

(ii) The group G is virtually nilpotent if it has a nilpotent subgroup of finite
index.

We cite the main theorem in the area of growth of groups without proof.

Theorem 3.5.13 (Gromov). A finitely generated group has polynomial growth
if and only if it is virtually nilpotent.

Corollary 3.5.14. Being virtually nilpotent is a quasi-isometry invariant for
finitely generated groups.



Chapter 4

Bass-Serre theory

Definition. A group G acts without (edge-)inversion on a graph if every
element of G that fixes an edge xy fixes already the two incident vertices x
and y.

4.1 Group actions on trees

We have already seen that every finite Group that acts on a tree fixes either a
vertex or an edge but that we cannot expect the same if we drop the assumption
of finiteness. In this section, we will prove an analogue for infinite groups.

First, we need a notion from infinite graph theory.

Definition. Let Γ = (V,E) be a graph. A two-way infinite sequence . . . x−1x0x1 . . .
of pairwise distinct vertices and such that xixi+1 ∈ E for all i ∈ Z is a double
ray.

Definition. Let the group G act on the tree T without inversion. For g ∈ G,
let R = . . . x−1x0x1 . . . be a g-invariant double ray, i. e. gR = R. Then g acts
by translation on R if there exists z ∈ Z with gxi = xi+z for all i ∈ Z and g
acts by reflection on R if there exists z ∈ Z with gxz−i = xz+i for all i ∈ Z.

For every g ∈ G we set |g| := min{d(v, gv) | v ∈ V (T )} and call it the trans-
lation length of g. We call g elliptic if |g| = 0 and hyperbolic otherwise.

Remark 4.1.1. Every elliptic element has a fixed vertex.

Notation. For two vertices x, y in a tree, we denote by [x, y] the unique path
between them.

Let us obtain some easy properties of hyperbolic group elements.

Lemma 4.1.2. Let the group G act on the tree T without inversion. Then the
following hold for all hyperbolic g ∈ G.

(i) There exists a unique g-invariant double ray R in T . Furthermore, g acts
on R by translation.

47
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(ii) The order of g is infinite.

(iii) We have d(v, gzv) = |z| · |g|+ 2d(v,R) for all v ∈ V (T ) and z ∈ Z ∖ {0}.

(iv) We have |gz| = |z| · |g| for all z ∈ Z.

Proof. Let v ∈ V (T ) with d(v, gv) = |g| and let R :=
⋃

z∈Z[g
zv, gz+1v]. First,

we will show that R is a double ray. It suffices to prove that [gz−1v, gzv] and
[gzv, gz+1v] meet only in gzv and thus it suffices to show that [g−1v, v] and [v, gv]
meet only in v. Let us suppose that there exists a vertex in the intersection of
these two paths that is not v. Then the neighbour w of v on [v, gv] lies in
the intersection [v, g−1v] ∩ [v, gv]. Then g−1w lies in [g−1v, gv] and because
of d(w, gw) = d(w, g−1w) ≤ d(v, gv) the choice of v implies w = g−1v and
g−1w = v, which is a contradiction to the action without inversion of G on T ,
since g fixes the edge vw but neither of the two incident vertices. This, R is a
double ray.

Obviously, R is g-invariant. Thus and since g acts on R by translation,
it remains to show the uniqueness of R in order to show (i). So let R′ be a
double ray that is distinct from R. Then there is a vertex u on R that has
minimum distance to R′ and, since R and R′ are distinct, there is a vertex on R
of arbitrarily large distance to R′ that lies in the same g-orbit as u. But then
R′ cannot be g-invariant. This shows (i).

Since R is a double ray, infinitely many gzv must be distinct. Thus, g cannot
have finite order, which shows (ii).

We note that the definition of R implies that (iii) holds for all vertices
on R. Let x ∈ V (T ) and z ∈ Z ∖ {0}. There exists a unique vertex y ∈ R with
d(x, y) = d(x,R). So we have [x, gzx] = [x, y]∪ [y, gzy]∪ [gzy, gzx] and thus (iii).

It remains to show (iv), which follows immediately from (iii).

In the proof of Lemma 4.1.2 we used a property of hyperbolic group elements
which is even sufficient for a characterisation of these elements.

Lemma 4.1.3. Let the group G act without inversion on the tree T . Let g ∈ G.
Then g is hyperbolic, if and only if there exists a vertex v ∈ V (T ) with v ̸= gv
and such that [v, gv] ∩ [gv, g2v] contains only gv.

Proof. If g is hyperbolic, then we have already seen in the proof of Lemma
4.1.2 (i) that for every v ∈ V (T ) with d(v, gv) = |g| the intersection [v, gv] ∩
[gv, g2v] contains only gv. For the other direction, we obtain directly from the
assumption that

⋃
z∈Z[g

zv, gz+1v] is a double ray and g acts on it as transla-
tion. In particular, g cannot fix any vertex and we obtain |g| > 0. Thus, g is
hyperbolic.

If two elliptic elements have a common fixed vertex, then their product must
fix that vertex, too. This obvious obstacle for two elliptic elements to have a
hyperbolic product is the only one, as we will see now.

Lemma 4.1.4. Let the group G acts on the tree T without inversion. Let g, h
be elliptic elements of G. Then gh is hyperbolic, if and only if g and h have no
common fixed vertex.
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Proof. It suffices to prove that gh is hyperbolic if g and h have no common fixed
vertex. Let x be a fixed vertex of g and let y be a fixed vertex of h such that
d(x, y) is minimal. By assumption, we have d(x, y) > 0. Then [x, y]∩ [gx, gy] =
[x, y] ∩ [x, gy] only contains the vertex x by minimality of d(x, y). Analogously,
[x, y]∩ [hx, hy] = [x, y]∩ [hx, y] only contains the vertex y and both statements
also hold for g−1 instead of g and h−1 instead of h. Since x separates y from
g−1y, we obtain that h−1x separates h−1y = y from h−1g−1y. Thus, and since
y separates h−1x from x and x separates y from gy = ghy, we obtain that y
separates h−1g−1y from ghy = gy. Together with Lemma 4.1.3 this implies the
assertion.

Definition. Let the group G act on X. We denote by Fix(g) the set of fixed
points of g ∈ G, i. e. Fix(g) = {x ∈ X | gx = x}.

Lemma 4.1.5. Let G be a finitely generated group that act on the tree T without
inversion. If each element of G is elliptic, then there exists x ∈ V (T ) with
Gx = {x}.

Comment. We will see later (Lemma 4.1.9) that Lemma 4.1.5 is wrong if we
drop the assumption on G being finitely generated.

Beweis von Lemma 4.1.5. Let S be a finite generating set of G. For every
g ∈ G, the set Fix(g) forms a non-empty subtree of T . Lemma 4.1.4 implies
Fix(g)∩Fix(h) ̸= ∅ for all g, h ∈ G. Thus, the finite intersection

⋂
s∈S Fix(s) is

non-empty as well and every element of this intersection is fixed by each element
of G.

Lemma 4.1.6. Let the group G act on the tree T without inversion. Let g, h ∈
G be hyperbolic. Let Rg be the unique g-invariant double ray and let Rh be the
unique h-invariant double ray. If Rg∩Rh is finite, then there are m,n ∈ N such
that gm and hn freely generate a free group of rank 2.

Proof. We set P := Rg ∩ Rh. Let m,n ∈ N with |P | + 2 ≤ min{|gm|, |hn|}. If
P ̸= ∅, then let xg, yg be the two neighbours of the end vertices of P on Rg ∖P
such that gmxg lies in the component of Rg ∖ P that contains yg. Otherwise,
let a be on Rg and b on Rh such that d(a, b) is smallest possible and let xg
and yg be neighbour of a with the corresponding property. If P ̸= ∅, then let
Ag be the component of T ∖ P that contains yg and let Bg be the component
of T ∖ P that contains xg. Otherwise, let Ag and Bg be the corresponding
components of T − xgyg. Analogously, we choose vertices xh, yh on Rh and
components Ah, Bh of T∖P . Since gm acts on Rg as translation with translation
length |gm| ≥ d(xg, yg), we obtain (T ∖ Bg)g

m ⊆ Ag. Similarly, we obtain
(T ∖Bh)h

n ⊆ Ah. Lemma 2.1.12 implies that gm and hn freely generate a free
subgroup of G.

Theorem and Definition 4.1.7. Let the group G act on the tree T without
inversion. Then exactly one of the following hold.
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(1) G acts trivially on T , i. e., there exists v ∈ V (T ) with Gv = {v}. We call
this action elliptic.

(2) There are two hyperbolic elements in G that freely generate a free subgroup
of G of rank 2 and such that the g-invariant and the h-invariant double rays
meet only in a finite subpath. We call this action hyperbolic.

(3) The action of G on T is not elliptic and there exists a G-invariant double
ray in T such that all elements of G act on it as translations. We call this
action cyclic.

(4) The action of G on T is neither elliptic nor cyclic and there exists a G-
invariant double ray in T such that all elements of G act on it as translations
and reflections. We call this action dihedral.

(5) The action of G is neither elliptic nor cyclic and there exists a ray R such
that, for every g ∈ G, the intersection R∩Rg is a subray of R. We call this
action parabolic.

Proof. Obviously, no two of these five statements can hold simultaneously. Thus,
we just have to show that one of the statements holds for the action of G on T .

First, we consider the case that all elements of G are elliptic. We assume
that (1) does not hold and show (5). For this, we construct to sequences:
one sequence (xi)i∈N of vertices and one sequence (gi)i∈N of group elements.
Let g0 ∈ G and x0 ∈ Fix(g0) be arbitrary. For i ∈ N, let gi ∈ G such that
gixi−1 ̸= xi−1 and let xi ∈ V (T ) such that gjxi = xi for all j ≤ i and such that
d(xi, xi−1) is minimal with this property. Since G is not finitely generated by
Lemma 4.1.5 but since the finite intersection

⋂
j≤i Fix(gj) is not empty by the

same lemma, we find these two sequences. We set

R = [x0, x1] ∪ [x1, x2] ∪ . . .

Then R is a ray by minimality of d(xi, xi−1) and by Lemma 4.1.4. Let us now
show that for every g ∈ G the intersection R∩gR is a ray again. If this does not
hold for some g ∈ G, then R∩ gR must be finite. Since g is elliptic, there exists
a fixed vertex of g. Let x be such a vertex that has minimal distance to R and
let y be the vertex on R that realises this distance. Let i ∈ N with gxi ̸= xi and
d(x0, xi) > d(x0, y). We have already mentioned in the proof of Lemma 4.1.5
that Fix(gi+1) and Fix(g) each span subtrees of T . Since gi+1xi ̸= xi ̸= gxi
and since xi+1 and x lie in distinct components of T − xi, the elements g and
gi+1 have no common fixed vertex. Thus, Lemma 4.1.4 implies that ggi+1 is
hyperbolic, a contradiction to our assumption. Thus, the action of G on T is
parabolic.

Let us now consider the case that G contains hyperbolic elements. Thus,
the action of G on T cannot be elliptic. If there are two hyperbolic elements
g, h such that the intersection of their two invariant double rays is finite, then
Lemma 4.1.6 implies (2). Thus, we may assume that for every two hyperbolic
elements g, h the intersection of their invariant double rays Rg and Rh is infinite.
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Since Rg ∩ Rh must be connected, it is either a ray or a double ray. If it is a
double ray for any two hyperbolic elements, then all these double rays must be
the same. Since gf is hyperbolic for all elements f ∈ G and Rgf = f−1Rg holds
because of gf (f−1Rg) = f−1gRg = f−1Rg for the unique gf -invariant double
ray Rgf , also the elliptic elements leave Rg invariant. Thus, we have either (3)
or (4). So let us assume that there are g and h such that R′ := Rg ∩Rh is a ray.
We set f := gh. Then f is hyperbolic and we have as before Rf = h−1Rg. Since
h−1R′ ∩ R′ is infinite and lies in h−1Rg, the double ray Rf contains a subray
of R′. Let R := R′∩Rf . Let us suppose that (5) does not hold, i. e., there exists
e ∈ G such that eR∩R is finite. We have eR = Rfe−1 ∩Rge−1 ∩Rhe−1 and thus
one of the three double rays Rfe−1 , Rge−1 or Rhe−1 has only finite intersection

with R and thus also finite intersection with one of the three (distinct!) double
rays Rf , Rg or Rh. This contradiction shows (5).

We have already seen the following.

Lemma 4.1.8. Actions without inversions of finite groups on trees are elliptic.

Proof. Let G be a finite groups that acts on a tree T without inversion. Let
t ∈ V (T ). Then the orbit of t is finite. Thus, the minimal subtree T ′ of T that
contains this orbit is finite, too, and G acts on T ′. The middle vertex or edge
(depending on the parity of the diameter of T ′) of a longest path in T ′ must be
fixed by G: otherwise we would obtain a contradiction to the maximal length
of that path. Since the action of G on T and thus on T ′ is without inversion,
this fixed vertex or edge must be a vertex and hence the action of G on T ′ and
hence on T is elliptic.

Lemma 4.1.9. For every countable group G that is not finitely generated, there
is a tree T such that G acts on T without inversion parabolically and every
element of G is elliptic.

Proof. There exists countably many subgroups U0 < U1 < . . . with
⋃

i∈N Ui =
G: since G is countable, there exists a countable generating set S = {si | i ∈ N}
ofG; we set Vi := ⟨sj | j ≤ i⟩ and choose a stricly ascending infinite subsequence.
If this sequence would not exists, there would exist some n ∈ N such that
⟨s1, . . . , sn⟩ = G, which is impossible by our assumption.

We consider the graph T whose vertex set is the set of cosets of the subgroups
Ui, i. e. V (T ) = {gUi | g ∈ G, i ∈ N}. Two vertices gUm and hUn are adjacent
if and only if |m − n| = 1 and either gUm ⊆ hUn or hUn ⊆ gUm. Let us show
that T is connected. Because of

⋃
i∈N Ui = G, there exists i ∈ N with g, h ∈ Ui.

Then

gUm, gUm+1, . . . , gUi = Ui = hUi, hUi−1, . . . , hUn

contains a path from gUm to hUn.
Every gU0 has exactly one neighbour, since the cosets of U1 form a partition

of G and since gU0 and gU1 are adjacent. Additionally, every gUi has a unique
neighbour in the cosets of Ui+1. Thus, T contains no cycle.
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Obviously, G acts by left multiplication on T . Since there exists for every
g ∈ G an i ∈ N with g ∈ Ui, we have gUi = Ui and hence g is elliptic. Also,
for every Ui there exists g in Ui+1 ∖ Ui. We have gUi ̸= Ui for g. Furthermore,
h−1(hUi) ̸= hUi for every coset hUi that is distinct from Ui. Thus, there is no
vertex fixed by all of G. By the proof of Theorem 4.1.7, the action of G on T
must be parabolic.

In the rest of this section. we will use knowledge of all action of a group on
all trees to gain informations about the group.

Definition. A group is noetherian if it contains no infinite strictly ascending
sequence of subgroups.

A group has property (AR) if each of its actions without inversion on trees
is either elliptic, cyclic or dihedral.

Theorem 4.1.10. Let G be a group. The following are equivalent.

(a) G is noetherian.

(b) Every subgroup of G is finitely generated.

(c) Every subgroup of G has property (AR).

Proof. The implication (a)⇒(b) follows immediately, since every group that is
not finitely generated has an infinite strictly ascending sequence of subgroups.

To prove (b)⇒(c), we suppose that some subgroup H of G does not have
property (AR). So there exists a tree T such that H acts on T without inversion
either hyperbolically or parabolically. First, we consider the case that the action
of H on T hyperbolic. Then U contains a free subgroup F of rank 2 and thus
a subgroup of F that is not finitely generated in contradiction to (b). So let
us assume that the action of H on T is parabolic. Let R = x0x1 . . . be a ray
such that for all h ∈ H the intersection hR ∩ R is a ray again. The subgroup
U :=

⋃
i∈NHxi of H is finitely generated by assumption. Thus, there exists

n ∈ N with Hxi = Hxn for all i ≥ n. We may assume n = 0. If g ∈ H is elliptic,
then it fixes a vertex v ∈ V (T ). Since R ∩ gR is a ray and d(gxi, v) = d(xi, v)
holds for that i ∈ N with minimum distance to v, we have gxj = xj for all j ≥ i.
Thus, we have g ∈ U and U is the group of all elliptic elements of H. Since T
has no vertex that is fixed by all of G but Uxi = {xi}, there exists a hyperbolic
element h in H. Let Rh be the h-invariant double ray in T . For every vertex
x on Rh there exists z ∈ Z ∖ {0} such that hzx and h2zx lie on R. We have
Hx = U because of Hhzx = Hh2zx = U . Thus, Rh is invariant under U . Let
g be another hyperbolic element and let Rg be the unique g-invariant double
ray in T . By replacing g by g−1 or h by h−1, if necessary, we may assume
gxj = xj+|g| for all xj on R ∩ Rg and hxj = xj+|h| for all xj on R ∩ Rh. We

set f := h−|g|g|h|. Then f is elliptic, so it lies in U . In particular, we have
Rh = h|g|fRh = g|h|Rh. Hence, Rh is g|h|-invariant and thus g-invariant. Thus,
Rh is invariant under H and the action of H on T is not parabolic. This shows
the implication (b)⇒(c).
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It remains to show the implication (c)⇒(a). Let us assume that G is not
noetherian. So we find an infinite strictly ascending sequence (Hi)i∈N of sub-
groups of G. Let s0 ∈ H0 and, for i ≥ 1, let si ∈ Hi ∖ Hi−1. Then (Ui)i∈N
with Ui := ⟨sj | j ≤ i⟩ is an infinite strictly ascending sequence of countable
subgroups of G and U :=

⋃
i∈N Ui is a countable subgroup of G. Since every

finite subset of U lies in some Ui, the group U is not finitely generated. By
Lemma 4.1.9 there exists a tree T such that U acts without inversion on T and
this action is parabolic. We obtain that U does not have property (AR).

Now we will look at connections between free products and actions without
inversion on trees. For this, we first consider the case that our group is a free
product (Proposition 4.1.11) and afterwards we look at the situation of a group
action with certain properties in which we will show that the group that we are
considering is a free product (Propositions 4.1.13 and 4.1.14).

Proposition 4.1.11. Let A and B be groups. Then there exists a tree T such
that G := A∗B acts on T and such that this action has the following properties.

(1) The action induced on the edges is free and transitive.

(2) The action is without inversion.

(3) There are exactly two orbits on the vertex set.

(4) There is an edge uv ∈ E(T ) with A = Gu and B = Gv.

Proof. Let T be the graph whose vertex set consists of the left cosets of A and
of B and such that two vertices gA and hB are adjacent if g = h. The proof that
T is a tree is analogous to the corresponding part of the proof of Theorem 2.5.12:
we just have to note that we did not use finiteness of the involved groups in
that part of the proof.

We also verified GA = A and GB = B in that proof. (Again, we did not use
finiteness of the involved groups.) Since A and B are adjacent, we obtain (4).
The action of G on T has exactly two orbits on the vertices: the left cosets
of A form one orbits and the left cosets of B form the other. This implies (2)
and (3). It remains to show (1). Note that transitivity directly follows from the
definition of the edges. The stabiliser of an edge uv must lies in the intersection
of Gu and Gv because of (3). Since this intersection is trivial, G acts freely on
the edges of T .

We need the following version of the ping-pong lemma.

Lemma 4.1.12. Let the group G act on X. Let H1, H2 ≤ G with |H1| ≥ 3.
Let A,B be two non-empty disjoint subsets of X. We assume gB ⊆ A for all
g ∈ H1 with g ̸= 1 and gA ⊆ B for all g ∈ H2 with g ̸= 1. Then the subgroup
of G generated by H1 and H2 is isomorphic to H1 ∗H2.

Proof. Exercise
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Proposition 4.1.13. Let T be an infinite tree. Let the group G act on T
without inversion with the following properties.

(1) G acts transitively and free on the edges of T .

(2) G acts transitively on the vertices of T .

Let vw ∈ E(T ) and g ∈ G with gv = w. Then G ∼= Gv ∗ ⟨g⟩.

Proof. Since the action of G on T is without inversion and because of ge ̸= e
for all e ∈ E(T ), Lemma 4.1.3 implies that g is hyperbolic and thus has infinite
order by Lemma 4.1.2 (ii).

Let e = vw. Obviously, ({v}, ∅) is a fundamental domain of the action of G
on T . Thus, Theorem 1.3.2 implies

G = ⟨Gv ∪ {h ∈ G | vhv ∈ E(T )}⟩.

Note that there are at most two orbits of Gv on the edges incident with v and
thus, there are at most two Gv-orbits on the neighbours of v. If g−1v and gv
lie in the same Gv-orbit, then we obtain a contradiction since the existence of
h ∈ Gv with hgv = g−1v implies that hg fixes e, which is impossible since
hg ̸= 1. Thus, there are exactly two Gv-orbits on the neighbours of v. Those in
the same orbit as w are obtained as the image of v under hg for some suitable
h ∈ Gv and those in the same orbit as g−1v are obtained as the image of v
under hg−1 for some suitable h ∈ Gv. Thus, we have shown

G = ⟨Gv ∪ {g}⟩.

Let A be the set of all those vertices that can be reached by a path from v
that contains either gv or g−1v and let B be the set of all those vertices that
can be reached by a path from v that contains neither gv nor g−1v. Obviously,
we have gzB ⊆ A for all z ∈ Z∖ {0}. Since G acts freely on the edges of T and
because of g /∈ Gv, we have hgv /∈ {gv, g−1v} and hg−1v /∈ {gv, g−1v} for all
h ∈ Gv∖{1}. Thus, we obtain hA ⊆ B. Lemma 4.1.12 implies G ∼= Gv∗⟨g⟩.

A modification of the proof of Proposition 4.1.13 leads to the following propo-
sition.

Proposition 4.1.14. Let T be an infinite tree that is not a double ray. Let the
group G act on T without inversion with the following properties.

(1) G acts transitively and free on the edges of T .

(2) There are exactly two g-orbit on the vertex set of T .

Then we have G ∼= Gv ∗Gw for adjacent vertices v, w ∈ V (T ).

Proof. Exercise
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4.2 Fundamental groups of graphs

Definition. A graph with involution is an oriented multigraph Γ together
with a map ·̄ : E(Γ) → E(Γ) with ē ̸= e and ¯̄e = e and such that ē is an edge
from v to u if e is an edge from u to v. We denote by i(e) the initial vertex of e
and by t(e) its terminal vertex. (So we have t(e) = i(ē) and t(ē) = i(e).)

Example 4.2.1. In a (multi-)graph, we can replace every edge by two inversely
directed edges between the same vertices. That way, we obtain a graph with
involution.

Definition. Let Γ be a graph with involution. Let K = v0e0v1 . . . ek−1vk be
a directed walk in Γ, i. e., the edge ei satisfies i(ei) = vi and t(ei) = vi+1.
If ēi = ei+1, then we call vivi+1vi+2 a spike. If K has no spike, then it is
spikeless. If vivi+1vi+2 is a spike, then

K ′ = v0e0 . . . ei−1viei+2 . . . vk

is obtained from K by removing a spike. Let K1 = v0e0v1 . . . ek−1vk and
K2 = w0f0w1 . . . fℓ−1wℓ be two directed walks with vk = w0. Then

K1K2 := v0e0v1 . . . ek−1vkf0w1 . . . fℓ−1wℓ

is a directed walk as well, the composition of K1 and K2.

Remark 4.2.2. In a graph with involution, every directed walk can be trans-
ferred by removing spikes to a spikeless directed walk.

Definition. Let K,K ′ be two directed walks of a graph Γ with involution. We
write K ∼ K ′ if there exists a sequence K = K0, . . . ,Kn = K ′ of directed
walks such that with Ki is obtained from Ki−1 or Ki−1 is obtained from Ki by
removing a spike.

Remark 4.2.3. The relation ∼ is an equivalence relations on the directed walks
of a graph with involutions.

Lemma 4.2.4. Let Γ = (V,E) be a connected graph with involution. Then
every equivalence class of ∼ contains exactly one spikeless walk.

Proof. Exercise

Lemma 4.2.5. Let K1,K2, L1, L2 be four directed walks of a graph with in-
volution such that the compositions K1K2 and L1L2 exist. If K1 ∼ L1 and
K2 ∼ L2, then we have K1K2 ∼ L1L2.

Proof. Let K1 = M1, . . . ,Mm = L1 be a sequence of directed walks that verify
the equivalence K1 ∼ L1 and let K2 = N1, . . . , Nn = L2 be an analogous
sequence for K2 ∼ L2. Then M1N1, . . . ,MmN1, . . . ,MmNn is a sequence that
shows K1K2 ∼ L1L2.
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Definition. Let Γ be a graph with involution. Let π1(Γ, v) with v ∈ V (Γ) be
the set of equivalence classes of ∼ on the directed walks in Γ that start and end
at v. We define a multiplication on π1(Γ, v) by [K][L] := [KL]. Lemma 4.2.5
implies that this multiplication is well-defined.

Lemma 4.2.6. Let Γ be a connected graph with involution and let v ∈ V (Γ).

(1) π1(Γ, v) is a group.

(2) If u ∈ V (Γ), then π1(Γ, v) and π1(Γ, u) are isomorphic.

Proof. Since the multiplication is well-defined, we obtain (1).
To prove (2), we choose a directed v–u walk K and note that every ele-

ment [L] of π1(Γ, v) can be transferred into an element [K−1LK] of π1(Γ, u)
by ‘conjugation with K’, where K−1 is the reverse of the walk K obtained by
replacing each edge e on K by ē. Conversely, every element [M ] of π1(Γ, u) can
be transferred into an element [KMK−1] of π1(Γ, v) by ‘conjugation with K−1’.
The corresponding maps are inverse to each other. Furthermore, these maps
are homomorphisms, so we obtain (2).

Definition. The fundamental group π1(Γ) of a connected graph Γ with invo-
lution is an element of the isomorphism class of the groups π1(Γ, v) for v ∈ V (Γ).

Comment. Eventhough the elements of the fundamental group are equiva-
lence classes of directed walks, we usually only look at representatives of such
equivalence classes.

Remark 4.2.7. Accordingly to Example 4.2.1, our definitions can be trans-
ferred directly to (multi-)graphs.

Example 4.2.8. If T is a tree, then π1(T ) = 1.

Definition. For a (directed) multigraph Γ and a subset F ⊆ E(Γ) of the edge
set, let Γ/F be the (directed) multigraph whose vertex set is the set of com-
ponents of (V (Γ), F ). For every edge e in E(Γ) ∖ F , we add an edge between
the components that contain the incident vertices of e. We note that loops and
multi-edges may be created that way.

Lemma 4.2.9. Let Γ be a connected multigraph and let T be a subtree of Γ.
Then we have π1(Γ) ∼= π1(Γ/E(T )).

Proof. It suffices to prove the assertion for graphs with involutions, in which
case the ‘tree’ then contains for every edge e also the edge ē. We consider
the fundamental group π1(Γ, x) with respect to a vertex x ∈ V (T ) and the
fundamental group π1(Γ/E(T )) with respect to the vertex vT of Γ/E(T ) that
contains all vertices of T . We define a map φT : π1(Γ) → π1(Γ/E(T )). For a
closed directed walk K = v0e0v1 . . . vk with v0 = x = vk in Γ, let φT (K) be the
canonical image of K in Γ/E(T ): we replace every maximal subwalk in T by vT
and replace every edge incident with exactly one vertex of T by its canonical
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image in Γ/E(T ). Obviously, φT is a well-defined group homomorphism. It
remains to show that φT is bijective.

LetK = v0e0v1 . . . ek−1vk be a closed directed walk in Γ/E(T ). By replacing
the vertex vi = vT for i ̸= 0 and i ̸= k by a directed walk hat connects the end
vertices of the edges ei and ei+1 in T and adding a directed walk from x to the
initial vertex of e0 in V (Γ) and one from the terminal vertex of the edge ek−1

in V (Γ) to x, we obtain a closed directed walk in Γ that starts and ends at x.
Obviously, this will be mapped by φT to K. Thus, φT is surjective.

Let K = v0e0v1 . . . ek−1vk with v0 = x = vk be a spikeless directed walk in
the kernel of φT . Then we can view K as composition K1L1K2 . . . Lm−1Km of
directed walks, where the walks Ki lies in T and the walks Li lie in Γ∖ T . Let
us suppose that K is non-trivial. Since L1L2 . . . Lm in Γ/E(T ) is equivalent to
the trivial walk and, by Lemma 4.2.4, the trivial walk is the unique spikeless
directed walk in its equivalence class, the walk L1L2 . . . Lm must contain a spike.
This spike cannot lie in any of the Li, so it is created by the composition of
Li an Li+1 for some 1 ≤ i ≤ m − 1. This spike corresponds to a directed walk
vewēv in Γ. Thus, Ki+1 is a closed directed walk in T with starting and end
vertex w. Since π1(T ) is trivial by Example 4.2.8 and since Ki+1 is spikeless,
Ki+1 is the trivial walk. This contradicts the choice of K having no spike and
thus φT is injective.

Lemma 4.2.10. For every connected multigraph Γ = (V,E), the fundamental
group π1(Γ) is a free group.

If Γ is finite, then |E| − |V |+ 1 is the rank of π1(Γ).

Proof. As before, it suffices for the first part to show the assertion for graphs
with involution. So let us assume that Γ is a graph with involution. Let T be
a spanning tree of Γ. (Again, T contains for every edge e also the edge ē.) By
Lemma 4.2.9, we have π1(Γ) ∼= π1(Γ/T ) and we may assume that Γ has exactly
one vertex.

Let S be a minimal subset of E(Γ) such that

E(Γ) = S ∪ {s̄ | s ∈ S}.

We will show that π1(Γ) and the free group freely generated by S are isomor-
phic. Every element of π1(Γ) contains a unique directed walk without spikes
as representative by Lemma 4.2.4. By replacing each edge s̄ by s−1 and by
dropping the vertices, this walk corresponds to a reduced word over S ∪ S−1,
which is trivial if and only if the walk is trivial. Conversely, every reduced word
over S ∪ S−1 corresponds to a directed walk in Γ by replacing s−1 by s̄ and
inserting the correct vertices. Since these correlations respect compositions of
walks and concatenations of words, π1(Γ) and the free group freely generated
by S must be isomorphic.

Now let Γ be a connected multigraph. Then we have

|E| − |V |+ 1 = |E(Γ/E(T ))| − |V (Γ/E(T ))|+ 1

by the considerations for the first part and hence, we obtain the second part.
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Comment. The existence of a spanning tree can be shown using Zorn’s lemma.
Furthermore, the existence of spanning trees for all (multi-)graphs is equivalent
to the axiom of choice over the system ZF.

Definition. Let a group G act on a graph Γ. Then the quotient graph Γ/G
is defined as multigraph whose vertex set consists of the orbits of G in V (Γ)
and whose edge set is induced by the orbits of G in E(Γ).1

Example 4.2.11. Let G be a group with generating set S and let Γ be the
Cayley graph of Γ and S. Then Γ/G is a graph with exactly one vertex and at
most |S| loops. (Note that there may be fewer loops if S ∩ S−1 is not empty.)

Remark 4.2.12. Let G be a group acting on the graph Γ. Then the canonical
projection ϱ : Γ → Γ/G is a surjective graph homomorphism, i. e., adjacent
vertices are mapped onto adjacent vertices by ϱ.

Proposition and Definition 4.2.13. For every connected graph Γ there exists
a tree TΓ and a free action of π1(Γ) on TΓ such that TΓ/π1(Γ) ∼= Γ. The tree TΓ
is the universal cover of Γ.

Proof. Let T be a spanning tree of Γ. If S is an orientation of the edges of
Γ− T , then we have seen in the proof of Lemma 4.2.10 that π1(Γ) is isomorphic
to the free group that is freely generated by S. In particular, there exists a
canonical map φ : S → π1(Γ) that maps each s ∈ S to the uniquely determined
cycle in T + s. (Note that, formally, we have to replace each edge of T by two
conversely oriented edges to obtain a directed cycle.) We define a graph TΓ as
follows: let ⋃

g∈π1(Γ)

{(g, v) | v ∈ V (T )}

be its vertex set and let the union of the two sets

E1 :=
⋃

g∈π1(Γ)

{{(g, u), (g, v)} | {u, v} ∈ E(T )}

and
E2 :=

⋃
s=(u,v)∈S

⋃
g∈π1(Γ)

{{(g, u), (gs, v)}}

be its edge set. Note that E1 implies that TΓ consists of copies of T and E2

describes the edges between these copies of T .
To show that TΓ satisfies the assertion will be left as exercise.

We have already verified the following corollary in the proof of Proposi-
tion 4.2.13.

Corollary 4.2.14. Let Γ be a graph, T a spanning tree of Γ and TΓ the uni-
versal covering of Γ (constructed with respect to the spanning tree T ). Then
TΓ contains an isomorphic copy of T that is mapped onto T by the canonical
projection ϱ : TΓ → Γ.

1I. e., there exists a bijection between the edges of Γ/G and the orbits of edges in Γ such
that each edge e in Γ/G is incident with those vertices that are the orbits of the incident
vertices of any edge f in the image of e. Note that this is independent of the choice of f .
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4.3 Graphs of groups

Remark 4.3.1. Let us consider an action without inversion of a group G on a
graph Γ. Then the following holds.

(1) Γ/G is a multigraph Γ̂.

(2) For every vertex v ∈ V (Γ̂) there exists a group Gv such that Gv ∼= Gx for
all x ∈ V (Γ) with Gx = v.

(3) For every edge e ∈ E(Γ̂) there exists a group Ge such that Ge ∼= Gf for all
f ∈ E(Γ) that are mapped onto e.

(4) For every edge e ∈ E(Γ̂) there are two injective group homomorphisms
ιe,i(e) : G

e → Gi(e) and ιe,t(e) : G
e → Gt(e).

In view of this remark, let us make the following definition.

Definition. A graph of groups is a triple G = (G,Γ,Λ), where Γ is a con-
nected graph with involution and G is a map that that assigns to each vertex v
a group Gv and to each edge e a group Ge such that Ge = Gē and Λ is a family
of monomorphisms αe : Ge → Gi(e), one for every edge e. We call the groups
Gv the vertex groups and the groups Ge the edge groups.

Example 4.3.2. Let G be a group that acts without inversion on a graph Γ.

(1) The quotient graph Γ/G defines a graph of groups according to Remark

(2) If G maps each vertex v and each edge e to their stabiliser Gv or Ge and
Λ is the family of the canonical embeddings of the edge stabilisers into the
stabilisers of the vertices incident with that edge, then (G,Γ,Λ) is a graph
of groups. 4.3.1.

Remark 4.3.3. Generally, we will denote by Gv and Ge the vertex and edge
groups. Even though this collides with the notion for the stabilisers of vertices
and edges , we stick to it, in particular, since the stabilisers will be the important
examples and thus play a major role for us. In case it is not obvious which notion
we mean, we will explicitly name it.

Next, we will define the fundamental group of graphs of groups in two dif-
ferent ways such that the groups obtained by each definition are isomorphic
in a canonical way. Compared to Section 4.2, we need a new definition of the
fundamental group to take the function G and the family Λ into account.

Definition. Let G = (G,Γ,Λ) be a graph of group and let T be a spanning tree
of Γ. This time, T contains at most one element of {e, ē} for every e ∈ E(Γ).
For every vertex group Gv, let ⟨Sv | Rv⟩ be a presentation of Gv and, for every
edge group Ge, let Se be a generating set of Ge. Then the fundamental group
of G (with respect to T ) is defined by the presentation

π1 (G, T ) :=

〈⋃̇
v∈V (Γ)

Sv ∪ {ge | e ∈ E(Γ)} |
⋃

v∈V (Γ)

Rv ∪N

〉
,
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where the ge are new generators and the set N of relators is defined as follows:

N := {ge | e ∈ E(T )} ∪ {gegē | e ∈ E(Γ)}
∪ {geαē(s)g

−1
e (αe(s))

−1 | e ∈ E(Γ), s ∈ Se}.

Let us look at some examples of these fundamental groups, examples where
the graph essentially only has one edge. That mean, that its edge set is {e, ē}
for some e.

Example 4.3.4. Let G = (G,Γ,Λ) be a graph of groups with E(Γ) = {e, ē}.
Let T be a spanning tree of Γ and let ⟨Sv | Rv⟩ be a presentation of Gv for
every vertex v and let Se be a generating set of Ge for every edge e

(1) If Γ has exactly two vertices u, v, then T contains an edge of Γ and in
the presentation of π1(G, T ) all ge with e ∈ E(Γ) are trivial. Using Tietze
transformations (removing the generators ge) we obtain the presentation

π1(G, T ) =
〈
Su ∪ Sv | Ru ∪Rv ∪ {αē(s)(αe(s))

−1 | e ∈ E(Γ), s ∈ Se}
〉
.

We directly obtain
π1(G, T ) ∼= Gu ∗Ge

Gv,

where the monomorphisms for the free product with amalgamations are αe

and αē.

(2) If Γ has exactly one vertex v, then the edges of Γ are loops. Using Ti-
etze transformations, we can remove the generator gē (but not at the same
time ge) from the presentation of the fundamental group and we obtain

π1(G, T ) =
〈
Sv ∪ {ge} | Rv ∪ {geαē(s)g

−1
e (αe(s))

−1 | s ∈ Se}
〉
.

Thus, we have
π1(G, T ) ∼= Gv∗α−1

ē αe
,

where the isomorphism for the HNN extensions is α−1
ē αe that maps the

images of Ge under αe onto those of αē.

Let us now move to the second definition of the fundamental group of a
graph of groups. While the first definition depends on the choice of a spanning
tree, the second one will depend on the choice of a vertex. Later, we will show
the equivalence of these two definitions and thereby show that the groups are
isomorphic for any choice of spanning trees or vertices. Our second definition
of the fundamental group follows the strategy of Section 4.2 that we still have
to adapt to to our new situation.

Definition. Let G = (G,Γ,Λ) be a graph of groups. A G-walk (of length
|P | = k) from u ∈ V (Γ) to v ∈ V (Γ) is a sequence P = g0e1 . . . ekgk, where
e1 . . . ek induces a directed walk in Γ and such that g0 ∈ Gu, gk ∈ Gv and
gi ∈ Gt(ei) = Gi(ei+1) for all 0 < i < k. For 0 ≤ i ≤ j ≤ k, the sequence



4.3. GRAPHS OF GROUPS 61

giei+1 . . . ejgj is a G-subwalk of P . If P = g0e1 . . . ekgk is a G-walk from u
to v and Q = h0f1 . . . fℓhℓ is a G-walk from v to w, then their concatenation
is the G-walk

PQ = g0e1 . . . ek(gkh0)f1 . . . fℓhℓ

from u to w. Two G-walks P and Q are elementarily equivalent if Q can be
obtained from P by one of the following operations or their reverses:

(i) Replace a G-walk ge(αē(c))ēg
′ with e ∈ E(Γ), c ∈ Ge and g, g′ ∈ Gi(e) by

g(αe(c))g
′.

(ii) Replace a G-walk geg′ with e ∈ E(Γ), g ∈ Gi(e) and g
′ ∈ Gt(e) by

(g(αe(c)))e((αē(c))
−1g′),

where c is an element of Ge.

Let ∼ be a relation on the G-walks such that for two G-walks P,Q we have
P ∼ Q if there exists a sequence P = P1 . . . Pk = Q of G-walks such that Pi

and Pi+1 are elementarily equivalent for all 1 ≤ i < k. Obviously, ∼ is an
equivalence relation.

Later, we will take a closer look at the elements of the equivalence classes and
show that the minimal elements with respect to the first operation, which lie in
the same equivalence class, are equivalent by using only the second operation.
But first, we are interested in the second definition of the fundamental group
and the equivalence of both definitions.

Definition. Let G = (G,Γ,Λ) be a graph of groups and let v ∈ V (Γ). Then
the equivalence classes of G-walks from v to v form the fundamental group
π1(G, v) of G (with respect to v), where the multiplication is defined by con-
catenation: [P ][Q] := [PQ].

Remark 4.3.5. That the multiplication on π1(G, v) is well-defined follows by
an argumentation similar to the one we used in the proof of Lemma 4.2.5.
This then directly implies that the fundamental group with respect to a vertex
v ∈ V (Γ) is a group.

Proposition 4.3.6. Let G = (G,Γ,Λ) be a graph of groups, let v ∈ V (Γ) and
let T be a spanning tree of Γ. Then the map

φ : π1(G, v) → π1(G, T ), [g0e1 . . . ekgk] 7→ g0ge1 . . . gekgk

is a group isomorphism.

Proof. From the definition of the relation ∼ and the third set in the definition
of N in the definition of π1(G, T ), we obtain that φ is well-defined. It is a
homomorphism by the definition of the concatenation of G-walks. Thus, it
remains to show that φ is bijective. For this, we construct the inverse map of φ.
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Let us construct a map from the generating set of π1(G, T ) to π1(G, v). For
u ∈ V (Γ), let Pu = x0e1x1 . . . ekxk be the walk corresponding to the unique
path in T from v to u and let Pu,G = 1e11 . . . ek1 be the corresponding G-walk.
For g ∈ Gu with u ∈ V (Γ) we define the image of g as the equivalence class of
Pu,GgP

−1
u,G. For e ∈ E(Γ) we define the image of ge as the equivalence class of

Pi(e),GeP
−1
t(e),G.

It is easy to verify that the relators in the definition of π1(G, T ) are all
mapped onto the equivalence class of the trivial G-walk. Using the universal
property of group presentations (Theorem 2.3.4), we obtain that the map we
just defined can be extended to a homomorphism

ψ : π1(G, T ) → π1(G, v).

Obviously, this is the reverse map of φ.

Corollary 4.3.7. Let G = (G,Γ,Λ) be a graph of groups, let v ∈ V (Γ) and let T
be a spanning tree of Γ. Using the notations from the proof of Proposition 4.3.6,
the set

{[Pu,GgP
−1
u,G] | u ∈ V (Γ), g ∈ Gu} ∪ {[Pi(e),GeP

−1
t(e),G] | e ∈ E(Γ∖ T )}

is a generating set of π1(G, v).

Proof. The assertion follows directly from the proof of Proposition 4.3.6, since
the given set is the image of the generating set of π1(G, T ).

By multiple applications of Proposition 4.3.6, we obtain the following corol-
lary.

Corollary 4.3.8. Let G = (G,Γ,Λ) be a graph of groups, let v, w ∈ V (Γ) and
let T, T ′ be spanning tree of Γ. Then we have

π1(G, v) ∼= π1(G, w) ∼= π1(G, T ) ∼= π1(G, T ′).

Definition. The fundamental group π1(G) of a graph of groups G is a group
of the isomorphism class of the fundamental groups with respect to an arbitrary
spanning tree or an arbitrary vertex.

Definition. We call a G-walk G-reduced if we cannot apply operations of type
(i) from the definition of elementary equivalence. For every edge group Ge, let
Xe be a transversal (of the right cosets) of αe(Ge) in Gi(e). A G-reduced G-walk
g0e1g1 . . . ekgk is a normal form if gi ∈ Xēi for all 0 < i ≤ k.

We will show (similar to previous situations) that every equivalence class
contains a unique normal form.

Theorem 4.3.9. Let G = (G,Γ,Λ) be a graph of groups and let P = g0e1 . . . ekgk
and Q = h0f1 . . . fℓhℓ be two ∼-equivalent G-reduced G-walks. Then we have
k = ℓ and ei = fi for all 1 ≤ i ≤ k and there are ai ∈ Gei such that

1. g0 = h0(αe1(a0)) and
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2. gi = (αēi(a
−1
i ))hi(αei+1(ai+1)) for all 1 ≤ i < k and

3. gk = (αēk(a
−1
k ))hk.

In particular, every equivalence class contains a unique normal form.

Proof. It suffices to show the additional statement since then every two equiva-
lent G-reduced G-walks are equivalent (by operations of type (ii)) to the same
normal form. The according operations put after another (with inverting the
second one) show that both G-reduced G-walks are equivalent using only the
operation (ii) – which is exactly what we claim in the assertion of this theorem.

Obviously, every G-walk is equivalent to a G-reduced G-walk and also to a
normal form, where the second claim follows by replacing gi by αēi(ci)xi for
xi ∈ Xēi and ci ∈ Gēi = Gei and then pushing αēi(ci) backwards across the
edge ei using the second operation. Inductively, we obtain the second claim.

For vertices u, v ∈ V (Γ), let PG(u, v) be the set of G-walks from u to v
and let NG(u, v) be the set of normal forms from u to v. For a normal form
P = g0e1 . . . ekgk from u to v and for g ∈ Gu, we set

φ(g, g0e1 . . . ekgk) := (gg0)e1 . . . ekgk

and, if e is an edge with t(e) = u, we set

φ(1e1, g0e1 . . . ekgk) :=

{
αe(ge)g2e2 . . . ekgk, if e = ē1 and xe = 1,

αe(ge)exee1 . . . ekgk, otherwise,

where ge ∈ Ge and xe ∈ Xe with αē(ge)xe = g0. Every G-walk can be written
as concatenation of G-walks g ∈ Gw or 1e1. For a normal form N from u to v
and a G-walk P with P = P1 . . . Pn, where the Pi are of the just described form,
we define recursively

φ(P,N) := φ(P1, φ(P2 . . . Pn, N)).

Using this definition, we obviously obtain

φ(N, 1) = N

for every normal form N from u to v and for the trivial G-walk 1 from v to v.
We want to verify the following for every two equivalent G-walks P1, P2 from u
to v and every normal form N from v to w:

φ(P1, N) = φ(P2, N).

If we have this, then we obtain for every two equivalent normal forms N1, N2

from u to v:
N1 = φ(N1, 1) = φ(N2, 1) = N2

And hence every equivalence class of ∼ contains exactly one normal form. It
suffices to verify

φ(P1, N) = φ(P2, N)
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for all G-walks P1, P2 that can be transferred to each other by a single operation
of the elementary equivalence. First, let P = P1ge(αē(c))ēg

′P2 be a G-walk. If
we prove

φ(geαē(c)ēg
′, N) = φ(gαe(c)g

′, N)

for normal forms N from v to t(e), then we obtain the following for normal
forms N from v to the end vertex of P :

φ(P1geαē(c)ēg
′P2, N)

= φ(P1, φ(geαē(c)ēg
′, φ(P2, N)))

= φ(P1, φ(gαe(c)g
′, φ(P2, N)))

= φ(P1gαe(c)g
′P2, N).

So let us prove in this situation the remaining equation. For this, let N =
gNe1g1 . . . ekgk be a normal form and set N− := 1e1g1 . . . ekgk. Let geαē(c)ēg

′

be as just described and let xe ∈ Xē be an element of the transversal of αē(Ge)
in Gt(e) and let b ∈ Ge′ such that g′gN = αe(b)xe. If e ̸= e1, then we have:

φ(geαē(c)ēg
′, N)

= φ(geαē(c), φ(1ē1, αe(b)xeN
−))

= φ(ge1, φ(αē(c)αē(b)ēxeN
−))

= φ(gαe(c)αe(b)1ē1e1, xeN
−)

= gαe(c)g
′N

= φ(gαe(c)g
′, N).

The case e = e1 follows analogously. Also, in case of the second operation we
obtain the claim by a similar argumentation.

Let us get two corollaries from Theorem 4.3.9.

Corollary 4.3.10. Let G = (G,Γ,Λ) be a graph of groups, let v ∈ V (Γ) and let
P = g0e1 . . . ekgk be a G-reduced G-walk from v to v. Then we have [P ] = 1 ∈
π1(Γ, v) if and only if k = 0 and g0 = 1 ∈ Gv.

Corollary 4.3.11. Let G = (G,Γ,Λ) be a graph of groups, let u, v ∈ V (Γ) and
let P = g0e1 . . . ekgk be a G-walk from v to u. Then the map

Gu → π1(G, v), g 7→ [PgP−1]

is a group monomorphism.

4.4 Structure theorem of the Bass-Serre theory

Now we are aiming at obtaining an analogue for the universal covering of graphs
via trees (using the fundamental group of graphs, see Proposition 4.2.13) in the
situation of graph of groups and their fundamental group.



4.4. STRUCTURE THEOREM OF THE BASS-SERRE THEORY 65

Definition. Let G = (G,Γ,Λ) be a graph of groups and let v ∈ V (Γ). On the
set of G-walks that start at v we will define a relation ≈ via P1 ≈ P2 if and only
if

• P1 and P2 end at the same vertex w and

• there exists g ∈ Gw with P1 ∼ P2g.

Obviously, ≈ is an equivalence relation on the G-walks that start at v. We
denote by PG

w the equivalence class of a G-walk P from v to w. Similar to
the proof of Theorem 4.3.9, every equivalence class PG

w of ≈ contains exactly
one representative of the form x0e1x1 . . . xk−1ek1 with xi ∈ Xi, where Xi is a
transversal of αēi(Gei) in Gi(ēi) for i > 0.

Let us define a graph G̃v: its vertex set is the set of equivalence classes of ≈.
Two vertices2 PG

u , Q
G
w are adjacent by the edge f := (PG

u , e,Q
G
w) with e ∈ E(Γ)

if i(e) = u and t(e) = w and if there exists g ∈ Gu with Pge1 ∈ QG
w. (Note

that this definition does not depend on the choice of P .) Let i(f) = PG
u and

t(f) = QG
w. The involution is defined by (PG

u , e,Q
G
w) := (QG

w, ē, P
G
u ).

Remark 4.4.1. Let G = (G,Γ,Λ) be a graph of groups and let v ∈ V (Γ). Let
P = g0e1 . . . ekgk and Q = h0f1 . . . fℓhℓ be two G-reduced G-walks from v to u
and w such that PG

u and QG
w are adjacent in G̃v. We may assume that k ≤ ℓ.

Let (PG
u , e,Q

G
w) be the corresponding edge. Then there exists g ∈ Gu such that

Pge1 ≈ Q. Since P and Q are G-reduced, Theorem 4.3.9 implies k+ 1 = ℓ and
fℓ = e.

Theorem and Definition 4.4.2. Let G = (G,Γ,Λ) be a graph of groups and

let v ∈ V (Γ). Then G̃v is a tree. It is called the universal covering tree or
Bass-Serre tree.

Proof. Obviously, every vertex lies in the same component of G̃v as 1Gv . Thus,
the graph is connected and it remains to show that it contains no cycle.

Let
P = (P0)

G
v0e1 . . . ek(Pk)

G
vk

be a closed non-trivial walk in G̃v, where every Pi is a G-reduced G-walk. (Note
that this is not a restriction to the walk itself.) If we show that P contains a
spike

(Pi−1)
G
vi−1

ei(Pi)
G
viei+1(Pi+1)

G
vi+1

,

then we directly obtain that G̃v contains no cycle. Let 0 ≤ i ≤ k such that the
length of Pi is maximum. By cyclic permutations of the walk P we may assume
that 0 < i < k. We consider (Pi−1)

G
vi−1

and (Pi+1)
G
vi+1

. Remark 4.4.1 implies
that both vertices contain a common G-walk. Thus, they lie in the same vertex
in G̃v and remark 4.4.1 implies

ei = ((Pi−1)
G
vi−1

, fi, (Pi)
G
vi)

2Using the notation PG
u for vertices implies that we directly choose a representative P of

the equivalence class and choose u as last vertex of the G-walk P .



66 CHAPTER 4. BASS-SERRE THEORY

and
ei+1 = ((Pi)

G
vi , f̄i, (Pi+1)

G
vi+1

).

Thus, we have ei = ēi+1 and so P contains a spike, which implies that G̃v

contains no cycle.

Remark. It is easily verifiable that Bass-Serre trees for distinct vertices v, w
from Γ are isomorphic: Choose a G-walk P from v to w. Then the map Q 7→ PQ
from the set of G-walks starting at w to the set of G-walks starting at v defines
an isomorphism of the corresponding Bass-Serre trees G̃w and G̃v.

Lemma 4.4.3. Let G = (G,Γ,Λ) be a graph of groups and let v ∈ V (Γ). Then
by setting

[P ]QG
w := (PQ)Gw

and
[Q]((P1)

G
u , e, (P2)

G
w) := ([Q](P1)

G
u , e, [Q](P2)

G
w).

we obtain an action without inversion from π1(G, v) on G̃v.

Proof. We obtain from the definition of the vertices of G̃v that the assignment
is a well-defined action on the vertex set and on the edge set. Since we directly
obtain from the definition that edges and non-edges are preserved by this map,
we obtain the assertion.

We will state two small facts on the stabilisers of the vertices and edges of
the universal covering tree in the fundamental group of the graph of groups.

Lemma 4.4.4. Let G = (G,Γ,Λ) be a graph of groups and let v ∈ V (Γ).

The action of π1(G, v) on G̃v as defined in Lemma 4.4.3 satisfies the following
properties.

(1) The stabiliser of a vertex PG
w is {[PgP−1] | g ∈ Gw}.

(2) The stabiliser of an edge (PG
w , e, (Pgeg

′)Gu ) with g ∈ Gw is

{[Pgαe(c)g
−1P−1] = [Pgeαē(c)ēg

−1P−1] | c ∈ Ge}.

Proof. Simple calculation.

Analogously to the universal covering of graphs, we obtain also for graphs
of groups the following statement whose proof is similar to the case of graphs
and remains as exercise.

Lemma 4.4.5. Let G = (G,Γ,Λ) be a graph of groups and let v ∈ V (Γ). Let

G := π1(G, v) and T := G̃v. Then T/G ∼= Γ.

Definition. Let G be a group acting on a tree T and let H be a group acting on
a tree T ′. Then T und T ′ are isomorphic with respect to the actions of G
and H if there is a group isomorphism φ : G→ H and a graph isomorphism
f : T → T ′ with f(gv) = φ(g)f(v) for all g ∈ G and v ∈ V (T ). We call (φ, f)
an isomorphism from (G,T ) to (H,T ′).
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Let G be a group that acts without inversion on a tree T . Let G = (G,Γ,Λ)
be the graph of groups from Example 4.3.2 (1) with Γ = T/G and let v ∈ V (Γ).
Set H := π1(Γ, v). Let T be a spanning tree of Γ. By an exercise, there exists
a monomorphism ι : T → T . Thus, ι is defined on all vertices of Γ but only
on the edge of T . We want to extend ι to all of Γ. We have to emphasise
that we are just defining images of vertices and edges but in general this will
not lead to a homomorphism. For every e ∈ E(Γ) ∖ E(T ) we set ι(e) so that
ι(ē) = ι(e) is satisfied and also either3 i(ι(e)) = ι(i(e)) or t(ι(e)) = ι(t(e)) and
additionally that e is the G-orbit of ι(e). If i(ι(e)) ̸= ι(i(e)), then let ge ∈ G
with i(ι(e)) = geι(i(e)) and, if i(ι(e)) = ι(i(e)), then let ge := g−1

ē . For every
spikeless walk P = v0e1 . . . ekvk in T we set PG := 1e11 . . . ek1.

We will define a map from H to G and a map from G̃v to T and then prove
that these maps are isomorphisms. We define φ : H → G. First, we set

φ([PGgP
−1
G ]) := ψu(g)

for all spikeless walks P in T from v to u, for all g ∈ Gu and for the canonical
isomorphism ψu : Gu → Gι(u); additionally, we set

φ([Pi(e),GeP
−1
t(e),G]) := ge

for all e ∈ E(Γ ∖ T ), where ge ∈ G is chosen as above (i. e. with i(ι(e)) =
geι(i(e))). By Corollary 4.3.7 we have defined φ at a generating set of H. Let
ϕ be the isomorphism from π1(G, T ) to π1(G, v) as constructed in Proposi-
tion 4.3.6. Obviously, the images under ϕ of the relators in the definition of
π1(G, T ) are mapped to 1 by φ.4 The universal property for group presen-
tations, Theorem 2.3.4, implies that we can extend φ to a homomorphism
H → G.

Let us define a map f : G̃v → T by f(PG
u ) := ι(u) for all u ∈ V (Γ) and

all G-reduced G-walks P in T from v to u and set f(hPG
u ) := φ(h)f(PG

u ) for
all u ∈ V (Γ), all G-reduced G-walks P in T from v to u and all h ∈ H.
Obviously, f is well-defined and preserves edges and non-edges; thus, f is a
graph homomorphism.

Note that φ induces canonically isomorphisms of vertex and edge stabilisers.

Proposition 4.4.6. Let the group G act without inversion on the tree T . Let
G = (G,Γ,Λ) be the graph of groups from Example 4.3.2 (1) with Γ = T/G and

let v ∈ V (Γ). Then there exists an isomorphism from (π1(G, v), G̃v) to (G,T ).

Proof. We choose T , φ and f as in the discussion before the proposition and
want to show that (φ, f) is an isomorphism from (π1(G, v), G̃v) to (G,T ). For
this, it only remains to show that φ and f are bijective maps, since by definition
of f we have f(hPG

u ) = φ(h)f(PG
u ) for all h ∈ H and all PG

u ∈ V (G̃v).

3Note that we do not ask for both equalities here.
4Here, we mean the following: if s1 . . . sn is a relator, then φ(ϕ(s1)) . . . φ(ϕ(sn)) = 1 lies

in G.
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Let us show that f is surjective. By definition we have φ(H)ι(V (T )) =

f(G̃v). Thus, it suffices to prove φ(H)ι(V (T )) = V (T ). Let us suppose
φ(H)ι(V (T )) ̸= V (T ). Then there exists an edge eT ∈ E(T ) with i(eT ) ∈
φ(H)ι(V (T )) and t(eT ) /∈ φ(H)ι(V (T )). We may replace eT by φ(h)eT in
order to assume i(eT ) ∈ ι(V (T )). Let e ∈ E(Γ) with G(ι(e)) = GeT . Then
we have either i(eT ) = i(ι(e)) or geT i(eT ) = i(ι(e)). This implies either
geT = ι(e) or ggeT eT = ι(e) for some g ∈ Gi(ι(e)) ≤ φ(H) and hence we obtain
eT ∈ φ(H)ι(E(Γ)) and in particular t(eT ) ∈ φ(H)ι(V (Γ)). This contradiction
shows that f is surjective.

Let us show that f is injective. First, we show that no two edges e1, e2 ∈
E(G̃v) with i(e1) = i(e2) exist such that f(e1) = f(e2). Suppose such edges
e1, e2 exist. Then there exists h ∈ H with he1 = e2. We obtain φ(h) ∈ Gf(e1) =
Gf(e2). This contradicts our observation that φ induces isomorphisms between

edge stabilisers. Thus, we have f(e1) ̸= f(e2). Since G̃v and T are trees (by
Theorem 4.4.2 and assumption), we directly obtain that f is injective.

Let us show that φ is surjective. Since φ induces isomorphisms on the vertex
stabilisers, we have Gv ≤ φ(H) for all v ∈ V (T ). Let g ∈ G and w ∈ ι(V (T )).
Since φ(H)ι(V (Γ)) = V (T ), there exists h ∈ φ(H) with hgw ∈ V (Γ). Every
two distinct vertices of ι(V (Γ)) lie in distinct G-orbits. Thus, we have hgw = w
and hg ∈ Gw ≤ φ(H). We obtain g = h−1(hg) ∈ φ(H) · Gw = φ(H). Thus, φ
is surjective.

Let us show that φ is injective. For this, we show that the kernel of φ
is trivial. Let h ∈ H ∖ {1}. If h has a fixed point, then the observation
that φ induces isomorphisms on the stabilisers implies φ(h) ̸= 1. So let us
assume that h has no fixed point. Then we have hv ̸= v for all v ∈ V (Γ) and
thus φ(h)f(v) = f(hv) ̸= f(v), since f is injective. Thus, φ(h) ̸= 1 and φ is
injective.

Theorem 4.4.7 (structure theorem). Let the group G act on a graph X without
inversion. Let G = (G,Γ,Λ) be the graph of groups from Example 4.3.2 (1) with
Γ = X/G, let v ∈ V (Γ) and let φ and f as in the discussion before Proposi-
tion 4.4.6. Then the following statements are equivalent.

(1) X is a tree;

(2) f : G̃v → X is an isomorphism;

(3) φ : π1(G, v) → G is an isomorphism.

Proof. If X is a tree, then (2) and (3) holds by Proposition 4.4.6. Since G̃v is a
tree by Theorem 4.4.2, the implication from (2) to (1) follows. The remaining
implication (3)⇒(2) follows directly from the definition of f .

Remark 4.4.8. Let G = (G,Γ,Λ) be a graph of groups with Gv = 1 for all
v ∈ V (Γ). Then π1(G) ∼= π1(Γ).

As corollary of Theorem 4.4.7 using Remark 4.4.8, we obtain the following.

Corollary 4.4.9. A group that acts freely on a tree is free.
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4.5 Minimal actions

Definition. A group G acts on a tree T minimally if there is no non-empty G-
invariant proper subtree of T . A graph of group is minimal if its fundamental
groups acts minimally on its Bass-Serre tree.

Remark 4.5.1. Let G be a group acting on a tree T . If there exists a hy-
perbolic element g ∈ G, then there exists a g-invariant double ray R. Thus,
the intersection of all G-invariant subtrees of T that contain R is not empty
and according to Lemma 4.1.2 (iii) the ray R must lie in the intersection of all
non-empty G-invariant subtrees. Then G acts minimally on this intersection.
If G contains only elliptic elements, then Theorem 4.1.7 implies that the action
of G on T is either elliptic, where we may choose for our G-invariant subtree one
that has only one vertex, or it is parabolic. In the second case, T does not con-
tain any minimal G-invariant subtree, since the intersection of all G-invariant
subtrees is empty (exercise).

This discussion implies that for a minimal parabolic action, the group must
contain hyperbolic elements.

Proposition 4.5.2. Let G = (G,Γ,Λ) be a minimal graph of groups and let

v ∈ V (Γ). Then the action of π1(G, v) on G̃v is . . .

(i) elliptic if and only if Γ consists of a unique vertex and no edge;

(ii) cyclic if and only if Γ is a cycle and all monomorphisms from the edge
groups into the vertex groups are isomorphisms;

(iii) dihedral if and only if Γ is a non-trivial path and the monomorphisms from
the edge groups into the vertex groups of the inner vertices are surjective
and the image of the monomorphisms in the vertex groups for the end
vertices of the path are subgroups of index 2 each;

(iv) parabolic if and only if Γ is a cycle and for some closed spikeless walk
v0e0 . . . ek−1vk the maps αei are surjective for all 1 ≤ i ≤ n but at least on
αēi is not surjective;

(v) hyperbolic otherwise.

Proof. In all cases, the backward implication is easy. That is, why we restict
ourselves to the forward direction. Let G := π1(G, v) and T := G̃v. If the action
of G on T is elliptic, then T has a unique vertex by the minimal action. Thus,
Γ also has a unique vertex and no edge.

Let the action of G on T be cyclic. By the minimality of the action, T is a
double ray and G acts as translations on T . Thus, T/G is a cycle. Since every
group element that fixes a vertex of T must fix the two incident edge (since it
acts as a translation on T ), the monomorphisms from the edge groups into the
vertex groups must be surjective.

Let us assume that the action of G on T is dihedral. As in the previous
case, T is a double ray. Since there exists an element that acts as a reflection on
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that double ray, we obtain that T/G is a path that is non-trivial (so it contains
at least two vertices) as the action is without inversion. Every group element
that stabilises an edge must already fix all of T . Since the stabilisers of the
end vertices of T/G have index 2 in the fix group of T (an element from such
a stabiliser must either fix all of T or act on T as a reflection), we obtain the
assertion. This proves (iii).

Now let the action of G on T be parabolic. In the case that every element
of G is elliptic on T , Remark 4.5.1 implies that the action cannot be minimal.
Thus, there exists a hyperbolic element. Let g ∈ G be such an element of
minimal translation length. Then, T contains a G-invariant double ray Rg by
Lemma 4.1.2 (i). This double ray contains a subray R such that R ∩ hR is a
ray again for all h ∈ G. Thus, the subgraph

⋃
h∈G hRg is connected, so it is a

subtree. Since it is G-invariant, the minimality of the action implies that it is
already T . Thus, every edge of T lies in a common orbit with an edge from Rg.
The minimality of |g| implies that T/G is a cycle with |g| edges. Obviously,
the stabiliser of a vertex u on Rg must fix the incident edge that separates
u from infinitely many vertices of R. Thus, there exists an orientation of the
cycle Γ such that the monomorphisms for those edge groups are surjective into
the vertex groups. Furthermore, for one edge e of those, the map αē is not
surjective since otherwise (ii) implies that the action would be cyclic.

The final case follows from Theorem 4.1.7.

Definition. Let G = (G,Γ,Λ) be a graph of groups. A pair (v, e) with v ∈ V (Γ)
and e ∈ E(Γ) such that v has degree 25 and i(e) = v ̸= t(e) is inessential if αe

is surjective. A graph of groups is reduced if it contains no inessential pair.

Remark 4.5.3. If G = (G,Γ,Λ) is a graph of groups and (v, e) an inessential
pair, then we can suppress v and e, i. e., we delete v as well as e and ē from the
vertex or and edge set and we set t(f) = t(e) for all edges f in Γ with t(f) = v
and i(f) = i(ē) for all edges f in Γ with i(f) = v.6 For the monomorphism
αf : Gf → Gv, we set the new monomorphism as α′

f := αēα
−1
e αf . It is easy to

verify that this operation preserves the fundamental group – or more precise:
that the fundamental groups before and after the operation are isomorphic.
One way to see that is to consider a spanning tree of Γ that contains e. Then
the relators geαē(s)g

−1
e (αe(s))

−1 reduce to αē(s)(αe(s))
−1 and we can put this

information into the relators of the other edge with initial vertex i(e). Apply-
ing Tietze transformations lead to the fundamental group obtained after the
operation.

In particular, we can transfer a graph of groups G = (G,Γ,Λ) with finite
graph Γ to a reduced graph of groups by multiple such operations while keeping
an isomorphic fundamental group.

5For us, this means that there are precisely two edges ending in v and two edges starting
at v.

6This corresponds in the case of graph exactly the situation G/e. But here, we also have
to take case of the involution¯̇, the directions of the edges and their edge groups.
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Using Remark 4.5.3, we can sharpen the formulation of the possibilities in
Proposition 4.5.2 in the cases (ii)–(iv). We will note these new version, where
we also follow the statements on the group structure from Example 4.3.4.

Proposition 4.5.4. Let G = (G,Γ,Λ) be a minimal reduced graph of groups

and let v ∈ V (Γ). Let G := π1(G, v) and T := G̃v. Then the action of G on T
is . . .

(i) elliptic if and only if Γ consists of a unique vertex and no edge. Then G
is exactly the kernel of the action.7

(ii) cyclic if and only if Γ consists of a unique vertex and a unique edge8 and the
monomorphisms of both edge groups in the vertex groups are isomorphisms.
Then we have G ∼= Gv∗φ, where v is the vertex of Γ, e is an edge of Γ and
φ = αēα

−1
e .

(iii) dihedral if and only if Γ consists of exactly two vertices and a unique edge
and the image of the monomorphisms in the vertex group are subgroups of
index 2 each. Then we have G ∼= Gu∗Ge

Gv with |Gu : Ge| = 2 = |Gv : Ge|,
where u and v are the two vertices of Γ and e ∈ E(Γ) an edge.

(iv) parabolic if and only if Γ consists of a unique vertex and a unique edge such
that exactly one of the monomorphisms into the vertex groups is surjective.
Then we have G ∼= Gv∗φ, where v is the vertex of Γ, e its edge such that
αē : Gē → Gv is not surjective and φ = αēα

−1
e .

(v) hyperbolic otherwise.

Definition. A free product with amalgamation A ∗C B is proper if none of
the monomorphisms ιA : C → A and ιB : C → B is surjective.

Proposition 4.5.5. Let G = (G,Γ,Λ) be a minimal graph of groups such that
Γ has at least one edge. Then π1(G) is either a proper free product with amal-
gamation or an HNN extension.

Proof. Exercise

Definition. A group has property (FA) if every action without inversion of it
on every tree is elliptic.

We have already seen that finite groups always have the property (FA), see
Lemma 4.1.8. Now, we want to give a group theoretic characterisation of the
groups with property (FA).

Theorem 4.5.6. A countable group G has property (FA) if and only if the
following statements hold.

7The kernel of the action consists of those elements that fix every vertex and every edge
of T .

8up to its image under the involution
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(1) G is finitely generated;

(2) G is not a proper free product with amalgamation;

(3) G is not an HNN extension.

Proof. By Lemma 4.1.9 we obtain that G is finitely generated since it has prop-
erty (FA). Let us suppose that that G is a proper free product with amalga-
mation G ∼= A ∗C B for groups A,B,C. Let G = (G,Γ,Λ) be the graph of
groups with exactly two vertices and one edge, where the edge groups are C
and the vertex groups are A and B. By Example 4.3.4 (1) we have G ∼= π1(G).

The action of π1(G) on G̃v with v ∈ V (Γ) is without inversion but not elliptic.
Thus G is no proper free product with amalgamation. Analogously, we obtain
that G is not an HNN extension.

For the reverse direction, we assume that (1)–(3) hold. Let T be a tree such
that G acts on T without inversion. By Lemma 4.1.5, it suffices to prove that
every element of G is elliptic. Let us suppose that G contains a hyperbolic
element. According to Remark 4.5.1 there exists a minimal G-invariant subtree
of T and we may assume that the action ofG on T is minimal. By Theorem 4.4.7,
we may assume that G = π1(G) and T = G̃v with G = (G,Γ,Λ) and v ∈ V (Γ),
where G is the graph of groups with Γ = T/G as defined in Example 4.3.2 (1).
Since G contains a hyperbolic element, the action of G on T is not elliptic and
there is an edge in Γ by Proposition 4.5.4 (i). Thus, Proposition 4.5.5 leads to
a contradiction to (2) or (3). So the action of G on T is elliptic.

4.6 Kurosh’s theorem

Example 4.6.1. Let G = (G,Γ,Λ) be a graph of groups with Ge = 1 for all
e ∈ E(Γ) and let T be a spanning tree of Γ. Let Gv = ⟨Sv | Rv⟩ be presentation
of the vertex groups. Then we have

π1(G, T ) =

〈 ⋃
v∈V (Γ)

Sv ∪ {ge | e ∈ E(Γ)∖ E(T )} |

⋃
v∈V (Γ)

Rv ∪ {gegē | e ∈ E(Γ)∖ E(T )}

〉
.

Thus, there exists a free group F with π1(G, T ) ∼= (∗v∈V (Γ)Gv) ∗ F .
Example 4.6.2. Let G = (G,Γ,Λ) be a graph of groups, where Γ is a star,
and let A be a group. Let Ge = A for all e ∈ E(Γ) and Gz = A for the central
vertex z of Γ. Let Gv = ⟨Sv | Rv⟩ be the presentation of the vertex groups.
Then π1(G,Γ) has the presentation〈 ⋃

v∈V (Γ),v ̸=z

Sv |
⋃

v∈V (Γ),v ̸=z

Rv

∪
{
αe(a)(αē(a))

−1 | e ∈ E(Γ) und i(e) = z; a ∈ A
}〉
.
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So we have π1(G,Γ) ∼= ∗AGv.

Theorem 4.6.3. Let G = ∗A,i∈IGi be a free product with amalgamation over A
of a family (Gi)i∈I of groups. Let H ≤ G be a subgroup whose intersection with
each Ag with g ∈ G is trivial. For x ∈ G and i ∈ I, set Hi,x := H ∩ xGix

−1.
Let Xi be a set of representatives of the double cosets HgGi. Then there exists
a free group F such that

H ∼= (∗i∈I,x∈Xi
Hi,x) ∗ F.

Proof. Let G = (G, X,Λ) be a graph of groups, where X is a star with centre vA
and there exists a leaf vi for each i ∈ I. The edge groups are all A and the
vertex groups of the centre is A, too. Let Gi be the vertex group for the leaf vi.
The maps αe are the identity if i(e) = vA and the monomorphism from A

to Gi given by the free product with amalgamation otherwise. Set T := G̃vA .
By Example 4.6.2, we have π1(G) ∼= G. Thus, G and hence H act without
inversion on T and we may think of the vertex and edge stabilisers of vertices
or edges of T in π1(G) as stabilisers in G (cf. Lemmas 4.4.3 and 4.4.4). In
particular, the edge stabilisers are subgroups of G that are conjugated to A.

Let Γ := T/H and let T be a spanning tree of Γ. Let GH = (GH ,Γ,ΛH)
be the graph of groups that is induced by the action of H on T : we have
GH

v = Gv ∩ H and GH
e = Ge ∩ H for all vertices v and edges e of Γ. Then

Theorem 4.4.7 implies H ∼= π1(GH , T ). Since H has trivial intersection with
each subgroup of G that is conjugated to A, we obtain GH

e = 1 for all edge
groups of Γ. By Example 4.6.1 we obtain

H ∼= π1(GH , T ) ∼= (∗v∈V (Γ)G
H
v ) ∗ F,

where F is a free group.
The vertices of T correspond to the set9

G/A ∪
⋃
i∈I

G/Gi,

and thus the vertices of Γ and thus T correspond to the set10

H\G/A ∪
⋃
i∈I

H\G/Gi,

since we just combine the H-orbits. The embedding of T in T defines a set of
representatives XA ⊆ G/A of H\G/A and a set of representatives Xi ⊆ G/Gi

of H\G/Gi. If x ∈ XA, then the corresponding group GvA is exactly H∩xAx−1

and, if x ∈ Xi, then the corresponding group Gvi is exactly H ∩ xGix
−1. Since

H ∩ xAx−1 = 1, we obtain the assertion.

9Note that the normal form of G-walks correspond (by removing the edges in the sequence)
reduced forms in the free product G, canonically.

10For subgroups H,U of a group G, the set H\G/U is the set of double cosets HgU with
g ∈ G.
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Theorem 4.6.3 for A = 1 implies the subgroup theorem of Kurosh.

Corollary 4.6.4 (Kurosh’s subgroup theorem). Let G = ∗i∈IGi be a free prod-
uct of a family (Gi)i∈I of groups. Let H ≤ G be a subgroup. For x ∈ G and
i ∈ I let Hi,x := H ∩ xGix

−1. Let Xi be a set of representatives of the double
cosets HgGi. Then there exists a free group F such that

H ∼= (∗i∈I,x∈Xi
Hi,x) ∗ F.

Note that Corollary 4.6.4 implies in particular that the order of any element
of H must be the order of some element of one of the Gi, if it is finite.

4.7 Stallings’ theorem

In this section, we will show that finitely generated groups with more than one
end always split over a finite subgroup either as free product with amalgamation
or as HNN extension.

Theorem 4.7.1 (Stallings’ theorem). Let G be a finitely generated group with
more than one end. Then one of the following holds.

(1) There exists three subgroups A,B,H of G such that H is finite and A∗HB ∼=
G is a proper free product with amalgamation.

(2) There exists a subgroup H of G and an isomorphism φ between two finite
subgroups of G with G ∼= H∗φ.

We will obtain Theorem 4.7.1 as corollary of Proposition 4.7.2.

Proposition 4.7.2. Let G be a finitely generated group with more than one
end. Then there exists a tree T such that G acts on T edge-transitively and
without inversion such that all edge stabilisers are finite and no vertex stabiliser
is G.

Proof of Theorem 4.7.1. Let T be the tree from Proposition 4.7.2. The graph
of groups for the action of G on T consists of a single edge and at most two
vertices because of the edge transitivity. Then Example 4.3.4 directly implies
Theorem 4.7.1, since the monomorphisms of the edge groups into the vertex
groups in Example 4.3.4 cannot be surjective.

Thus, we want to construct a tree such that G acts on that tree in a suitable
way.

Proof of Proposition 4.7.2. Let Γ = (V,E) be a locally finite Cayley graph of G.
Then Γ has more than one end, since G has more than one end. First, we
consider the case that Γ has at least three ends. Then Lemma 3.4.3 implies that
Γ has infinitely many ends. We set

Bi := {U ⊆ V | |U | = ∞ = |V ∖ U | and |E(U, V ∖ U)| ≤ i}.
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Since Γ has more than one end, there exists a finite set S ⊆ V such that two rays
lie in distinct components of G−S eventually. If i is the number of edge from S
into one of these components, then we obtain Bi ̸= ∅. Let m ∈ N be minimal
with Bm ̸= ∅. The minimality of m implies that all U ∈ Bm are connected. If
U ⊆ V , then we set U := V ∖ U .

Claim 1. If U1 ⊋ U2 ⊋ . . . is a chain in Bm, then we have
⋂

i∈N Ui = ∅.

Proof of Claim 1. Let us suppose that there exists a chain U1 ⊋ U2 ⊋ . . .
in Bm such that U :=

⋂
i∈N Ui is not empty. Then there exists an edge

e1 one of whose incident vertices lies in U and the other lies in U1 but
outside of U and there is an index i1 ∈ N such that

e1 ∈ E(Ui1 , U)∖ E(Ui1−1, U).

Analogously, there exists an edge e2 ∈ E(Ui1) with exactly one of its
incident vertices in U . Let i2 ∈ N such that

e2 ∈ E(Ui2 , U)∖ E(Ui2−1, U).

Then we have i2 > i1 and e1 and e2 lie in E(Ui2 , U). This way, we can
find infinitely many edges and for every n ∈ N there exists in such that
the first n of these edges lie in E(Uin , U). For n > m this contradicts our
choice of the sets Ui ∈ Bm.

Because of Claim 1, there exists a minimal W ∈ Bm with 1 ∈W .

Claim 2. For every U ∈ Bm one of the following four sets is finite:

U ∩W, U ∩W, U ∩W, U ∩W.

Proof of Claim 2. Let us suppose that all four intersections are infinite.
Then each of these sets contains a ray, since Γ is locally finite. For all
A ∈ {U,U} and B ∈ {W,W} we obtain

E(A ∩B,A ∩B) ≥ m

by the minimality of m. Every edge of E(U,U)∪E(W,W ) lies in exactly
two of the sets E(A ∩B,A ∩B). We obtain

4m

≤
∑

A∈{U,U},
B∈{W,W}

∣∣E (
A ∩B,A ∩B

)∣∣
≤ 2|E(U,U)|+ 2|E(W,W )|
≤ 4m,

and thus, all inequalities must be equalities and all infinite components of
these intersections must lie in Bm. We may assume that 1 lies in U ∩W .
Because of U∩W ∈ Bm and the minimality ofW with respect to containing
1, we have U ∩W = W . This implies U ∩W = ∅. This contradiction
proves the claim.
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We define an equivalence relation ∼= on Bmvia

U1
∼= U2 :⇐⇒ U1 ∩ U2 and U1 ∩ U2 are finite

and a strict order11 via

U1 ≺ U2 :⇐⇒ U1 ∩ U2 finite, but U1 ̸∼= U2.

It is easy to verify that these two relations have the properties as claimed; we
will skip it at this point.

Claim 3. Let A,U ∈ Bm with W ≺ A ≺ U . Then there are only finitely many
g ∈ G with W ≺ gA ≺ U .

Proof of Claim 3. Let ∆ ⊆ Γ be a finite connected subgraph that contains
E(X,X) for all X ∈ {A,U,W}. For all g ∈ G except for finitely many,
this implies ∆ ∩ g∆ = ∅. Let g ∈ G with ∆ ∩ g∆ = ∅ and suppose
W ≺ gA ≺ U . Then U ∩ gA and gA ∩W are finite. Since ∆ is connected
but avoids E(gA, gA), it lies in either gA or in gA. First, we assume that
∆ lies in gA. Then we have either W ⊆ gA or W ⊆ gA, since W and
W are connected. Since gA ∩W is finite, we must have W ⊆ gA, which
implies gA∩W = ∅ and hence gA ∼=W , a contradiction toW ≺ gA. With
a similar argument, the case that ∆ lies in gA leads to a contradiction.

We set
T := {gW, gW | g ∈ G}/∼=.

We extend the definition of the complement and of ≺ to T : for U1,U2 ∈ T set

U1 := {U1 | U1 ∈ U1}

and
U1 ≺ U2 :⇐⇒ ∃U1 ∈ U1, U2 ∈ U2 : U1 ≺ U2.

Claim 4. The triple (T, ·̄,≺) is a tree set, i. e., it has the following properties:

(1) t = t and t ̸= t for all t ∈ T ;

(2) ≺ is a strict order on T ;

(3) t1 ≺ t2 ⇐⇒ t2 ≺ t1 for all t1, t2 ∈ T ;

(4) for t1, t2 ∈ T exactly one of the following cases is true:

t1 = t2, t1 = t2, t1 ≺ t2, t1 ≺ t2, t1 ≺ t2, t1 ≺ t2;

(5) for no t ∈ T , the set T≺
t := {t′ ∈ T | t′ ≺ t} contains an infinite chain

t1 ≺ t2 ≺ · · · .
11that is an asymmetric, transitive relation
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Additionally, the tree set has the following property.

(6) there exist no maximal and minimal elements with respect to ≺.

Proof of Claim 4. Statement (1) follows directly from the definition of the
complement and (3) follows directly from the definition of ≺. Since ≺ is
a strict order on Bm, the same holds for ≺ on T . Because of Claim 2, we
obtain (4) and Claim 3 implies (5).

Let us suppose that U ∈ Bm is maximal with respect to ≺. In particular,
U is infinite. Let ∆ be a finite subgraph of Γ such that Γ −∆ has three
infinite components. Let g ∈ G such that g∆ lies in U . This element
g exists, since Γ is locally finite. Let h ∈ G such that hE(W,W ) lies
in an infinite component of Γ − g∆ that intersects U trivially. Then we
have either U ≺ hW or U ≺ hW , which contradicts the maximality of U .
Analogously, we obtains a contradiction, if U is minimal with respect to ≺.
Thus, T has no maximal and no minimal elements with respect to ≺.

By an exercise, we obtain the existence of a tree T with edges T and vertices
T/∼, where

t1 ∼ t2 :⇐⇒ t1 = t2 ∨ (t1 ≺ t̄2 ∧ ¬∃t ∈ T : t1 ≺ t ≺ t̄2).

Since T is G-invariant12, G acts on T . The action of G has at most two orbits
on the tree set since it consists of the equivalence classes of elements gW or gW .
In the exercise, we also saw that gW and gW form the same edge (up to its
direction). Thus, G acts on T and it acts transitively on the edges of T . If this
action is not without inversion, we subdivide each edge once and obtain an action
without inversion. The stabiliser of W is finite, since it is the stabiliser of the
finite edge set E(W,W ) is and since G acts freely on Γ. In order to show that the
stabilisers of the edge of T , that are the elements of T , are finite, too, it suffices
to show that only finitely many elements of {gW, gW | g ∈ G} are equivalent
with respect to ∼=. This is a direct consequence of Claim 3 and Claim 4 (6).
Thus, the statement on the edge stabilisers follows from Lemma 1.1.10, since
every element of T lies in the orbit of the equivalence class of W or of W .

Since there are no maximal or minimal elements with respect to ≺ by
Claim 4 (6), there exists a path of length at least 3 in T . This and the transi-
tivity of the action on the edges implies that there is no vertex that is fixed by
all of G.

Let us now briefly discuss the case that Γ has exactly two ends. The reason,
why the above proof fails is that the proof of Claim 4 (6) fails, the set T consists
of at most two elements and thus we cannot conclude that the splitting is proper.
In this situation, we have to work more to find some U ∈ Bm such that for U
and gU we have one of the cases of Statement (4) in the definition of a tree set,
where ≺ is now replaced by ⊆. Then we also obtain a tree that contains a path
of length at least 3, which implies that the splitting is proper.13

12Note that the equivalence relation ∼= is invariant under G.
13This sharpening of the requirements for an element of Bm will not be covered in this

lecture.
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Corollary 4.7.3. The property of being a proper free product with amalgama-
tion or an HNN extension over a finite group is a quasi-isometry invariant.

We have shown that we can split groups with more than one end, e. g. as
free product with amalgamation A ∗H B. But now it can happen that one or
two of these groups A and B have more than one end, too. Can we continue
this indefinitely? Can it happen that again and again one of the groups involed
in the product has more than one end?

Definition. A finitely generated group G is 0-accessible if it has at most one
end. For n ∈ N ∖ {0}, the group is n-accessible if it is isomorphic either to
A ∗H B for subgroups A ̸= H ̸= B, where H is finite and, for some iA, iB < n,
the groups A and B are iA- and iB-accessible, respectively, or to A∗φ for some
i-accessible group A with i < n and an isomorphism φ between finite subgroups.
We call G accessible if it is n-accessible for some n ∈ N.

Accessibility of groups can be characterised using the Bass-Serre theory as
follows.

Proposition 4.7.4. A finitely generated group is accessible if and only if it is
the fundamental group of a finite graph of groups whose edge groups are finite
and whose vertex groups are finitely generated have at most one end.

Proof. Exercise

Wall conjectured the following.

Conjecture 4.7.5 (Wall 1971). Every finitely generated group is accessible.

A first positive result is due to Dunwoody.

Theorem 4.7.6 (Dunwoody 1985). Every finitely presented group is accessible.

The general conjecture, however, was disproved a bit later.

Theorem 4.7.7 (Dunwoody 1991). There are finitely generated groups that are
not accessible.

Another important result for accessible groups follows from a theorem of
Thomassen and Woess.

Theorem 4.7.8 (Thomassen and Woess 1993). A finitely generated group is
accessible if and only if one (and hence every) of its locally finite Cayley graphs
has the following property: there exists n ∈ N such that every two ends can be
separated by at most n edges.

Corollary 4.7.9. Accessibility is a quasi-isometry invariant.



Chapter 5

Hyperbolic groups

5.1 Hyperbolic graphs and groups

Definition. Let Γ = (V,E) be a graph and let δ ∈ R≥0. Let x1, x2, x3 ∈ V and
let Pi be a shortest path between xi and xi+1 (mod 3). We call the tupel

(x1, x2, x3;P1, P2, P3)

a geodesic triangle. It is δ-thin if for every x ∈ V (Pi) there exists a y ∈⋃
i ̸=j V (Pj) with d(x, y) ≤ δ. The graph Γ is δ-hyperbolic if every geodesic

triangle is δ-thin and hyperbolic if it is δ′-hyperbolic for some δ′ ∈ R≥0.

Example 5.1.1. (1) Trees are 0-hyperbolic.

(2) The grid Z2 is not hyperbolic.

Remark. In the literature, hyperbolicity is usually defined for metric spaces.
In this context, edges of graphs will be considered as continuous images of [0, 1],
similar to planar graphs. Thus, there are small differences for the involved
constants δ. Often, the result trees are the 0-hyperbolic graphs is mentioned,
which is wrong for our definition.

We obtain directly from the definition of δ-thin geodesic triangles that in
hyperbolic graphs geodesic paths between the same vertices lie close to each
other.

Lemma 5.1.2. Let Γ be a δ-hyperbolic graph and let x, y ∈ V (G). Let P1, P2

be two geodesic x–y paths. Then we have d(v, Pi) ≤ δ for all v ∈ V (Pj) with
i, j ∈ {1, 2}.

The previous lemma even holds for quasi-geodesic paths. But before we can
show that, we first have to prove a result on the divergence of geodesic paths.

Definition. Let Γ be a graph. A function f : N → R is a divergence function
for Γ if for all geodesic paths P1 = x0 . . . xn and P2 = y0 . . . ym with x0 = y0

79
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and for all r,R ∈ N with r + R ≤ min{m,n} we have the following as soon as
d(xR, yR) > f(0): for all paths Q outside of BR+r−1(x0) from xR+r to yR+r we
have ℓ(Q) > f(r).

We say that geodesic paths diverge exponentially if there is an expo-
nential divergence function.1

Proposition 5.1.3. A graph is hyperbolic if and only if geodesic paths diverge
exponentially in it.

Proof. First, let Γ be a hyperbolic graphs. Let P1 = x0 . . . xR+r and P2 =
y0 . . . yR+r be two geodesic paths with common first vertex x0 = y0 and length
R+ r with r,R ∈ N such that d(xR, yR) > 2δ. Let Q be a xR+r–yR+r path that
lies outside of BR+r−1(x0) and let Qg be a geodesic xR+r–yR+r path.

Let v ∈ V (Qg) and let w ∈ V (Q) with

dQ(xR+r, w) =

⌈
dQ(xR+r, yR+r)

2

⌉
.

Let Q1 be a geodesic xR+r–w path and Q2 a geodesic w–yR+r path. Then there
exists u ∈ V (Q1) ∪ V (Q2) with d(v, u) ≤ δ. We may assume that u lies on Q1.
Inductively, we obtain

d(v,Q) ≤ δ log2(dQ(xR+r, yR+r)).

Because of d(xR, yR) > 2δ there is no vertex a on P2 with d(xR, a) ≤ δ: such a
vertex had distance at least R− δ and at most R+ δ to x0 and thus distance at
most δ to yR. Thus, there exists a vertex on Qg with distance at most δ to xR.
We may assume that this vertex is v. We obtain

r +R = d(x,Q) ≤ d(x, v) + d(v,Q) ≤ R− δ + δ log2(ℓ(Q)).

Thus, we have

ℓ(Q) ≥ 2
r+δ
δ

and hence geodesic paths diverge exponentially in Γ.
Let us now assume that geodesic paths diverge exponentially in Γ. For this,

let f be an exponential divergence function for Γ. Let (x, y, z;P1, P2, P3) be a
geodesic triangle in Γ. Let x1 ∈ V (P1) and x2 ∈ V (P3) with d(x, x1) = d(x, x2)
maximal such that d(u, v) ≤ f(0) for all u ∈ V (P1) and all v ∈ V (P3) with
d(x, x1) ≥ d(x, u) = d(x, v). Analogously, we define y1 and y2 on P2 and P1,
respectively, and z1 and z2 on P3 and P2, respectively.

First, we consider the case that xP1x1 and y2P1y cover P1. Then there exists
x3 ∈ V (xP3x2) and y3 ∈ V (yP2y1) with

d(x3, y3) ≤ 2f(0) + 1.

1Strictly speaking, we ask for a divergence function that is equivalent to an exponential
function in the sense that (generalised) growth function are equivalent to each other.
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The paths P2 and P3 are geodesic and thus we obtain

d(z, x3) + 2f(0) + 1 ≥ d(z, y3).

Since f is an exponential divergence function, the distances d(z1, x3) and d(z2, y3)
are bounded by f−1(4f(0) + 2). Thus, the distances d(z1, x2) and d(z2, y1) are
bounded by the same value. Thus, our geodesic triangle is λ-thin for

λ = f−1(4f(0) + 2) + 2f(0) + 1.

Let us now consider the case that there exists a vertex on P1 outside of xP1x1
and y2P1y and that the analogous statement hold for the other two sides. We
set

K1 := d(x1, y2),

K2 := d(y1, z2) and

K3 := d(z1, x2).

We may assume K1 ≥ K2 ≥ K3. Let v ∈ V (P1) with d(x1, v) = ⌈d(x1, y2)/2⌉.

Claim 1. The path x2P3z lies outside of Bd(y,v)−1(y).

Proof of Claim 1. Let us suppose that there exists a vertex u ∈ V (x2P3z)
with d(u, y) ≤ d(y, v)− 1. Because of

d(y, v) + d(x, v)− 1 < d(x, y)

we have u /∈ Bd(x,v)(x) and thus d(u, x2) ≥ K1/2. Because of K2 ≥ K3

there exists w ∈ V (P2) with d(u, z) = d(w, z). We obtain

K1/2 ≤ d(u, x2)

= d(x2, z)− d(u, z)

= d(x2, z1) + d(z1, z)− d(u, z)

≤ d(z2, y1) + d(z2, z)− d(z, w)

= d(z, y1)− d(z, w)

= d(w, y1).

Thus, w does not lie in Bd(y,v)−1(y). We obtain

d(y, z) = d(z, w) + d(w, y)

≤ d(z, u) + d(u, y)

< d(z, w) + d(w, y)

= d(y, z).

This contradiction shows the assertion.
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Let s ∈ V (P2) with d(y, s) = d(y, v). Note that Claim 1 implies the existence
of s. There exists a v–s path in the complement of Bd(y,v)−1(y) of length at
most

d(v, x1) + f(0) +K3 + 3f(0) + d(z2, s)

≤ ⌈K1/2⌉+ 4f(0) +K1 + ⌈K1/2⌉
≤ 2K1 + 4f(0) + 1.

Thus, we have

f

(⌊
K1

2

⌋)
≤ 2K1 + 4f(0) + 1.

Since f is an exponential function, there exists K ∈ N (independent of K1) with
K1/2 ≤ K. Thus, our geodesic triangle in λ′-thin for λ′ := 4K +4f(0)+ 1. For
δ = max{λ, λ′} we obtain that Γ is δ-hyperbolic.

Proposition 5.1.4. Let Γ be a hyperbolic graph and let x, y ∈ V (G). Let P1 be
a geodesic path and let P2 be a (γ, c)-quasi-geodesic x–y path with γ ∈ R≥1 and
c ∈ R≥0.

(1) There exists λ ∈ N, depending only on (δ, γ, c), such that d(v, P2) ≤ λ for
all v ∈ V (P1).

(2) There exists κ ∈ N, depending only on (δ, γ, c), such that d(v, Pi) ≤ κ for
all v ∈ V (Pj) with i, j ∈ {1, 2}.

Proof. By Proposition 5.1.3 there exists an exponential divergence function
f : N → R. Let D := max{d(v, P2) | v ∈ V (P1)} and let v ∈ V (P1) with
d(v, P2) = D. Let u′ be a vertex on xP1v with d(u′, v) = 2D, if possible, and
u′ = x otherwise. Analogously, we choose w′ on vP1y. Note that we have

d(v, x) ≥ D ≤ d(v, y)

by the choice of v. We choose u ∈ V (u′P1v) with d(u, v) = D and w ∈ V (vP1w
′)

with d(v, w) = D. By the choice of D, there exists a ∈ V (P2) ∩ BD(u′) and
b ∈ V (P2) ∩ BD(w′). Thus, we have d(a, b) ≤ 6D and dP2

(a, b) ≤ 6γD + c,
since P2 is a (γ, c)-quasi-geodesic path. Hence, we find a path of length at most
4D+6γD+c from u to w that lie outside of BD−1(v). Since f is an exponential
divergence function, but the length of the path is only linear in D, we obtain
the existence of an upper bound λ, depending only on (δ, γ, c) with D ≤ λ. This
implies (1).

For the proof of (2), let us suppose that P2 contains vertices that lie outside
of Bλ(P1). Let P ′ be a maximal subpath of P2 such that its inner vertices lie
outside of Bλ(P1). Let u and v be the end vertices of P ′. We may assume that
u lies on xP2v. By the choice of P ′ there exists a, b ∈ V (P1) with a ∈ Bλ(u) and
b ∈ Bλ(v). By (1) every vertex on aP1b has distance at most λ to some vertex
of P2, that lies in xP2u ∪ vP2y by the choice of P ′. In particular, there exists
a vertex z on aP1b that has distance at most λ to some vertex z1 on xP2u and
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distance at most λ+1 to some vertex z2 on vP2y. We obtain d(z1, z2) ≤ 2λ+1
and hence dP2(z1, z2) ≤ γ(2λ + 1) + c, since P2 is a (γ, c)-quasi-geodesic path.
Thus, the length of P ′ is bounded by γ(2λ + 1) + c and we obtain (2) for
κ = λ+ γλ+ ⌈(γ + c)/2⌉.

Lemma 5.1.5. Let Γ and ∆ be two graphs, let φ : Γ → ∆ be a (γ, c)-quasi-
isometric embedding with γ ≥ 1 and c ≥ 0 and let P = x0 . . . xn be a geodesic
path in Γ. Then φ(P ) induces a (γ′, c′)-quasi-geodesic x0φ–xnφ path Q in ∆
such that every vertex of Q has distance at most a to some vertex of φ(P ), where
γ′, c′ and a only depend on γ and c.

Proof. For every 0 ≤ i < n, letQi be a geodesic path between φ(xi) and φ(xi+1).
The union of these paths is a x0φ–xnφ walk that contains a x0φ–xnφ path. That
this path satisfies our claim is shown in an exercise.

Proposition 5.1.6. Let Γ and ∆ be two graphs. If there exists a (γ, c)-quasi-
isometric embedding φ : Γ → ∆ for some γ ≥ 1 and c ≥ 1 and if ∆ is hyperbolic,
then Γ is hyperbolic.

Proof. Let (x1, x2, x3;P1, P2, P3) be a geodesic triangle in Γ. Let yi := φ(xi)
for all i ∈ {1, 2, 3}. Then φ(Pi) induces a (γ′, c′)-quasi-geodesic yi–yi+1 path P ′

i

by Lemma 5.1.5, where γ′ and c′ only depend on γ and c. Let Qi be geodesic
yi–yi+1 paths for all i ∈ {1, 2, 3}. Let x ∈ V (Pi). By Proposition 5.1.4 (2) there
exists κ, depending only on (δ, γ, c), such that there exists x′ ∈ V (Qi) with
d(φ(x), x′) ≤ κ. Since ∆ is δ-hyperbolic, we find y′ ∈ V (Qj) for some j ̸= i
with d(x′, y′) ≤ δ and y′′ ∈ P ′

j with d(y′, y′′) ≤ κ. By Lemma 5.1.5 there exists
y ∈ V (Pj) with d(y

′′, φ(y)) ≤ γ + c. Thus, we have

1

γ
d(x, y)− γ ≤ d(φ(x), φ(y)) ≤ 2κ+ δ + γ + c

and hence

d(x, y) ≤ γ(2κ+ δ + γ + 2c).

Thus, Γ is δ′-hyperbolic for δ′ := γ(2κ+ δ + γ + 2c).

Corollary 5.1.7. Let Γ and ∆ be two quasi-isometric graphs. Then Γ is hy-
perbolic, if and only if ∆ is hyperbolic.

Definition. A finitely generated groups is hyperbolic if one (and hence by
Proposition 3.1.5 and Corollary 5.1.7 every) of its locally finite Cayley graph is
hyperbolic.

Example 5.1.8. (1) Finite groups are hyperbolic.

(2) Free groups are hyperbolic.

(3) The group Z2 is not hyperbolic.
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Lemma 5.1.9. Let Γ be a δ-hyperbolic graph and K = x0e0 . . . xn be a closed
walk in Γ with n > 4δ+4. Then there exist two vertices xi, xj such that d(xi, xj)
is smaller than the length of each of the two walks xiei . . . xj and xjej . . . xi.

Proof. Let us suppose that the claim does not hold. Then, for all xi, xj we have
that either xiei . . . xj or xjej . . . xi is a walk that belongs to a geodesic path. In
particular, K corresponds to a cycle C.

Let y1, y2, y3 ∈ V (C) with

d(y1, y2) = ⌊ℓ(C)/2⌋,
d(y2, y3) = ⌈ℓ(C)/4⌉ and

d(y3, y1) = ℓ(C)− d(y1, y2)− d(y2, y3).

Let Pi be the subpath of C from yi to yi+1
2 that realises this distance. Thus,

the paths Pi are geodesic paths and (y1, y2, y3;P1, P2, P3) is a geodesic triangle.
By the choice of y1 and y2 and because of ℓ(C) ≥ 4δ + 4 there exists a vertex
v ∈ V (P1) with

d(v, y1) > δ < d(v, y2).

Since Γ is δ-hyperbolic, there exists w ∈ V (P2) ∪ V (P3) with d(v, w) ≤ δ. This
contradicts our assumption d(v, w) = dC(v, w).

Theorem 5.1.10. Hyperbolic groups are finitely presented.

Proof. Let G = ⟨S | R⟩ be a δ-hyperbolic group, where S is a finite generating
set. Let Γ be the Cayley graph of G and S. Every relator corresponds to a
closed walk in Γ. If R contains a relator w of length more than 4δ + 4, then
this corresponds to a closed walk K = x0e0 . . . xn of length more than 4δ + 4.
By Lemma 5.1.9 there exist vertices xi, xj on K such that d(x, y) is smaller
than the lengths of xiei . . . xj and xjej . . . xi. Let y0f0 . . . ym with y0 = xi and
ym = xj be a shortest walk between xi and xj . Then xiei . . . xjfm−1 . . . f0y0
and y0f0 . . . fm−1ymej . . . xi are closed walks that correspond to words whose
concatenation allows elementary reductions such that the resulting word is w.
Thus, w lies in the normal subgroup generated by these two words of smaller
length. Inductively, we obtain that R is generated as normal subgroup by words
of length at most 4δ + 4. Since there are only finitely many such words over
S ∪ S−1, we found a finite presentation of G.

5.2 Subgroups of hyperbolic groups

We want to show that infinite hyperbolic groups always contains elements of
infinite order.

Definition. Let G be a finitely generated group, S a finite generating set of G
and g ∈ G. Then cone of g with respect to S is the set

ConeS(g) := {h ∈ G | dS(1, gh) ≥ dS(1, g) + dS(1, h)}.
2or to y1, if i = 3
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Example 5.2.1. Let F be a free group of rank n ∈ N with free generating
set S. Then F has exactly 2 · |S|+1 cones: besides ConeS(1) = F there are the
cones ConeS(s) = {s1 . . . sn | si ∈ S ∪ S−1, s1 ̸= s−1} for each s ∈ S ∪ S−1.

Obviously, these cones are distinct (s−1 is the unique element of S ∪ S−1

that does not lie in ConeS(s)) and for every word s1 . . . sn over S ∪ S−1 with
n ≥ 2 we have ConeS(s1 . . . sn) = ConeS(sn).

Definition. A group is a torsion group if each of its elements is a torsion
element.

Proposition 5.2.2. Let G be an finitely generated infinite group that has only
finitely many cones with respect to a finite generating set S. Then G is not a
torsion group.

Proof. We set
k := |{ConeS(g) | g ∈ G}| .

Since S is finite, the Cayley graph Γ of G and S is locally finite. Thus and since
G is infinite, there exists g ∈ G with d(1, g) > k. Let 1 = g0, g1, . . . , gm = g be a
shortest path in Γ from 1 to g. Because ofm > k there exists two vertices gi ̸= gj
with i < j on this path that have the same cone. We claim that h := g−1

i gj has
infinite order. For this, we will show by Induktion that we have

dS(1, gih
n) ≥ dS(1, gi) + n · dS(1, h)

for all n ∈ N. The proposition immediately follows, since the previous statement
implies that the elements gih

n must be distinct for all n ∈ N.
For n = 1, the claim follows directly from the choice of h. So let n ∈ N such

that the claim holds for n. Then we have dS(1, h
n) = n · dS(1, h) because of

dS(1, gi) + dS(1, h
n) ≥ dS(1, gih

n)

≥ dS(1, gi) + n · dS(1, h)
≥ dS(1, gi) + dS(1, h

n).

Furthermore, we have hn ∈ ConeS(gi) = ConeS(gih). Thus, we obtain

dS(1, gih
n+1) = dS(1, gihh

n)

≥ dS(1, gih) + dS(1, h
n)

= dS(1, gi) + dS(1, h) + n · dS(1, h)
= dS(1, gi) + (n+ 1) · dS(1, h).

This finishes the induction.

Proposition 5.2.3. Let G be a hyperbolic group with finite generating set S.
Then G has only finitely many cones with respect to S.

Proof. For g ∈ G and r ∈ N we define the set

PS
r (g) := {h ∈ BG,S

r (1) | dS(1, gh) ≤ dS(1, g)}.
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Let Γ be the Cayley-Graph of G and S. By assumption, there exists δ ∈ R≥0

such that Γ is δ-hyperbolic. Set r := 2δ + 1.

If we can show that the set PS
r (g) of each group element g ∈ G already

determines its cone, then the fact that each PS
r (g) is a subset of the finite set

BG,S
r (1) implies that there are only finitely many distinct cones. Thus, we

want to show that for all g, g′ ∈ G with PS
r (g) = PS

r (g′) we have ConeS(g) =
ConeS(g

′).

Let g, g′ ∈ G with PS
r (g) = PS

r (g′) and h ∈ ConeS(g). By induction on
dS(1, h), we show h ∈ ConeS(g

′).

If dS(1, h) = 0, then we have h = 1 and, obviously, we have h ∈ ConeS(g
′). If

dS(1, h) = 1, then h ∈ ConeS(g) implies together with the definitions of cones
and of PS

r (g) that h does not lie in PS
r (g) = PS

r (g′). Thus, it must lie in
ConeS(g

′).

So let dS(1, h) > 1. Then there exists s ∈ S ∪ S−1 and h′ ∈ G with h = h′s
and dS(1, h

′) = dS(1, h) − 1. Since h ∈ ConeS(g), we have h′ ∈ ConeS(g) and
h′ ∈ ConeS(g

′) by induction.

Let us suppose that h /∈ ConeS(g
′) holds. Then we have

dS(1, g
′h) < dS(1, g

′) + dS(1, h).

Let s1, . . . , sn ∈ S ∪ S−1 with s1 . . . sn = g′h and n = dS(1, g
′h). Set k1 :=

s1 . . . sdS(1,g′) and k2 := k−1
1 g′h. Then we have

dS(1, g
′h) = dS(1, k1) + dS(1, k2) and

dS(1, k1) = dS(1, g
′)

and, since h /∈ ConeS(g
′), we obtain

dS(1, k2) ≤ dS(1, h)− 1.

We consider the element h′′ := g′−1k1. We have

dS(1, h
′′) = dS(1, g

′−1k1)

= dS(g
′, k1)

≤ 2δ + 1

≤ r,

where the second last inequality follows similarly as one of the exercises: the
s1 . . . sn define a geodesic path and a different one is defined by g′ and h′. Its end
vertices have distance 1 and we can use an argument as in one of the exercises
to obtain dS(g

′, k1) ≤ 2δ + 1. Thus, h′′ lies in BG,S
r (1).

Furthermore, we have

dS(1, g
′h′′) = dS(1, k1) = dS(1, g

′)
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and hence we obtain h′′ ∈ PS
r (g′) = PS

r (g). Because of h ∈ ConeS(g) we get:

dS(1, g) + dS(1, h) ≤ dS(1, gh)

= dS(1, gg
′−1g′h)

= dS(1, gg
′−1k1k2)

≤ dS(1, gh
′′) + dS(1, k2)

≤ dS(1, g) + dS(1, h)− 1.

This contradiction finishes the induction and thus the proposition.

As an immediate corollary of Propositions 5.2.2 and 5.2.3 we obtain the
following.

Theorem 5.2.4. Infinite hyperbolic groups are no torsion groups.

Next, we want to show that no hyperbolic groups has a subgroup isomorphic
to Z2. Therefore, we first show that every infinite cyclic subgroup of a hyperbolic
group is a quasi-isometric embedding of Z.

Proposition 5.2.5. Let g be an element of infinite order in a hyperbolic group G.
Then the function

ψ : Z → G, z 7→ gz

is a quasi-isometric embedding.

Proof. Let S be a finite generating set of the hyperbolic group G and let Γ be
the Cayley graph of G and S. Let δ ≥ 0 such that Γ is δ-hyperbolic and set
n := |{g ∈ G | dS(1, g) ≤ 4δ + 1}|. Here, a midpoint of a path is one of its (at
most two) central vertices. First, we will show dS(1, g

nr) ≥ r for all r ∈ N. For
this, let r ∈ N with r > 0 and k ∈ N with

dS(1, g
k) > 8r + 4δ + 1.

Let P be a geodesic 1–gk path, x a midpoint of P and Px a subpath of P of
length 2r such that x is a midpoint of Px as well. Let us show the following.

Claim 1. If u ∈ Br(1) and v ∈ Br(g
k), then we have dS(y, Px) ≤ 4δ + 1 for

every midpoint y of each geodesic u–v paths P ′.

Proof of Claim 1. Let P ′′ be a geodesic 1–v path. We have

|dS(1, gk)− dS(1, v)| ≤ r

and
|dS(1, gk)− dS(u, v)| ≤ 2r.

Thus, the midpoint y of P ′ must have distance more than δ from Br(1)
and Br(g

k) and, since Γ is δ-hyperbolic, there exists a vertex z on P ′′ with
dS(y, z) ≤ δ. Since the lengths of P ′ and P ′′ differ by at most r, we have



88 CHAPTER 5. HYPERBOLIC GROUPS

dS(y, z
′) ≤ ⌈r/2⌉+ δ, where z′ is a midpoint of P ′′. Analogously, we find

a vertex x′ on P of distance at most δ to z and such that

d(x, x′) ≤ 2(⌈r/2⌉+ δ) ≤ r + 2δ + 1.

The claim follows.

Since n = |B4δ+1(1)|, there are most 2nr distinct vertices of distance at most
4δ + 1 to Px. Since all gi are distinct and G acts freely on Γ, the image of x
under all gi are distinct. At most 2nr of these images have distance at most
4δ+1 to Px. Thus and since dS(1, g

i) = dS(1, g
−i), there exists f(r) ≤ nr with

0 < f(r) such that gf(r) /∈ Br(1) and g
k+f(r) /∈ Br(g

k).

Claim 2. We have dS(1, g
nR) ≥ R for all R ∈ N with R > 0.

Proof of Claim 2. Let us suppose that there exists R ∈ N with R > 0 and
dS(1, g

nR) < R. For every m ∈ N with m > nR, let nm, rm ∈ N such that
m = nmnR+ rm and 0 ≤ rm < nR. Since nm can be arbitrarily large but
there are only finitely many values for rm, there exists for every ε > 0 a
qε with nmε > dS(1, g

rm) for all m with nm ≥ qε. Let m ∈ N such that
nm ≥ qε for ε := R− dS(1, g

nR). We obtain

dS(1, g
m) ≤ dS(1, g

nmnR) + dS(1, g
rm)

≤ nmdS(1, g
nR) + dS(1, g

rm)

≤ nm(R− ε) + dS(1, g
rm)

< nmR.

Let M ∈ N such that f(M) > nR and nf(M) ≥ qε. Then we have

f(M) ≤ nM and dS(1, g
f(M)) > M by the choice of f(M). So we obtain

dS(1, g
f(M)) < nf(M)R ≤ f(M)/n ≤M.

This contradicts the choice of f(M) and proves our claim.

Now we are ready to prove that ψ is a quasi-isometric embedding. For this,
let i, j,m, rij ∈ Z with 0 ≤ m < n and |i− j| = nrij +m and let K ∈ R≥0 with

d(1, gm
′
) ≤ K for all 0 ≤ m′ < n. Then we have

1

n
|i− j| − (n+K) ≤ rij +m− (m+K)

= rij −K

≤ dS(1, g
nrij )−K

≤ dS(1, g
nrij+m)

= dS(1, g
|i−j|)
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and

dS(1, g
|i−j|) = dS(1, g

nrij+m)

≤ dS(1, g
nrij ) + dS(1, g

m)

≤ nrijdS(1, g) +mdS(1, g)

≤ dS(1, g)(nrij +m)

= dS(1, g)|i− j|.

Choosing γ := max{n, dS(1, g)} and c := n + K as constants for the quasi-
isometric embedding proves the assertion.

Now we will take a closer look at the centralisers of elements of infinite order
in hyperbolic groups.

Definition. Let G be a group and let g ∈ G. The centraliser of g is the
subgroup

CG(g) := {h ∈ G | hg = gh}.3

Theorem 5.2.6. Let G be an infinite hyperbolic group and let g ∈ G be an
element of infinite order. Then we have

|CG(g) : ⟨g⟩| ∈ N.

Proof. Let S be a finite generating set of G and let δ ∈ R≥0 such that the
Cayley graph Γ of G and S is δ-hyperbolic. By Proposition 5.2.5 there exists
γ ∈ R≥1 and c ∈ R≥0 such that

Z → G, z 7→ gz

is a (γ, c)-quasi-isometric embedding. Let h ∈ CG(g). Since the order of g is
infinite, there exists m ∈ N such that

dS(1, g
m) > 2dS(1, h) + 4δ + 2.

We choose geodesic paths

• P1 between 1 and gm,

• P2 between gm and hgm,

• P3 between hgm and h,

• P4 between h and 1 and

• P5 between 1 and hgm.

3It is easy to verify that the centraliser is indeed a subgroup.
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Let x be a midpoint of P1. Then there exists a vertex y on P5 of distance at
most δ to x, since by the choice of the length of P1 every vertex on P2 has
distance more than δ from x. Analogously, we find a vertex z on P3 such that
dS(y, z) ≤ δ. Thus, we have dS(x, z) ≤ 2δ.

Let κ be the constant of Proposition 5.1.4 (2). Then there exists i, j ∈
{0, . . . ,m} such that dS(x, g

i) ≤ κ and dS(z, hg
j) ≤ κ. We obtain

dS(1, hg
j−i) = dS(g

i, hgj) ≤ 2κ+ 2δ

and hence the coset h⟨g⟩ contains a vertex of the ball B2κ+2δ(1). Since this
holds for all cosets of ⟨g⟩ and since this ball is finite, this finishes the proof.

Corollary 5.2.7. No hyperbolic group has a subgroup isomorphic to Z2.

We note that, in general, it is false that a group cannot be a subgroup of a
hyperbolic group just because it is not hyperbolic itself, as Rips has shown the
following result.

Theorem 5.2.8 (Rips). There exists a hyperbolic group that has a finitely gen-
erated subgroup that is not hyperbolic.

Even stronger, the following was shown.

Theorem 5.2.9 (Brady). There exists a hyperbolic group that has a finitely
presented subgroup that is not hyperbolic.

We omit both proofs for these results.

5.3 Hyperbolic boundary

Definition. Let Γ be a hyperbolic graph. A (double) ray R is geodesic if

dR(x, y) = d(x, y)

for all x, y ∈ V (R). It is quasi-geodesic if there are γ ∈ R≥1 and c ∈ R≥0 such
that

dR(x, y) ≤ γd(x, y) + c

holds for all x, y on R. Two quasi-geodesic rays R1, R2 are equivalent if there
exists m ∈ N such that the ray Ri has infinitely many vertices of distance at
most m to Rj for all i ̸= j ∈ {1, 2}.

Lemma 5.3.1. Let Γ be a δ-hyperbolic graph. If R1 and R2 are two equivalent
quasi-geodesic rays, then there exists m ∈ N such that d(x,Ri) ≤ m for all
x ∈ V (Rj) with i ̸= j ∈ {1, 2}.

Proof. Let R1 and R2 be (γ, c)-quasi-geodesic rays. Let m be the constant of
the equivalence of the rays R1 and R2. Let x1, x2 ∈ V (R1) and y1, y2 ∈ V (R2)
with d(xi, yi) ≤ m and let Pi be a shortest xi–yi path for all i ∈ {1, 2}. Then
Q := x1P1y1R2y2P2x2 is a (γ, c + 2m)-quasi-geodesic path and there exists
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by Proposition 5.1.4 (2) a constant κ, depending only on γ, c and m, such that
x1R1x2 lies completely in the κ-neighbourhood of Q and vice versa. This implies
the assertion.

Lemma 5.3.2. Let Γ be a hyperbolic graph. Equivalence of quasi-geodesic rays
in Γ is an equivalence relation.

Proof. This follows immediately from Lemma 5.3.1.

Remark 5.3.3. According to Lemma 5.1.5 and Proposition 5.1.4 the definition
of the equivalence of quasi-geodesic rays is invariant under quasi-isometries.

Lemma 5.3.2 and Remark 5.3.3 lead us to the following definition.

Definition. Let Γ be a hyperbolic graph and let G be a hyperbolic group.
The hyperbolic boundary ∂h(Γ) of Γ is the set of equivalence classes of the
equivalence relation on the quasi-geodesic rays. The hyperbolic boundary
of G is the hyperbolic boundary of one of its locally finite Cayley graphs.

We immediately obtain the following.

Proposition 5.3.4. The cardinality of the hyperbolic boundary of hyperbolic
groups is a quasi-isometry invariant.

Example 5.3.5. (1) The group Z has exactly two hyperbolic boundary points.

(2) If F is a free group of finite rank, then |∂h(F )| = e(G).

Remark 5.3.6. Let Γ be a locally finite δ-hyperbolic graph.

(1) Similar as in an exercise, where it was shown that every end contains a
geodesic ray, we obtain that every hyperbolic boundary points contains a
geodesic ray R and that there exists for every vertex x a ray that starts at x
and that has a common subrays with R.

(2) Let R1 = x0x1 . . . and R2 = y0y1 . . . be two geodesic rays that start at the
same vertex x0 = y0 but that are not equivalent (as quasi-geodesic rays).
Let ηi be the hyperbolic boundary point that contains Ri. Then there
exists r ∈ N with d(xr, yr) > 2δ and we have d(xr, R2) > δ. Since geodesic
triangles are δ-thin, there exists for every geodesic triangle with vertices
x0, xi, yi for i > r a vertex of the geodesic xi–yi path in Bδ(xr). Since there
are only finitely many vertices in Bδ(xr), on of them, say z, lies on these
xi–yi paths for infinitely many i > r. Thus, we find (similar to an exercise)
a geodesic double ray with one subray in η1 and another subray in η2.

(3) Let R1, R2 be two geodesic double rays such that the hyperbolic boundary
points defined by R1

4 are the same as those defined by R2. Then there
exists m ∈ N such that R1 lies in Bm(R2) and R2 lies in Bm(R1). If we
choose vertices x1, x2 on R1 of distance at least 2m + 2δ in Γ and vertices

4These are the hyperbolic boundary points that contain subrays of R1.
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y1, y2 on R2 with d(xi, yi) ≤ m, then we can apply the definition of δ-thin
geodesic triangles and obtain that for every vertex x on x1R1x2 that has
distance more than m+2δ to each xi there exists a vertex y on y1R2y2 with
d(x, y) ≤ 2δ. Thus, we may choose m = 2δ.

(4) Let R1, R2 be two (γ, c)-quasi-geodesic double rays such that the hyperbolic
boundary points defined by R1 are the same as those defined by R2. Then
there exists m ∈ N such that R1 lies in Bm(R2) and R2 lies in Bm(R1). If
we choose vertices x1, x2 on R1 of distance at least 2m+2δ in Γ and vertices
y1, y2 on R2 with d(xi, yi) ≤ m, then we can apply Proposition 5.1.4 (2) and
the definition of δ-thin geodesic triangles and obtain that for every vertex
x on x1R1x2 that has distance more than m+ 2δ to each xi there exists a
vertex y on y1R2y2 with d(x, y) ≤ 2δ + 2κ, where κ is the constant from
Proposition 5.1.4 (2). Thus, we may choose m = 2κ+ 2δ.

Theorem 5.3.7. Let G be a hyperbolic group. Then we have |∂h(G)| ∈ {0, 2,∞}.

Proof. If G is finite, then the hyperbolic boundary of G is empty. So let G be
infinite. Then G contains an element g of infinite order by Theorem 5.2.4. The
quasi-isometric embedding ψg : Z → G, z 7→ gz (cf. Proposition 5.2.5) defines a
quasi-geodesic double ray . . . x−1x0x1 . . . by Lemma 5.1.5. Note that it follows
from the definition of a quasi-geodesic double ray that the rays x0x1 . . . and
x0x−1 . . . are not equivalent. Thus, we have |∂h(G)| ≥ 2.

Let us now assume that |∂h(G)| ≥ 3. We want to show that the hyper-
bolic boundary is infinite. Let S be a finite generating set of G and let Γ be
the Cayley graph of G and S. Let δ ≥ 0 such that Γ is δ-hyperbolic. Let us
suppose that the hyperbolic boundary is finite. Note that for every two hyper-
bolic boundary points there exists a geodesic double ray that defines these two
hyperbolic boundary points (Remark 5.3.6 (2)). Since geodesic triangles are δ-
thin and because of Remark 5.3.6 (3), there exists a finite subset B of V (Γ) such
that every geodesic double ray between every two hyperbolic boundary points
meets B. Let R be a geodesic double ray. Because of |∂h(G)| ≥ 3, there exists
a vertex x on one of the other geodesic double rays that has distance more than
2diam(B) + 2δ to R. Since G acts transitively on Γ, there exists g ∈ G with
x ∈ gB. But then gB avoids the geodesic double ray R, which contradicts the
choice of B: the hyperbolic boundary is G-invariant and thus gB must meet ev-
ery geodesic double ray. This contradiction show |∂h(G)| = ∞ in our remaining
case.

Theorem 5.3.8. Let G be a hyperbolic group.

(1) If |∂h(G)| = 2, then G is virtually Z.

(2) If |∂h(G)| = ∞, then G has a free subgroup of rank 2.

Proof. Let G be an infinite hyperbolic group with finite generating set S. In
order to prove (1) let |∂h(G)| = 2. Then there exists a geodesic double ray
R between the two hyperbolic boundary points of G by Remark 5.3.6 (2) and
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by (3) of that remark every geodesic double ray (that has to define the same
hyperbolic boundary points) lies in B2δ(R). By the transitivity of Γ, there exists
no vertex of distance more than 2δ to R. Thus, we have e(G) = 2 and the claim
follows from Theorem 3.4.6.

For the proof of (2), we assume |∂h(G)| = ∞. By Theorem 5.2.4 there exists
g ∈ G of infinite order. We consider the quasi-isometric embedding of ⟨g⟩ in G
according to Proposition 5.2.5. By Lemma 5.1.5 the image of that embedding
defines a (γ, c)-quasi-geodesic double ray Rg and by Remark 5.3.6 there exists a
geodesic double ray R that defines the same hyperbolic boundary points. Note
that these hyperbolic boundary points are g-invariant. Let g+ be the hyperbolic
boundary points that contains that subray of R which lies close to the gi with
i ∈ N and let g− be the second hyperbolic boundary points defined by R.

Let f ∈ G such that d(f,R) > 2δ. Then h := gf has infinite order, too,
f−1R is a geodesic double ray and f−1R is a (γ, c)-quasi-geodesic double ray.
We set h+ := f−1g+ and h− := f−1g−.5 Then there exists a geodesic double
ray between every two hyperbolic boundary points of

Y := {g+, g−, h+, h−}.

By the choice of f , we have |Y | ≥ 3, since not all geodesic rays in f−1R can
be equivalent to R by Remark 5.3.6 (3). Let us suppose |Y | = 3. Then there
exists i1, i2, j1, j2 ∈ Z such that d(giℓ , hjℓ) ≤ m for ℓ ∈ {1, 2} and m as in
the definition of equivalent quasi-geodesic rays and such that d(gi1 , gi2) and
d(hj1 , hj2) are arbitrarily large. We obtain

d(gi1+k|i1−i2|, hj1+k|j1−j2|) ≤ m

for all k ∈ Z. But then we have |Y | = 2, which we had excluded.
By Remark 5.3.6 and since geodesic triangles are δ-thin, there exists K ∈ N

such that BK(1) meets all (γ, c)-quasi-geodesic double rays between elements
of Y and for every other hyperbolic boundary point the geodesic double ray from
that point to at most one element of Y are not met by BK(1). Set B := B2K(1).
We define:

A1 := {η ∈ ∂h(G) | ∃ geodesic double ray from η to g+ in Γ∖B},
A2 := {η ∈ ∂h(G) | ∃ geodesic double ray from η to g− in Γ∖B},
B1 := {η ∈ ∂h(G) | ∃ geodesic double ray from η to h+ in Γ∖B},
B2 := {η ∈ ∂h(G) | ∃ geodesic double ray from η to h− in Γ∖B}.

Now let n ∈ N such that

d(B, gnB) > diam(B) + 2δ < d(B, hnB)

and let η ∈ ∂h(Γ) ∖ A2. Let Q be a geodesic double ray between gnη and g+.
If this double ray meets B, then it is diam(B) close to R at that vertex and

5This is the canonical extension of the automorphism f from Γ to ∂h(Γ): images of equiv-
alent quasi-geodesic rays are equivalent, too, and thereby we can extend every automorphism
to the hyperbolic boundary of Γ.
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then it must also meet gnB on its further way to g+ (say at the vertex x). On
the other side, every geodesic double ray P from g− to gnη must pass B first
and then gnB. Since geodesic triangles are δ-thin, there exists a vertex y on Q
between gnη and B that has distance at most 2δ to P ∩gnB. But then, we have

d(x, y) ≤ 2δ + diam(B) < d(B, gnB) ≤ d(y,B) + d(B, x) ≤ d(x, y).

This contradiction proves Q∩B = ∅ and thus gnη ∈ A1. Analogously, we obtain
the other conditions in order to apply the Ping-Pong-Lemma (Lemma 2.1.12).
We then obtain that gn and hn freely generate a free subgroup.

Together with Corollary 3.5.12 we obtain the following result from Theo-
rem 5.3.8.

Corollary 5.3.9. If a hyperbolic groups is neither finite nor virtually Z, then
it has exponential growth.

5.4 Quasi-convex subgroups

Definition. Let G be a finitely generated group and let H be a subgroup of G.
Let Γ be a locally finite Cayley graph of G and some finite generating set S.
Let k > 0. Then H is k-quasi-convex if every geodesic in Γ with end vertices
in H lies in the K-neighbourhood of H. It is quasi-convex if it is ℓ-quasi-convex
for some ℓ > 0.

We want to show that quasi-convex subgroups of hyperbolic groups are hy-
perbolic again.

Lemma 5.4.1. Let G be a finitely generated group and let H be a quasi-convex
subgroup of G. Then H is finitely generated and the canonical map H → G is
a quasi-isometric embedding.

Proof. Let Γ be a locally finite Cayley graph and let k > 0 such that H is k-
quasi-convex for that Cayley graph. Let S be the set of all elements of H with
distance at most 2k + 1 to 1 in Γ.

Let P = x0 . . . xn be a geodesic path between 1 and h ∈ H in Γ. For every
xi there exists yi ∈ H with d(xi, yi) ≤ k. Thus, we have d(yi, yi+1) ≤ 2k + 1.
We may assume y0 = 1 and yn = h. Then y0y1 . . . yn is a path in the Cayley
graph of H and S, which shows, that S is indeed a generating set of H.

By construction, we have

1

2k + 1
d(a, b) ≤ dS(a, b) ≤ d(a, b).

Thus, the canonical embedding of H into G is a quasi-isometric embedding.

Lemma 5.4.2. Let H be a finitely generated subgroup of a hyperbolic group G.
Then H is quasi-convex if and only if the canonical embedding H → G is a
quasi-isometric embedding.
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Proof. If H is quasi-convex in G, then Lemma 5.4.1 implies that the canonical
embedding is a quasi-isometric embedding. For the other direction, let us as-
sume that the canonical embedding is a quasi-isometric embedding φ : H → G.
Let P be a geodesic path in a Cayley graph ∆ of H with respect to some fi-
nite generating set SH of H. Then its φ-image defines a quasi-geodesic path
Q in a Cayley graph Γ of G and some finite generating set SG of G according
to Lemma 5.1.5. So Proposition 5.1.4 implies that there exists a constant κ
depending only on the hyperbolicity constant and on the constant for the quasi-
isometry such that every geodesic in Γ with the same end vertices as Q lies in
the κ-neighbourhood of Q. This shows that H is quasi-convex.

Corollary 5.4.3. Every quasi-convex subgroup of a hyperbolic group is hyper-
bolic.

Proof. Let H be a quasi-convex subgroup of a hyperbolic group G. Then it is
finitely generated by Lemma 5.4.1 and the canonical embedding H → G is a
quasi-isometric embedding. Then Proposition 5.1.6 implies thatH is hyperbolic.

Proposition 5.4.4. Let G be either a free product with amalgamation or an
HNN extension of finitely generated groups over finite subgroups. Then the
factors are quasi-convex in G.

Proof. Obviously, G is finitely generated, too. First, let G = A ∗C B with C
being finite. Let S be a finite generating set of G that consists of the elements
of a finite generating sets for A and of one for B. Let Γ be a Cayley graph of G
and S. Let P be a geodesic path in Γ whose end vertices lie in A. Let ℓ be
the longest distance in Γ between vertices in C. Then every time P leaves A
through a coset of C, it must re-enter A through the same coset. (This follows
from the existence of normal forms.) So the last vertex before exiting A and the
first vertex after entering A have distance at most ℓ. Thus, every vertex of P
lies within distance ℓ/2 of A.

A similar argument holds in the case of HNN extensions.

Let us now proof a theorem that is an analogue of Theorem 3.4.6 for free
groups of arbitrary finite rank.

Theorem 5.4.5. A finitely generated group is quasi-isometric to a free group
of finite rank, if and only if it has a finitely generated free group as subgroup of
finite index.

Proof. Note that we may assume by Theorem 3.4.6 that the involved free groups
have rank at least 2. The backward implication follows from Corollary 3.2.3. So
let us assume that G is a finitely generated group that is quasi-isometric to a
finitely generated free group. Since free groups of rank at least 2 have infinitely
many ends, the same is true for G and we may apply Theorem 4.7.1. Free groups
are hyperbolic and so Corollary 5.1.7 implies that G is hyperbolic, too. Since
hyperbolic groups are finitely presented (Theorem 5.1.10), they are accessible
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by Theorem 4.7.6 and we may write G as free products with amalgamation and
HNN extensions over finite subgroups such that the factors have at most one
end each (Proposition 4.7.4) or, equivalently, as fundamental group of a finite
graph of groups with finite edge groups and whose vertex groups have at most
one end. By Proposition 5.4.4, the factors are quasi-convex in G and hence they
are hyperbolic by Corollary 5.4.3.

Note that the ends of G correspond to its hyperbolic boundary points: there
is a canonical bijection between them. Thus, every vertex group has at most one
hyperbolic boundary point and hence by Theorem 5.3.7 none at all. Hence, all
vertex groups are finite. So we are currently looking at a finite graph of groups
with finite vertex groups (and finite edge groups). By an exercise, we know
that the fundamental group has a free subgroup of finite index. Corollary 3.2.4
implies that this free subgroup is finitely generated.
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