Lecture notes

Geometric Group Theory

Winter 2022/23

Hamburg, March 6, 2023

These are the notes of my class Geometric Group Theory, taught in Winter 2022/23 at Hamburg University. I am greatful for letting me know of any typos or errors in these notes. You can send them via email:
matthias.hamann@math.uni-hamburg.de.
Hamburg, Winter 2022/23 Matthias Hamann

Contents

0 Introduction 1
1 Basics 3
1.1 Group actions 3
1.2 Cayley graphs 7
1.3 Sabidussi's theorem 10
2 Free groups 13
2.1 Free groups and trees 13
2.2 The rank of free groups 19
2.3 Group presentations 20
2.4 Tietze transformations 22
2.5 Group products 24
2.5.1 Free products (with amalgamation) 24
2.5.2 HNN extensions 29
3 Quasi-Isometries 33
3.1 Word metric and quasi-isometries 33
3.2 Svarc-Milnor lemma 35
3.3 Quasi-isometry invariants 38
3.4 Ends of groups 39
3.5 Growth of groups 42
4 Bass-Serre theory 47
4.1 Group actions on trees 47
4.2 Fundamental groups of graphs 55
4.3 Graphs of groups 59
4.4 Structure theorem of the Bass-Serre theory 64
4.5 Minimal actions 69
4.6 Kurosh's theorem 72
4.7 Stallings' theorem 74
5 Hyperbolic groups 79
5.1 Hyperbolic graphs and groups. 79
5.2 Subgroups of hyperbolic groups 84
5.3 Hyperbolic boundary. 90
5.4 Quasi-convex subgroups 94
Literaturverzeichnis 97

Chapter 0

Introduction

Groups play a major role in many (if not all) mathematical subjects. Mostly, they occur as automorphisms groups but sometimes, e.g. in Galois theory they occur directly. The intention of this class is to understand the groups themselves better. But beforehand let us discuss the following question.

What is geometric group theory?

Generally speaking, geometric group theory considers groups as geometric objects and tries to relate their geometric and algebraic properties. Sometimes, instead of looking at the geometric properties of groups, we use their actions on other geometric objects to obtain results for the groups.

For example the statement 'Subgroups of free groups are free.' is purely algebraic while an elegant proof uses a geometric characterisation of free groups via their action on trees.

Our most important objects will be Cayley graphs: for every group and each of its generating sets we can construct a Cayley graph. It will be important for us that the structure of different Cayley graphs for the same finitely generated group but for different finite generating sets will change the geometry of the Cayley graphs only locally: they are quasi-isometric to each other. This implies that every geometric property that is invariant under quasi-isometries is true for one of these Cayley graphs if and only if it is true for all of them. Thereby, we can view this property as a property of the group.

This way we can talk about ends or growth of groups. As an example between the geometric and algebraic properties of groups we will prove Stallings' theorem. It says that a finitely generately generated group has more than one end if and only if it is one of two well described group products.

Chapter 1

Basics

Remark. A group is a pair (G, \cdot) consisting of a set G and a binary function $\cdot: G \times G \rightarrow G$ satisfying the ollowing properties.

- associative: $(f \cdot g) \cdot h=f \cdot(g \cdot h)$ for all $f, g, h \in G$;
- neutral element: there exists $e \in G$ with $e \cdot g=g=g \cdot e$ for all $g \in G$;
- inverse elements: for every $g \in G$ there exists $g^{-1} \in G$ such that $g g^{-1}=e=$ $g^{-1} g$.

Usually, we omit the function \cdot and write $g h$ instead of $g \cdot h$.

1.1 Group actions

In this section, we will make the following sentence precise from the groups theoretic point of view: 'A group acts on a mathematical object like automorphisms.'

Definition. A group G acts (from the right) on a set X if there is a function

- : $X \times G \rightarrow X$ such that
(1) $x \bullet 1=x$ for all $x \in X$ and
(2) $(x \bullet g) \bullet h=x \bullet(g h)$ for all $g, h \in G$ and $x \in X$.

We call the function the (right) action of G on X.
Analogously, G acts (from the left) on X if there is a function $\bullet: G \times X \rightarrow$ X such that
(1') $1 \bullet x=x$ for all $x \in X$ and
$\left(2^{\prime}\right) g \bullet(h \bullet x)=(g h) \bullet x$ for all $g, h \in G$ and $x \in X$.
We call the function the (left) action of G on X.

Comment. Usually, we will omit the function \bullet for group actions.
Let us look at some examples for group actions.
Example 1.1.1. Let G be a group and $U \leq G$ a subgroup.
(1) G acts from the right (left) via multiplication from the right (left) on itself.
(2) G acts on itself via conjugation, i. e. $x \bullet g:=x^{g}:=g^{-1} x g$.
(3) G acts from the right via multiplication from the right at the set of right cosets of U, i.e. at the set $\{U g \mid g \in G\}$ where $U g:=\{u g \mid u \in U\}$.
$\left(3^{\prime}\right) G$ acts from the left via multiplication from the left at the set of left cosets of U, i.e. at the set $\{g U \mid g \in G\}$ where $g U:=\{g u \mid u \in U\}$.
(4) Let F be a field and V a F-vector space. Then the multiplicative group $\left(F^{*}, \cdot\right)$ of F acts on V via Scalar multiplication.

Definition. Let a group G act on a set X. It acts faithfully if for all $g \in G$ with $g \neq 1$ there exists $x \in X$ such that $x g \neq x$.

Example 1.1.2 (continuation of Example 1.1.1).
(1) Multiplication (from the left and from the right) are faithful actions.
(2) Conjugation is a faithful action if and only if the center $C(G):=\{g \in G \mid$ $g h=h g \forall h \in G\}$ of G is trivial.
(3) Multiplication on the sets of cosets is not faithful. (Example?)
(4) Scalar multiplication on non-trivial vector spaces is a faithful action.

Remark. Usually, we consider left actions and then omit 'left'. Contrary, when we use a right action, we shall explicitly state that.

Lemma 1.1.3. Let G be a group and X be a set. Then G acts (non-trivially) on X if and only if there is a (non-trivial) group homomorphism $G \rightarrow S_{X}{ }_{\square}^{1}$

Additionally, G acts faithfully on X if and only if this group homomorphism is injective.

Proof. First, let G act non-trivially on X. For every $g \in G$, set $\varphi_{g}: X \rightarrow X$, $x \mapsto g x$. Let $g \in G$. Because of $x=1 x=g g^{-1} x$ for every $x \in X$, we have $\varphi_{g} \varphi_{g^{-1}}=i d_{X}$ and hence $\varphi_{g} \in S_{X}$. This Permutation must be non-trivial as the Operation is non-trivial. Furthermore, since $\left(\varphi_{g} \varphi_{h}\right)(x)=\varphi_{g}\left(\varphi_{h}(x)\right)=g h x=$ $\varphi_{g h}(x)$ holds for all $g, h \in G$ and $x \in X$, we obtain the homomorphism property of the $\operatorname{map} \varphi: G \rightarrow S_{X}, g \mapsto \varphi_{g}$. If the action is faithful, then there exists for every $g \in G$ an $x \in X$ with $g x \neq x$ and thus we have $\varphi_{g}(x) \neq \varphi_{1}(x)$. So φ is injective.

[^0]Now let $\varphi: G \rightarrow S_{X}$ be a non-trivial group homomorphism. For every $g \in G$ we set $g x:=\varphi(g)(x)$. Then we have $1 x=\varphi(1)(x)=i d(x)=x$ and

$$
(g h) x=\varphi(g h)(x)=(\varphi(g) \varphi(h))(x)=\varphi(g)(\varphi(h)(x))=g(h x)
$$

for all $g, h \in G$ and $x \in X$. Hence, this defines an action of G on X that is non-trivial since there exists $g \in G$ with $\varphi(g) \neq i d$, so there exists $x \in X$ with $\varphi(g)(x) \neq i d(x)=x$. If φ is injective, then there is no $g \in G$ such that $\varphi(g)=i d$. Hence, there exists for every $g \in G$ some $x \in X$ with $g x=\varphi(g)(x) \neq x$ and thus the action is faithful.

We can already obtain as corollary from our results above an important theorem (of Cayley). If states that - in order to understand all groups, it suffices to understand the subgroups of all symmetric groups. Unfortunately, it is false if we believe that this makes everything easier.

Theorem 1.1.4 (Theorem of Cayley). Every group is isomorphic to a subgroup of some symmetric group.

Proof. According to Example 1.1.2 (1), the group G acts faithfully on itself via multiplication. So Lemma 1.1.3 implies the existence of an injective group homomorphism $\varphi: G \rightarrow S_{G}$. We directly obtain $G \cong \varphi(G) \leq S_{G}$.

In our next section (Section 1.2), we shall prove an even stronger version of Cayley's theorem, which says that the group G can be found as subgroup of the automorphism group of some connected directed graph.

Lemma 1.1.3 is a reason for us to look at actions on other mathematical objects, not only sets.

Definition. A group G acts on a mathematical object X (a graph, a vector space, etc.), if it acts on the underlying set of X and if every $g \in G$ does not only define an element of S_{X} according to Lemma 1.1 .3 but also an automorphism of X.

Analogously to the definition of faithful actions on sets we call the action of G on X faithful if G acts faithfully on the underlying set of X.

Remark. According to Lemma 1.1.3, a group G acts (faithfully) on a mathematical object X if there exists a (injective) group homomorphism $G \rightarrow \operatorname{Aut}(X)$.

Example 1.1.5. The action in Example 1.1.1(2) is a faithful action of G on the group G and in Example 1.1.1 4 it is an action of F^{*} on the vector space V.

In the following we will use the sentence 'A group G acts on X.' interchangeably for 'A group G acts on a mathematical object X.'.
Definition. Let G be a group acting on X and let $x \in X$.
(1) The stabiliser of x in G is the set

$$
G_{x}:=\{g \in G \mid g x=x\}
$$

(2) The orbit of x under G is the set

$$
G x:=\{g x \mid g \in G\}
$$

Remark 1.1.6. Let G be a group acting on X. Then all stabilisers of elements $x \in X$ are subgroups of G.

We obtain the following relation between stabilisers and orbits.
Theorem 1.1.7. Let G be a group acting on X. Then for every $x \in X$ the map from $G x$ into the set of left cosets of G_{x} defined by $g x \mapsto g G_{x}$ is bijective.

Proof. Let $g, h \in G$. Then the following equivalences hold.

$$
\begin{aligned}
& g x=h x \\
\Leftrightarrow & h^{-1} g x=x \\
\Leftrightarrow & h^{-1} g \in G_{x} \\
\Leftrightarrow & h^{-1} g G_{x}=G_{x} \\
\Leftrightarrow & g G_{x}=h G_{x}
\end{aligned}
$$

Definition and Remark 1.1.8. Let G be a group and $U \leq G$ be a subgroup. The index of U in G is the number of left cosets of U in G (or equivalently the number of right cosets of U in G) and we denote it by $|G: U|$. It is easy to see that $|G|=|U| \cdot|G: U|$.

Corollary 1.1.9. Let G be a finite group acting on X. The we have for every $x \in X$:

$$
|G|=\left|G_{x}\right| \cdot|G x|
$$

Proof. We obtain

$$
|G|=\left|G_{x}\right| \cdot\left|G: G_{x}\right|=\left|G_{x}\right| \cdot|G x|
$$

directly by Remark 1.1.8 and Theorem 1.1.7.
Let us discuss another relation between stabilisers and orbits.
Lemma 1.1.10. Let G be a group acting on X. Let $x, y \in X_{-1}$ such that $g x=y$ for some $g \in G$. Then we have $\left(G_{x}\right)^{g}=G_{y}$ and $G_{x}=\left(G_{y}\right)^{g^{-1}}$.

Proof. Let $g \in G$ such that $g x=y$ and let $h \in G_{x}$. Then we have

$$
h^{g} y=g^{-1} h g y=g^{-1} h x=g^{-1} x=y
$$

So we get $h^{g} \in G_{y}$ and thus $G_{x}^{g} \subseteq G_{y}$. Using and analogue argument, we obtain $G_{y}^{g^{-1}} \subseteq G_{x}$ and hence $\left(G_{x}\right)^{g}=G_{y}$ and $G_{x}=\left(G_{y}\right)^{g^{-1}}$.

Definition. Let G be a group acting on X. G moves $x \in X$ freely if $G_{x}=1$. The action of G on X is free if G moves every $x \in X$ freely.

Comment. In this course we do not consider graphs as topological objects, in particular we do not consider them as CW-complexes. That is why we have to strengthen the previous definitions for graphs a bit.

Definition. Let G be a group acting on a graph $\Gamma=(V, E)$. The action is free on X if not only the action induced on V but also the action induced on E is free.

1.2 Cayley graphs

In this section, we introduce an important object on which groups acts in a canonical way and which we will use extensively: their Cayley graphs. Before we introduce them, we need some more definitions.

Definition. Let G be a group. A subset $S \subseteq G$ generates G if every elements of G can be written as a (finite!) product of elements in S or their inverses. The set S is called a generating set of G. If S is a generating set of G, then we write $G=\langle S\rangle$.

The group G is finitely generated if there is a finite subset of G generating G.

Example 1.2.1. Every symmetric group S_{n} for $n \in \mathbb{N}$ is generated by its transpositions.

Comment. Example 1.2 .1 is wrong if we look at symmetric groups on infinitely many elements. (Why?)

Definition. A directed graph or digraph is a pair (V, E) with $E \subseteq V \times V$.
If we speak of paths, walks etc. in a digraph (V, E), then we always consider those in the underlying undirected (multi) graphs of (V, E) via the map $f: E \rightarrow[V]^{2},(x, y) \mapsto\{x, y\}$.

Definition. Let G be a group that is generated by $S \subseteq G$. Then

$$
\Gamma_{G, S}=(G,\{(g, g s) \mid g \in G, s \in S\})
$$

defines a digraph, the Cayley digraph of G and S. Der underlying undirected graph without multiple edges and without loops is the Cayley graph of G and S. We also denote the Cayley graph by $\Gamma_{G, S}$. It will be clear from the context whether $\Gamma_{G, S}$ is directed or not.

Remark 1.2.2.

(i) The digraph $\Gamma_{G, S}$ has no loops if and only if $1 \notin S$.
(ii) The underlying undirected graphs of $\Gamma_{G, S}$ has at most double edges. It has them if and only if S contains s^{-1} for some $s \in S$. That latter holds in particular, if S contains an involution, i. e. an element of order 2.

Example 1.2.3. Let C_{n} be the cyclic group on n elements and let S be a generating set of C_{n}.
(1) If $S=C_{n}$, then the Cayley digraph is complete: for all $g \neq h \in C_{n}$ there is an edge (g, h) and an edge (h, g). Additionally, every loop (g, g) exists.
(2) If $|S|=1$, the the Cayley digraph is a directed cycle on n vertices.

Figure 1.1: Two Cayley digraphs for the symmetric group S_{3}

Example 1.2.4. Let us consider two Cayley digraphs for the group S_{3}. Let $S=\{(12),(23)\}$ and $S^{\prime}=\{(12),(123)\}$. Both Cayley digraphs can be found in Figure 1.1, where edges without directions are used to replace double edges with one possible orientation each. The edges are labelled with the elements of S or S^{\prime} they originate from.

Theorem 1.2.5 (Cayley, strong version). For every group G there exists a connected graph on which G acts faithfully.

If G is finitely generated, then we may choose the graph to be locally finite ${ }^{2}$
Proof. Let S be a generating set of G and let $\Gamma_{G, S}$ be their Cayley graph. Then G acts faithfully on Γ via $g: G \rightarrow G, h \mapsto g h$. Note that an edge $\left(h_{1}, h_{2}\right)$ is mapped onto an edge $\left(g h_{1}, g h_{2}\right)$ and has $\left(g^{-1} h_{1}, g^{-1} h_{2}\right)$ as its preimage. The action is faithful by Example 1.1.2 (1).

If G is finitely generated, then we may choose S to be finite. Since every vertex g is adjacent to only the edges $g s$ and $g s^{-1}$ for all $s \in S$, every vertex of Γ has finite degree.

Comment. To obtain a faithful right action, we can use in the definition of a Cayley graph the edge set $\{(g, s g) \mid g \in G, s \in S\}$. The reason, why we prefer edges $(g, g s)$ is implied by the following remark.

Remark 1.2.6. For every walk $v_{0} e_{0} v_{1} \ldots e_{k-1} v_{k}$ in a Cayley graph $\Gamma_{G, S}$ there is a sequence $s_{0} \ldots s_{k-1}$ of elements elements of $S \cup S^{-1}$ (with $S^{-1}:=\left\{s^{-1} \mid\right.$

[^1]$s \in S\}$) in the following way: $s_{i}=v_{i}^{-1} v_{i+1}$. That means that the edge e_{i} lies in the Cayley graph because of the generator s_{i} or s_{i}^{-1}. For the product of the s_{i}, we obtain $s_{0} \cdots s_{k-1}=v_{0}^{-1} v_{k}$.

Using Lemma 1.1.3, we can formulate Theorem 1.2.5 analogously to Theorem 1.1.4 in the following way:
Theorem 1.2.7. Every (finitely generated) group is a subgroup of the automorphism group of some connected (locally finite) graph.

For finitely generated groups, we can even strengthen this:
Theorem 1.2.8. Every finitely generated group is isomorphic to the automorphism group of some graph.

We may choose this graph to be connected and locally finite.
Proof. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a finite generating set of the group G. Let Γ_{G}, S be the Cayley digraph of G and S. For every $i \in\{1, \ldots, n\}$ let T_{i} be a tree consisting of a path P_{i} of length 3 such that a path of length 1 starts at an inner vertex x_{i} of P_{i} and such that a path of length $i+1$ starts at the other inner vertex y_{i}. Obviously, every automorphism of T_{i} that fixes the end vertices of P_{i} setwise must fix the whole tree pointwise. Note that all trees T_{i} are distinct. In $\Gamma_{G, S}$ we replace every directed edge from g to $g s_{i}$ by T_{i}, where g is the end vertex of P_{i} that is adjacent to x_{i} and $g s_{i}$ is the end vertex of P_{i} that is adjacent to y_{i}. Let Γ be the resulting graph. Obviously, Γ is connected and locally finite.

Let φ be an automorphism of Γ. Then φ must fix all vertices of Γ setwise that were not already in $\Gamma_{G, S}$ and it must fix setwise the vertices that were in $\Gamma_{G, S}$. Thus, φ induces a bijective map of the vertex set of $\Gamma_{G, S}$. Since the trees T_{i} are distinct, the tree that replaced a directed edge e of $\Gamma_{G, S}$ must be mapped onto a tree of the same kind. Thus, φ induces an automorphism $\bar{\varphi}$ of $\Gamma_{G, S}$. Let $g \in G$ such that $\bar{\varphi}(1)=g$. Since $\bar{\varphi}$ maps edges that belong to a generator s_{i} to edges that belong to s_{i}, too, and since it must keep their orientations, the neighbour s_{i} of 1 is mapped by $\bar{\varphi}$ to the neighbour $g s_{i}$ of g. Inductively, g and $\bar{\varphi}$ coincide on $\Gamma_{G, S}$ and every other automorphism ψ of Γ that maps 1 to g must coincide with φ, too. We obtain an injective map Φ from the automorphism groups of Γ to G. Every $g \in G$ induces an automorphism φ_{g} of Γ with $\Phi\left(\varphi_{g}\right)=g$. So Φ is surjective. It is easy to verify that Φ is a group homomorphism. Thus, the automorphism group of Γ is isomorphic to G.

Definition. Let G be a group acting on X. It acts transitively on X if for all $x, y \in X$ there exists $g \in G$ such that $g x=y$.

If $X=(V, E)$ is a (di-)graph, then G acts (vertex-) transitively on X (or edge-transitively on X), if the action induced on V (or on E) is transitive.
Remark 1.2.9. Every group acts transitively and free on each of its Cayley digraphs, since the left multiplication of a group on itself is transitive and free.
Proposition 1.2.10. Let G be a group and S a generating set of G. The left multiplication on G induces a free action on the Cayley graph of G and S if and only if S contains no involution.

Proof. Every $s \in S$ with $s^{2}=1$ fixes the edge $1 s=s s^{2}$. Thus, the action cannot be free.

Conversely, let us assume that the action is not free. Obviously, the action induced on the vertices is free. Hence, the action induced on the edges is not free. So there exist $g \in G$ with $g \neq 1$ and an edge $u v$ such that $g(u v)=u v$. Wlog let $s \in S$ such that $u=v s$. If $g u=u$, then we directly obtain $g=1$. Hence, we have

$$
v=g u=g(v s)=(g v) s=u s=v s^{2}
$$

and thus $s^{2}=1$. Since $s \neq 1$, it must be an involution.

1.3 Sabidussi's theorem

In this section, we shall obtain a first result how to deduce information about a group by using its action on a graph. We will obtain a result that can be seen as a reverse to Cayley's theorem.

Definition. Let G be a group acting on a connected graph Γ. A fundamental domain of this action is a connected subgraph that contains exactly one element of each orbits on the vertices.

A priori it is not obvious that every action on a graph admits a fundamental domain. This is the content of the following theorem.

Theorem 1.3.1. For every action of a group on some connected graph there exists a fundamental domain.

Proof. Let G be a group acting on a connected graph $\Gamma=(V, E)$. We may assume that Γ has at least one vertex. Let \mathcal{F}_{G} be the set of all connected subgraphs of Γ that contain at most one vertex of each orbit. Obviously, \mathcal{F}_{G} is not empty (it contains the empty graphs and every subgraph on exactly one vertex) and every chain in \mathcal{F}_{G} has an upper bound (the union of its elements). Zorn's lemma implies the existence of a maximal element F in \mathcal{F}_{G}. Let us show that F is a fundamental domain.

Let ussuppose that this is false. Then there exists a vertex $x \in V$ such that the orbit $G x$ contains no vertex from F. Let P be a path in Γ starting at x and ending at a vertex of F. Thenthere are two adjacent vertices u, v on P such that $G u$ contains no vertex of F but $G v \cap V(F) \neq \emptyset$. Let $g \in G$ such that $g v \in V(F)$. Then $g u$ lies in the same orbit as u; in particular is lies outside of F and $G(g u)$ contains no vertex of F. But $g u$ has a neighbour $g v$ in F. Thus, $F^{\prime}=(V(F) \cup\{g u\}, E(F) \cup\{\{g v, g u\}\})$ is a connected subgraph of Γ that must lie in \mathcal{F}_{G} by its construction. This contradicts the maximality of F. So F is a fundamental domain.

Theorem 1.3.2. Let F be a fundamental domain of the action of a group G on a connected graph Γ. Let S be the set of those $g \in G$ that satisfy

$$
V(g F) \cap(V(F) \cup N(V(F))) \neq \emptyset
$$

i. e. such that $g F$ contain a vertex or a neighbour of a vertex of F. Then S is a generating set of G.

Proof. Let $g \in G$. We shall write g as a finite product of elements of $S \cup S^{-1}$. For this, let $v \in V(F)$ and let P be a v - $g v$ path. Let $\left(F=g_{0} F, g_{1} F, \ldots, g_{n} F=g F\right)$ be a finite sequence of images of F under elements of G with the following properties.
(1) Every vertex of P lies in some $g_{i} F$.
(2) Either $g_{i} F$ and $g_{i+1} F$ have a common vertex or $g_{i} F$ has a vertex that has a neighbour in $g_{i+1} F$.

The existence of such a sequence can be seen as follows: For every vertex x_{i} on $P=x_{1} \ldots x_{m}$ we choose some g_{i} such that $x_{i} \in V\left(g_{i} F\right)$. Then the claim follows for the sequence $\left(g_{0} F, g_{1} F, \ldots, g_{m} F, g_{m+1} F\right)$ with $g_{0}=1$ and $g_{m+1}=g$.

Let us show inductively that every g_{i} can be written a a product of elements of S. By the choice of the g_{i}, this holds trivially for g_{0} and g_{1}. By (2), either the subgraphs $F=g_{i}^{-1} g_{i} F$ and $g_{i}^{-1} g_{i+1} F$ have a common vertex or some vertex in F has a neighbour in $g_{i}^{-1} g_{i+1} F$. In both cases we obtain by the definition of S that $g_{i}^{-1} g_{i+1}$ is an element of S. By induction g_{i+1} is an element of $\langle S\rangle$. We conclude $g=g_{n} \in\langle S\rangle$ and $G=\langle S\rangle$.

Remark. The generating set obtained in Theorem 1.3 .2 is usually not a minimal one (even if we ignore the neutral element) as the following example shows. Let Γ be the complete graph on three vertices and let G be its automorphism group. Then the fundamental domain is a single vertex and every automorphism of Γ has to be put into the generating set S. Thus, S contains the whole automorphism group G, which is isomorphic to the symmetric group S_{3}. Since there are minimal generating sets on two elements, S cannot be one of them.

As an application, we shall prove Sabidussi's theorem, which characterises Cayley graphs.

Theorem 1.3.3 (Sabidussi). A connected graph on which some group acts transitively and free is a Cayley graph.

Proof. Let Γ be a connected graph and let G be a group that acts transitively and freely on Γ. Let $v \in V(\Gamma)$. Since G acts transitively on Γ, the graph $(\{v\}, \emptyset)$ is a fundamental domain.

Let $S \subseteq G$ be a minimal subset of G such that $S \cup S^{-1}$ is the generating set of Theorem 1.3.2. We want to show that Γ is the Cayley graph $\Gamma_{G, S}$ of G and S. For this, we define a map

$$
\varphi: \Gamma_{G, S} \rightarrow \Gamma, g \mapsto g v
$$

Since the action on Γ is transitive, φ must be surjective and, since G acts freely, φ is injective, so it is bijective. It remains to show that φ preserves the adjacency relation. Let $\{u, w\} \subseteq V(\Gamma)$ a vertex set consisting of two distinct elements. As
G acts transitively on Γ, there exists $g \in G$ with $g u=v$. By considering $\{v, g w\}$ instead of $\{u, w\}$, we may assume that $u=v$. There exists $h \in G$ with $w=h v$. If $v w \in E(\Gamma)$, then $h \in S \cup S^{-1}$ by the choice of S and hence $\varphi(v)$ and $\varphi(w)$ are adjacent. If $v w \notin E(\Gamma)$, then $h \notin S \cup S^{-1}$ and $\varphi(v)$ and $\varphi(w)$ cannot be adjacent. Thus, φ is a graph isomorphism.

Chapter 2

Free groups

2.1 Free groups and trees

Definition. Let S be a set. A finite sequence of the form $w=s_{1}^{\varepsilon_{1}} \ldots s_{n}^{\varepsilon_{n}}$ with $s_{i} \in S$ and $\varepsilon_{i} \in\{ \pm 1\}$ is a word over $S \cup S^{-1}$. We call $|w|:=n$ the lenth of w. The word is reduced if there is no $i \leq n-1$ with $s_{i}^{\varepsilon_{i}}=s_{i+1}^{-\varepsilon_{i+1}}$. For $s, s_{i} \in S$, $\varepsilon, \varepsilon_{i} \in\{ \pm 1\}$, we call a word $s_{1}^{\varepsilon_{1}} \ldots s_{n}^{\varepsilon_{n}}$ an elementary reduction of the word $s_{1}^{\varepsilon_{1}} \ldots s_{i}^{\varepsilon_{i}} s^{\varepsilon} s^{-\varepsilon} s_{i+1}^{\varepsilon_{i+1}} \ldots s_{n}^{\varepsilon_{n}}$. A word v is a free reduction of a word u if there is a finite sequence $u=w_{1}, \ldots, w_{n}=v$ of words such that w_{i+1} is an elementary reduction of w_{i} and if v is reduced.

A group G is free with free generating set $S \subseteq G$ if $\langle S\rangle=G$ and there is no non-trivial reduced word w over $S \cup S^{-1}$ such that $w=1$ in G. We call $|S|$ the rank of G.

If $w=s_{1}^{\varepsilon_{1}} \ldots s_{n}^{\varepsilon_{n}}$ and $v=t_{1}^{\varepsilon_{1}} \ldots t_{m}^{\varepsilon_{m}}$ are words over $S \cup S^{-1}$, then we the word $w v=s_{1}^{\varepsilon_{1}} \ldots s_{n}^{\varepsilon_{n}} t_{1}^{\varepsilon_{1}} \ldots t_{m}^{\varepsilon_{m}}$ is the concatenation of w and v.

Comment. In particular, no free generating set S contains 1 since the word 1 is distinct from the trivial word over S, which is the empty word.

Example 2.1.1. The additive group \mathbb{Z} is a free group of rank 1 .
Comment. A priori it is not obvious that the rank of a free group is welldefined. We shall prove that in Section 2.2.

First, we want to ensure that free groups exist.
Theorem 2.1.2. Let S be a set. Then there exists a free group with S as free generating set.

We will sketch the standard proof of Theorem 2.1.2 before proving a slightly stronger result that contains Theorem 2.1.2.

Sketch of the proof of Theorem 2.1.2. We will define a relation \sim on the set of words over $S \cup S^{-1}$ via $v \sim w$ if and only if there is a sequence $v=w_{1}, \ldots, w_{n}=$ w such that either w_{i} is an elementary reduction of w_{i+1} or vice versa. Obviously,
this is equivalence relation. It can be proved tha every equivalence class of this relation contains exactly one reduced word. Then we can define a multiplication on this set in the following way: $[\alpha][\beta]:=[\alpha \beta]$ for any two words α, β over $S \cup S^{-1}$, where $\alpha \beta$ is their concatenation. It can be shown that the set of equivalence classes with this multiplication forms a free group.

Strictly speaking, S is not a free generating set for F, since S is no subset of F. But since every $s \in S$ is a reduced wird, we can identify every s and $[s]$ to satisfy this formality.

Comment. Since the equivalence classes of the equivalence relation in the sketch of the proof of Theorem 2.1 .2 contain a unique recued word, it is possible (and also reasonable) to think of the elements of free groups as reduced words. Of course, one has to keep in mind that the product of two such elements is not simply their concatenation but the free reduction of that. Note that this concatenation is uniquely determined since every equivalence class of \sim contains a unique reduced word.

Theorem 2.1.3. Let S be a set. There exists a free group G with S as free generating set that acts transitively and free on a tree T.

Proof. We define a graph T. Its vertex set V is the set of reduced words over $S \cup$ S^{-1} (including the empty word) and its edge set E is defined as follows: we add for every reduced word $s_{1} \ldots s_{n}$ with $s_{i} \in S \cup S^{-1}$ the edge $\left\{s_{1} \ldots s_{n}, s_{1} \ldots s_{n} s\right\}$ for all $s \in S$ with $s \neq s_{n}^{-1}$ and the edge $\left\{s_{1} \ldots s_{n}, s_{1} \ldots s_{n-1}\right\}$ (without multiedges). To show that T is connected, it suffices to verify that every reduced word lies in the same component as the empty word ${ }^{1}$. Since the sequence $\emptyset, s_{1}, s_{1} s_{2}, \ldots, s_{1} \ldots s_{n}$ of vertices defines a path from the empty word to the word $s_{1} \ldots s_{n}$, the graph T is connected.

Let us suppose that T contains a cycle C. This cycle contains a vertex $u=$ $u_{1} \ldots u_{n}$ whose word has maximum length for all vertices on C. By definition of the edges, the neighbours of u on C must have length $|u|-1$ and both must be the word $u_{1} \ldots u_{n-1}$. But then, C was not a cycle. Thus, T is a tree.

For every $s \in S \cup S^{-1}$ we define a map $\varphi_{s}: V \rightarrow V$ such that

$$
\varphi_{s}\left(s_{1} \ldots s_{n}\right)= \begin{cases}s_{2} \ldots s_{n}, & \text { if } s=s_{1}^{-1} \\ s s_{1} \ldots s_{n}, & \text { if } s \neq s_{1}^{-1}\end{cases}
$$

Obviously, φ_{s} maps edges to edges and non-adjacent vertices to non-adjacent vertices, that is, it is an automorphism of T. Also, the equality $\varphi_{s}^{-1}=\varphi_{s^{-1}}$ is easily verifiable.

Let $\Phi_{S}=\left\{\varphi_{s} \mid s \in S\right\}$ and let G be the subgroup of $\operatorname{Aut}(T)$ that is generated by Φ_{S}. We will show that G is a free group that acts transitively and freely on T and that Φ_{S} generates G freely.

Let $\varphi_{s_{1}} \ldots \varphi_{s_{n}}$ be a reduced word over $\Phi_{S} \cup \Phi_{S}^{-1}$. Then we have $s_{i} \neq s_{i+1}^{-1}$, since $\varphi_{s}^{-1}=\varphi_{s^{-1}}$ and since the word is reduced. So $s_{1} \ldots s_{n}$ is a reduced

[^2]word over $S \cup S^{-1}$ and we have $\varphi_{s_{1}} \ldots \varphi_{s_{n}}(\emptyset)=s_{1} \ldots s_{n} \neq \emptyset$. We obtain $\varphi_{s_{1}} \ldots \varphi_{s_{n}} \neq i d$ and hence G is a free group freely generated by Φ_{S}.

Since the $s_{1} \ldots s_{n}$ is the image of the empty word under $\varphi_{s_{1}} \ldots \varphi_{s_{n}}$, the action of G must be transitive. Let $v \in V$ and let $\varphi \in F$ such that $\varphi(v)=v$. Since G acts transitively on T, we may assume by Lemma 1.1.10 that v is the empty word. Let $\varphi_{s_{1}} \ldots \varphi_{s_{n}}$ be the shortest word over $\Phi_{S} \cup \Phi_{S}^{-1}$ such that $\varphi_{s_{1}} \ldots \varphi_{s_{n}}=\varphi$. In particular, we have $\varphi_{s_{i}}^{-1} \neq \varphi_{s_{i+1}}$ and $s_{i}^{-1} \neq s_{i+1}$ for all $i<n$. Thus, $s_{1} \ldots s_{n}$ is a reduced word. Hence, $\emptyset=\varphi(\emptyset)=s_{1} \ldots s_{n}$. Since $s_{1} \ldots s_{n}$ is reduced, we obtain $n=0$ and $\varphi=i d$. This implies that G acts freely on the vertices of T. It remains to show that G also acts freely on the edges of T. Let $e \in E$. Since G acts transitively on T, we may apply Lemma 1.1.10 once more to assume that $e=\{\emptyset, s\}$ for some $s \in S \cup S^{-1}$. Let us suppose that there exists $\varphi=\varphi_{s_{1}} \ldots \varphi_{s_{n}}$ such that $\varphi(e)=e$ and $\varphi \neq i d$, where the n is shortest possible. Since G acts freely on the vertices of T, we know that $\varphi(\emptyset) \neq \emptyset$. So we have $\varphi(\emptyset)=s$ and $\varphi(s)=\emptyset$. We also get $\varphi_{s}(\emptyset)=s$ and, since the action of G on T is free on the vertices of T, we conclude $\varphi=\varphi_{s}$. But we have $\varphi_{s}(s)=s s \neq \emptyset=\varphi(s)$. This contradiction shows that G acts freely on T.

Just like in the sketch of the proof of Theorem 2.1.2, we can use a formal trick to guarantee that G is generated by S instead of Φ_{S}.

Before we take a closer look at the relation between trees and free groups, let us show an important characterisation of free groups.

Theorem 2.1.4 (Universal property). The following two statements are equivalent for every group F with subset $S \subseteq F$.
(i) F is a free group with free generating set S.
(ii) for every group G and every $\operatorname{map} \varphi: S \rightarrow G$ there exists a uniquely determined group homomorphism $\bar{\varphi}: F \rightarrow G$ that extends φ.

In the proof of this theorem, we consider the elements of the free group as being equivalence classes of words just as in the sketch of the proof of Theorem 2.1.2

Proof of Theorem 2.1.4. First, let us assume that F is a free group and S a free generating set of F. Let G be another group and let $\varphi: S \rightarrow G$ be a map. We set $\bar{\varphi}(s):=\varphi(s)$ and $\bar{\varphi}\left(s^{-1}\right):=(\varphi(s))^{-1}$ and for every word $w=$ $s_{1} \ldots s_{n}$ over $S \cup S^{-1}$ we set $\bar{\varphi}(w):=\bar{\varphi}\left(s_{1}\right) \ldots \bar{\varphi}\left(s_{n}\right)$. By definition, $\bar{\varphi}$ is a group homomorphism as soon as we make sure that it is well-defined. If the word $s_{1} \ldots s_{n}$ is an elementary reduction of the word $s_{1} \ldots s_{i} t t^{-1} s_{i+1} \ldots s_{n}$, the we have the following:

$$
\begin{aligned}
\bar{\varphi}\left(s_{1} \ldots s_{n}\right) & =\bar{\varphi}\left(s_{1}\right) \ldots \bar{\varphi}\left(s_{n}\right) \\
& =\bar{\varphi}\left(s_{1}\right) \ldots \bar{\varphi}\left(s_{i}\right) \bar{\varphi}(t) \bar{\varphi}\left(t^{-1}\right) \bar{\varphi}\left(s_{i+1}\right) \ldots \bar{\varphi}\left(s_{n}\right) \\
& =\bar{\varphi}\left(s_{1} \ldots s_{i} t t^{-1} s_{i+1} \ldots s_{n}\right)
\end{aligned}
$$

Thus, $\bar{\varphi}$ is well-defined on the equivalence classes of words and hence induces a group homomorphism $F \rightarrow G$ that extends φ. Furthermore, every group homomorphism must have the two properties $\bar{\varphi}\left(s^{-1}\right)=(\varphi(s))^{-1}$ and $\bar{\varphi}(w)=$ $\bar{\varphi}\left(s_{1}\right) \ldots \bar{\varphi}\left(s_{n}\right)$. That is, why $\bar{\varphi}$ is uniquely determined.

Let us assume that (ii) holds. Let G be a free group with free generating set S and let $\varphi: F \rightarrow G$ a group homomorphism with $\varphi(s)=s$ for all $s \in S$. Let us suppose that F is not free. Then there exists a non-trivial reduced word $s_{1} \ldots s_{n}$ over $S \cup S^{-1}$ such that $s_{1} \ldots s_{n}=1$. We obtain

$$
1=\varphi\left(s_{1} \ldots s_{n}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{n}\right)=s_{1} \ldots s_{n}
$$

Hence there is a non-trivial reduced word $w=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{n}\right)$ in G with $w=1$, a contradiction to the definition of a free group. Thus, F is a free group with free generating set S.

A direct consequence of the universal property of free groups is the following (even though we still do not know whether the rank of free groups is welldefined).

Corollary 2.1.5. Every two free groups of the same rank are isomorphic.
Proof. Let F, G be two free groups of the same rank. We may assume that both groups are freely generated by the same set S. By Theorem 2.1.4 there are two group homomorphisms $\varphi: F \rightarrow G$ and $\psi: G \rightarrow F$ such that $\left.\varphi\right|_{S}=i d$ and $\left.\psi\right|_{S}=i d$. Then we must have $\varphi(\psi(s))=s$. Since F is generated by S, we have $\varphi \psi=i d$ and thus φ and ψ are group homomorphisms that are inverse to each other.

Free groups and trees have more connections that the one obtained in Theorem 2.1.3.

Lemma 2.1.6. Every Cayley graph of a free group and one of its free generating sets is a tree.

Proof. Let G be a free group with free generating set S and let Γ be the der Cayley graph of G and S. If Γ contains a cycle, the it also contains a cycle that contains the vertex 1 since G acts transitively on Γ by Remark 1.2 .9 . This cycle belongs to a closed walk starting and ending at 1. According to Remark 1.2.6, this walk corresponds to a word over $S \cup S^{-1}$. Since this word must be reduced, G cannot be free. Since every Cayley graph is connected, this contradiction shows that Γ is a tree.

In general, the reverse statement of Lemma 2.1.6 does not hold as the following examples show.

Example 2.1.7. 1. The Cayley graph of the cyclic group $C_{2}=\langle a\rangle$ with $\{a\}$ as generating set if a tree on two vertices.
2. The Cayley graph of the group \mathbb{Z} with $S=\{1,-1\}$ as generating set is a tree, too.

Essentially, the problems highlighted in Example 2.1.7 are the only ones preventing a successful reverse statement of Lemma 2.1.6 as we will see in the following lemma.

Lemma 2.1.8. Let G be a group and let S be a generating set of G that satisfies st $\neq 1$ for all $s, t \in S$. If the Cayley graph $\Gamma_{G, S}$ is a tree, then G is a free group and S a free generating set of G.

Proof. Let F be a free group with free generating set S. We will show that F and G are isomorphic. According to Theorem 2.1.4, there is a group homomorphism $\varphi: F \rightarrow G$, whose restriction to S is the identity. This homomorphism is surjective since S generates G. In order to show that F and G are isomorphic, it suffices to verify that φ is injective. Let us suppose that there is a reduced word over $S \cup S^{-1}$ in $\operatorname{ker}(\varphi)$ that is not the empty word. Let $s_{1} \ldots s_{n}$ be such a word of minimum length. Because of $\varphi(s)=s \neq 1$ for all $s \in S$, we must have $n \geq 2$. If $n=2$, then we have $1=\varphi\left(s_{1} s_{2}\right)=\varphi\left(s_{1}\right) \varphi\left(s_{2}\right)=s_{1} s_{2}$. Since $s_{1} s_{2}$ is reduced, this contradicts the assumption $s t \neq 1$ for all $s, t \in S$. So we may assume $n \geq 3$. Due to minimality of n, the group elements $\varphi\left(s_{1} \ldots s_{i}\right)$ for all $0 \leq i \leq n$ are distinct since if there are $i<j<n$ with $s_{1} \ldots s_{i}=s_{1} \ldots s_{j}$, then $s_{i+1} \ldots s_{j}$ is a word of shorter length over $S \cup S^{-1}$ with $\varphi\left(s_{i+1} \ldots s_{j}\right)=1$. Since the group elements $\varphi\left(s_{1} \ldots s_{i}\right)$ for all $0 \leq i \leq n$ are distinct, they induce a cycle in $\Gamma_{G, S}$. This contradiction to the assumption on $\Gamma_{G, S}$ shows that φ is injective.

We can even use the action on trees to characterise free groups.
Theorem 2.1.9. A group is free if and only if it acts freely on a tree.
Proof. By Proposition 1.2.10, every free group acts free on any of its Cayley graphs. So Lemma 2.1.6 shows the first implication.

Let the group G act freely on the tree T. Let T^{\prime} be a fundamental domain of this action, which exists by Theorem 1.3.1. Since G acts freely on T, there exists a unique $g \in G$ with $T^{\prime} \cap g T^{\prime} \neq \emptyset$, which is $g=1$; this is true, since $g v \neq v$ for all $v \in V\left(T^{\prime}\right)$ and all $g \neq 1$ and since by definition of fundamental domains, $g v \in V\left(T^{\prime}\right)$ implies $g v=v$.

An edge is essential if exactly one of its incident vertices lies in T^{\prime}. Since T^{\prime} is a fundamental domain, there is for every essential edge w some $g_{e} \in G$ such that the vertex of e that does not lie in T^{\prime} is contained in $g_{e} T^{\prime}$. Set

$$
\widetilde{S}:=\left\{g_{e} \in G \mid e \text { is essential }\right\}
$$

We shall prove that the set \widetilde{S} has the following properties:
(i) $1 \notin \widetilde{S}$;
(ii) \widetilde{S} contains no involution;
(iii) if e, e^{\prime} are essential edges with $g_{e}=g_{e^{\prime}}$, then $e=e^{\prime}$;
(iv) for every $g \in \widetilde{S}$ we have $g^{-1} \in \widetilde{S}$;
(v) for every $g \in G$ with $V\left(g T^{\prime}\right) \cap\left(V\left(T^{\prime}\right) \cup N\left(V\left(T^{\prime}\right)\right)\right) \neq \emptyset$ we have $g=1$ or $g \in \widetilde{S}$.

While (i) immediately follows from the definition of \widetilde{S}, we need small proofs for the remaining claims. Property (ii) is true, since every involution g_{e} maps the subtree $g_{e} T^{\prime}$ to T^{\prime} and thus must fix the uniquely determined edge e in T between T^{\prime} and $g_{e} T^{\prime}$, which contradicts the fact the action is free. Since T is a tree and thus contains a unique edge connecting the subtrees T^{\prime} and $g_{e} T^{\prime}$ we obtain (iii). Since e connects the subtrees T^{\prime} and $g_{e} T^{\prime}$, the edge $g_{e}^{-1} e$ connects the subtrees $g_{e}^{-1} T^{\prime}$ and T^{\prime} and we obtain (iv). Let $g \in G$ with $V(g F) \cap(V(F) \cup$ $N(V(F))) \neq \emptyset$. If $g \neq 1$, then we already verified $g F \cap F=\emptyset$. Thus, $g T^{\prime}$ contains a vertex incident with an essential edge e, which must not be the in T^{\prime} but in $g_{e} T^{\prime}$. So we have $g_{e}^{-1} g T^{\prime} \cap T^{\prime} \neq \emptyset$. As we already verified above, we obtain $g_{e}^{-1} g=1$ and thus $g=g_{e}$. This shows (v).

Let $S \subseteq \widetilde{S}$ be a minimal subset such that $S \cup S^{-1}=\widetilde{S}$. This is possible by (iv). By (ii) S and S^{-1} are disjoint. Theorem 1.3.2, and (v) imply that $\widetilde{S} \cup\{1\}$, and hence also S, generates G. It remains to show that S is a free generating set. For this, according to Lemma 2.1.8, it suffices to show that the Cayley graph $\Gamma_{G, S}$ is a tree. Let us suppose that $\Gamma_{G, S}$ is not a tree. Since it is connected, it contains a cycle $h_{0} \ldots h_{n} h_{0}$ for some $n \geq 2$. The edge $h_{n} h_{0}$ and all edges $h_{i} h_{i+1}$ correspond to some element $s_{n}:=h_{0} h_{n}^{-1}$ or $s_{i}:=h_{i+1} h_{i}^{-1}$ from $S \cup S^{-1}$ and these in turn belong to unique essential edges e_{i} for all $1 \leq i \leq n$ by (iii).

For every $j<n$ the subtree $s_{j} T^{\prime}$ contains a vertex v_{j} incident with the edge e_{j} and a vertex w_{j} incident with the edge $s_{j} e_{j+1}$. Since T^{\prime} is connected, there exists a path P_{j} from $h_{j} v_{j}$ to $h_{j} w_{j}$ in $h_{j} s_{j} T^{\prime}=h_{j+1} T^{\prime}$. Analogously, T^{\prime} contains a path P_{0} from v_{0}, the vertex in T^{\prime} incident with e_{n}, to the vertex w_{0} in T^{\prime} incident with the edge e_{1}. Then

$$
v_{0} P_{0} w_{0} v_{1} P_{1} w_{1} \ldots v_{n} P_{n} w_{n} v_{0}
$$

is a cycle in T. This contradiction together with Lemma 2.1.8 shows that G is a free group.

We obtain the following corollary from the proof of Theorem 2.1.9
Corollary 2.1.10. Let T^{\prime} be a fundamental domain of a free action of a free group G on a tree T. Then there is a free generating set X of G such that the set S defined in Theorem 1.3.2 satisfies the following:

$$
S=X \cup X^{-1} \cup\{1\}
$$

As corollary of Theorem 2.1.9, we obtain a central result on free groups, more specifially on their subgroups.

Corollary 2.1.11 (Nielsen-Schreier Theorem). Every subgroup of a free group is free.

Proof. Let H be a subgroup of a free group G. Then G acts free on a tree T by Theorem 2.1.9. As a subgroup of G, also H acts freely on T and thus is a free group by Theorem 2.1.9.

We want to finish this section with a lemma that guarantees the existence of free subgroups in arbitrary groups under certain conditions.

Lemma 2.1.12 (Ping-Pong-Lemma). Let G be a group acting on X. Let $\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}$ with $|I| \geq 2$ be two families of non-empty subsets of X such that all A_{i} and B_{j} are pairwise disjoint. If there are $g_{i} \in G$ such that $X \backslash B_{i} \subseteq g_{i} A_{i}$ for all $i \in I$, then $\left\langle g_{i} \mid i \in I\right\rangle$ is a free subgroup of G.
Proof. From $X \backslash B_{i} \subseteq g_{i} A_{i}$ we obtain $X \backslash g_{i}^{-1} B_{i} \subseteq A_{i}$ and hence $X \backslash A_{i} \subseteq$ $g_{i}^{-1} B_{i}$ and $g_{i}\left(X \backslash A_{i}\right) \subseteq B_{i}$.

Let $s_{n} \ldots s_{1}$ be a word over $S \cup S^{-1}$ for $S:=\left\{g_{i} \mid i \in I\right\}$. Let $i, j \in I$ with $s_{1} \in\left\{g_{j}, g_{j}^{-1}\right\}$ and $s_{n} \in\left\{g_{i}, g_{i}^{-1}\right\}$. If $i=j$, then let $k \in I \backslash\{i\}$; otherwise set $k:=j$. Let $\varepsilon \in\{1,-1\}$ with $s_{1}=g_{j}^{\varepsilon}$. If $k \neq j$, then pick $x \in A_{k} \cup B_{k}$. If $k=j$ and $\varepsilon=1$, then pick $x \in B_{j}$. If $k=j$ and $\varepsilon=-1$, then pick $x \in A_{j}$. Using induction on ℓ, we obtain $s_{\ell} \ldots s_{1} x \in B_{m}$, if $s_{\ell}=g_{m}$ for some $m \in I$, or $s_{\ell} \ldots s_{1} x \in A_{m}$, if $s_{\ell}=g_{m}^{-1}$ for some $m \in I$. Thus, $s_{n} \ldots s_{1} x$ lies in either A_{i} or B_{i} and in particular it does not lie in the set $A_{k} \cup B_{k}$, which contains x. Thus, the element $s_{n} \ldots s_{1}$ of G is distinct from 1 . So $\langle S\rangle$ is free and freely generated by S.

2.2 The rank of free groups

In this section, we will show that the rank of free groups is well-defined.
Theorem 2.2.1. Every two generating sets of a free group have the same cardinality.

Proof. Let G be a free group. If S and S^{\prime} are infinite free generating sets of G, then we must have $|S|=|G|=\left|S^{\prime}\right|$.

Let S be a finite free generating set of G. Every homomorphism $\varphi: G \rightarrow C_{2}$ is uniquely determined by the restriction of φ to the set S. Also, every map $S \rightarrow$ C_{2} can be extended to a homomorphism. Thus, there are $2^{|S|}$ homomorphisms from G to C_{2}. Since this number only depends on G and not on the particular generating set, we have $2^{|S|}=2^{\left|S^{\prime}\right|}$ for every generating set S^{\prime} of G. So S and S^{\prime} have the same number of elements.

Theorem 2.2.1 implies that the rank of free groups is well-defined. One might assume that the ranks of subgroups of a free group G (which are free groups themselves by Corollary 2.1.11) are bounded by the rank of G. This however is far from being true as our next result shows.

Proposition 2.2.2. Let G be a free group of rank $n \in \mathbb{N}$ and let H be a subgroup of G of index $k \in \mathbb{N}$. Then H is a free group of rank $k(n-1)+1$.

Proof. Let T be the Cayley graph of G and a free finite generating set S. By Lemma 2.1.6, we know that T is a tree. Since G acts freely on its Cayley graph, H acts freely on T, too. Since H has finite index in G and since G acts transitively on T, there are at most $|G: H|$ orbits of the action of H on T. Thus, every fundamental domain T^{\prime} of the action of H on T, which exists by Theorem 1.3.1, is finite and has the size $k=|G: H|$. Since S is finite, T is locally finite and hence the free generating set X of H defined in Corollary 2.1.10 is finite. It remains to show that the size of X is $k(n-1)+1$.

The sum of all degrees in T of all vertices T^{\prime} is $2 n\left|T^{\prime}\right|=2 n k$, since T is a $2 n$-regular tree. The subtree T^{\prime} contains $\left|T^{\prime}\right|-1=k-1$ edges, so there are $2 k n-2(k-1)=2(k(n-1)+1)$ edges with on of its incident vertices in T^{\prime} and the other outside of T^{\prime}.

We can apply the previous result to arbitrary finitely generated groups to get informations about some of their subgroups.

Corollary 2.2.3. Let G be a finitely generated group. Every subgroup of G of finite index is finitely generated.

Proof. Let $H \leq G$ be a subgroup of G such that $|G: H| \in \mathbb{N}$. Let S be a finite generating set of G and let F be a free group with free generating set S. Then there is a surjective homomorphism $\varphi: F \rightarrow G$ such that $\left.\varphi\right|_{S}=i d$. Let H^{\prime} be the preimage of H under φ. We shall show that $\left|F: H^{\prime}\right| \leq|G: H|$ for the index of H^{\prime} in F. For this, let $g, h \in F$ with $g H^{\prime} \neq h H^{\prime}$. Then we have $h^{-1} g \notin H^{\prime}$. So we have $\varphi\left(h^{-1}\right) \varphi(g)=\varphi\left(h^{-1} g\right) \notin H$ und hence $\varphi(g) H \neq \varphi(h) H$. Thus, distinct cosets of H^{\prime} will be mapped by φ to distinct cosets of H. Hence, we have $\left|F: H^{\prime}\right| \leq|G: H|$. By Proposition 2.2 .2 , the group H^{\prime} is finitely generated. Since $\left.\varphi\right|_{H^{\prime}}$ maps H^{\prime} to H surjectively and since this map is defined by its definition on a generating set of H^{\prime} by Theorem 2.1.4, the image of this generating set must generate H. Thus, H is finitely generated.

2.3 Group presentations

A corollary of Theorems 2.1 .2 and 2.1 .4 is the following.
Corollary 2.3.1. Every group is the image of some free group.
This is the reason for us to define presentations of groups.
Definition. Let G be a group that is the image of a free group F under some homomorphism φ. Let S be a free generating set of F. A word w over $S \cup$ S^{-1} with $\varphi(w)=1$ is a relator. A subset $R \subseteq \operatorname{ker}(\varphi)$ is a set of defining relators if $\langle R\rangle \unlhd=\operatorname{ker}(\varphi)$, where $\langle R\rangle \unlhd$ is the smallest normal subgroup of F that contains $R \int^{2}$ If $u v \in \operatorname{ker}(\varphi)$, then we call $\varphi(u v)=1$ a relation. A set of relations is a set of defining relations if the corresponding relators form a set of defining relators.

[^3]Remark. The smallest normal subgroup that contains the set R in a group G must contain R^{-1} and all $r^{g}=g^{-1} r g$ for all $r \in R$ and $g \in G$. The finite products of elements of $R \cup R^{-1}$ and $R^{g} \cup\left(R^{-1}\right)^{g}$ already form a normal subgroup. This must be $\langle R\rangle \unlhd$.

Definition. Let S be a set and let R be a subset of the free group F that is freely generated by S. Then we call $\langle S \mid R\rangle$ a presentation of a group G if $G \cong F /\langle R\rangle \unlhd$ and we write $G=\langle S \mid R\rangle$. Alternatively, R could be a set of defining relations, as well. Then we call $\langle S \mid R\rangle$ a presentation of G if $\left\langle S \mid R^{\prime}\right\rangle$ is a presentation of G, where R^{\prime} is the set of those relators that belong to R.

We call $\langle D \mid R\rangle$ a finite presentation if S and R are finite or, if we emphasis the group, we call it finitely presented if S and R are finite.

Example 2.3.2. (1) A free group F with free generating set S has the presentation $\langle S \mid \emptyset\rangle$.
(2) Finite cyclic groups C_{n} have a presentation $\left\langle g \mid g^{n}\right\rangle$.

Theorem 2.3.3. Let S be a set and let R a set of words over $S \cup S^{-1}$. Then there is a group with presentation $\langle S \mid R\rangle$.

Proof. Let F be a group with free generating set S. Then the group $F /\langle R\rangle \unlhd$ has $\langle S \mid R\rangle$ as a presentation.

Similar to free groups, also groups with presentations have a universal property.

Theorem 2.3.4 (Universal property). Let $G=\langle S \mid R\rangle$ and let F be a free group with free generating set S. Let H be a group and let $\varphi: F \rightarrow H$ be a group homomorphism. If $\varphi(r)=1$ for all $r \in R$, then there is a unique group homomorphism $\psi: G \rightarrow H$ with $\varphi(s)=\psi(s)$ for all $s \in S$.

Proof. Let us define a map $\psi: G \rightarrow H$ in that we set $\psi(s):=\varphi(s)$ and $\psi\left(s^{-1}\right):=$ $(\varphi(s))^{-1}$ for all $s \in S$ and $\psi\left(s_{1} \ldots s_{n}\right):=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{n}\right)$ for all $s_{1}, \ldots, s_{n} \in$ $S \cup S^{-1}$. Then ψ is uniquely determined by the equalities $\varphi(s)=\psi(s)$ and it remains to show that ψ is a group homomorphism. The homomorphism properties directly follow from the definition of ψ. So we just have to show that ψ is well-defined. By assumption, we have $\langle R\rangle \leq \operatorname{ker}(\varphi)$. Since $\operatorname{ker}(\varphi)$ is a normal subgroup, we also obtain $\langle R\rangle \unlhd \leq \operatorname{ker}(\varphi)$. Thus, ψ is well-defined.

The proof showing the free group of fixed rank are uniquely determined up to isomorphisms (Corollary 2.1.5) carries over almost verbatim to our situation here and we obtain the following.

Corollary 2.3.5. Every two groups with the same presentation are isomorphic.

2.4 Tietze transformations

In this section, we are interested in the relations between different presentations of the same group. For this, we define four ways how to obtain new presentations out of old ones without changing the group.

Definition. Let $G=\langle S \mid R\rangle$. Tietze transformations are the following four possible modifications of the presentation $\langle S \mid R\rangle$:
(1) For $R^{\prime} \subseteq\langle R\rangle \unlhd$, we can add redundant relators

$$
\langle S \mid R\rangle \longrightarrow\left\langle S \mid R \cup R^{\prime}\right\rangle .
$$

(2) For $R^{\prime} \subseteq R$ with $\langle R\rangle \unlhd=\left\langle R^{\prime}\right\rangle \unlhd$, we can remove redundant relators

$$
\langle S \mid R\rangle \longrightarrow\left\langle S \mid R^{\prime}\right\rangle
$$

(3) For a set S^{\prime} with $S \cap S^{\prime}=\emptyset$ and a set $\left\{w_{s} \mid s \in S^{\prime}\right\}$ of words over $S \cup S^{-1}$, we can add redundant generators

$$
\langle S \mid R\rangle \longrightarrow\left\langle S \cup S^{\prime} \mid R \cup\left\{s^{-1} w_{s} \mid s \in S^{\prime}\right\}\right\rangle
$$

(4) If $S=S_{1} \dot{\cup} S_{2}$ and $R=R^{\prime} \dot{\cup}\left\{s^{-1} w_{s} \mid s \in S_{2}\right\}$, where R^{\prime} is a set of relators over S_{1} and $\left\{w_{s} \mid s \in S_{2}\right\}$ is a set of words over $S_{1} \cup S_{1}^{-1}$, we can remove redundant generators

$$
\langle S \mid R\rangle \longrightarrow\left\langle S_{1} \mid R^{\prime}\right\rangle
$$

We obtain the following directly from the definition.
Remark 2.4.1. If $\left\langle S^{\prime} \mid R^{\prime}\right\rangle$ can be obtained from $\langle S \mid R\rangle$ using Tietze transformations, then the two groups are isomorphic.

If we consider the reverse direction of Remark 2.4.1. then it is not immediately obvious that distinct presentation of the same group can be transformed into each other using Tietze transformations. But that this holds nonetheless, we will prove in the next theorem.

Theorem 2.4.2. Two presentation define isomorphic groups if and only if there is a finite sequence of Tietze transformations that transforms one into the other.

Comment. In the literature, sometimes Tietze transformations are defined by adding or removing only one generator or relator. Then the finiteness condition in Theorem 2.4.2 has to be dropped. Instead, you will find the following additional statement: If both presentations are finite, then the sequence can be chosen to be finite, too.

Proof of Theorem 2.4.2. If a presentation is obtained from another presentation by finitely many Tietze transformations, the Remark 2.4.1 implies that both groups are isomorphic.

For the reverse direction, let $G_{1}:=\left\langle S_{1} \mid R_{2}\right\rangle$ and $G_{2}:=\left\langle S_{2} \mid R_{2}\right\rangle$ be presentations of isomorphic groups and let $\varphi: G_{1} \rightarrow G_{2}$ be an isomorphism. We may assume that S_{1} and S_{2} are disjoint. For $s \in S_{1}$ let w_{s} be a word over $S_{2} \cup S_{2}^{-1}$ such that $\varphi(s)=w_{s}$ and for $s \in S_{2}$ let w_{s} be a wordover $S_{1} \cup S_{1}^{-1}$ such that $\varphi^{-1}(s)=w_{s}$. Let $i \neq j \in\{1,2\}$. Wie consider the following Tietze transformations:

$$
\begin{aligned}
\left\langle S_{i} \mid R_{i}\right\rangle & \longrightarrow\left\langle S_{1} \cup S_{2} \mid R_{i} \cup\left\{s^{-1} w_{s} \mid s \in S_{j}\right\}\right\rangle \\
& \longrightarrow\left\langle S_{1} \cup S_{2} \mid R_{i} \cup\left\{s^{-1} w_{s} \mid s \in S_{j}\right\} \cup\left\{s^{-1} w_{s} \mid s \in S_{i}\right\} \cup R_{j}\right\rangle
\end{aligned}
$$

Thus, we can transform both groups using Tietze transformations into a third group. Since Tietze transformations are closed under reverting a transformation, we can transform $\left\langle S_{1} \mid R_{1}\right\rangle$ into $\left\langle S_{2} \mid R_{2}\right\rangle$ by a finite sequence of Tietze transformations.

We are interested in if we can transform an arbitrary presentation of a finitely presented group into a finite presentation and if so how we can do it. First, we deal with the generating set.

Theorem 2.4.3. Let $G=\langle S \mid R\rangle$ be a finitely generated group. Then there is a finite subset S^{\prime} of S and a set R^{\prime} of relators over $S^{\prime} \cup S^{\prime-1}$ such that $G \cong\left\langle S^{\prime} \mid R^{\prime}\right\rangle$.
Proof. Let X be a finite generating set of G. Then there exists for every $x \in X$ a word w over $S \cup S^{-1}$ such that $w=x$. Thus, it suffices to take some finite subset S^{\prime} of S to write every $x \in X$ as word over $S^{\prime} \cup S^{\prime-1}$. For every $s \in S \backslash S^{\prime}$ we may choose words v_{s}, w_{s} over $S^{\prime} \cup S^{\prime-1}$ such that $s=v_{s}$ and $s^{-1}=w_{s}$ and such that the free reduction of $v_{s} w_{s}$ is the empty word. We replace in every word in R each subword s by v_{s} and each subword s^{-1} by w_{s}, then we obtain a set R^{\prime} of relators such that $\langle S \mid R\rangle=\left\langle S^{\prime} \mid R^{\prime}\right\rangle$.

Theorem 2.4.4. Let $G=\langle S \mid R\rangle$ be a finitely presented group and let S be finite. Then there exists a finite subset R^{\prime} of R such that G is isomorphic to $\left\langle S \mid R^{\prime}\right\rangle$.

Proof. Let $\langle X \mid Q\rangle$ be a finite presentation of G. For $s \in S$ let w_{s} be a word over $X \cup X^{-1}$ such that $s=w_{s}$ and for $x \in X \cup X^{-1}$ let v_{x} be a word over $S \cup S^{-1}$ such that $x=v_{x}$. Using Tietze transformations, we can modify the presentations as follows.

$$
\begin{aligned}
\langle X \mid Q\rangle & \longrightarrow\left\langle S \cup X \mid Q \cup\left\{s^{-1} w_{s} \mid s \in S\right\}\right\rangle \\
& \longrightarrow\left\langle S \cup X \mid Q \cup\left\{s^{-1} w_{s} \mid s \in S\right\} \cup\left\{x^{-1} v_{x} \mid x \in X\right\}\right\rangle
\end{aligned}
$$

Additionally, we can apply two Tietze transformations to replace the set Q by a set $Q[S]$ that was obtained as follows: for every $q \in Q$ we replace every
$x \in X \cup X^{-1}$ in q by v_{x}. Analogously, let w_{s}^{\prime} be obtained from w_{s} by replacing every $x \in X \cup X^{-1}$ by v_{x} for every $s \in S$.

$$
\begin{aligned}
& \left\langle S \cup X \mid Q \cup\left\{s^{-1} w_{s} \mid s \in S\right\} \cup\left\{x^{-1} v_{x} \mid x \in X\right\}\right\rangle \\
\longrightarrow & \left\langle S \cup X \mid Q[S] \cup\left\{s^{-1} w_{s}^{\prime} \mid s \in S\right\} \cup\left\{x^{-1} v_{x} \mid x \in X\right\}\right\rangle .
\end{aligned}
$$

We remark that $Q[S]$ is a finite set since Q is finite. Now, some generators are obsolete and we remove them.

$$
\begin{aligned}
& \left\langle S \cup X \mid Q[S] \cup\left\{s^{-1} w_{s}^{\prime} \mid s \in S\right\} \cup\left\{x^{-1} v_{x} \mid x \in X\right\}\right\rangle \\
\longrightarrow & \left\langle S \mid Q[S] \cup\left\{s^{-1} w_{s}^{\prime} \mid s \in S\right\}\right\rangle .
\end{aligned}
$$

Since $Q[S]$ and S are finite sets, the presentation $\left\langle S \mid Q[S] \cup\left\{s^{-1} w_{s}^{\prime} \mid s \in S\right\}\right\rangle$ is a finite presentation of G. Since each of those finitely many relators in the set

$$
Q[S] \cup\left\{s^{-1} w_{s}^{\prime} \mid s \in S\right\}
$$

lies in $\langle R\rangle \unlhd$, we find a finite subset R^{\prime} of R such that $G=\left\langle S \mid R^{\prime}\right\rangle$.
Remark 2.4.5. In an exercise we shall see that, generally, for presentations $\langle S \mid R\rangle$ of some finitely presentable group G it is not possible to find finite subsets $S^{\prime} \subseteq S$ and $R^{\prime} \subseteq R$ such that $G=\left\langle S^{\prime} \mid R^{\prime}\right\rangle$.

2.5 Group products

In this section, we will discuss several possibilities how to obtain new groups from old ones. Most of the time, these will be products; just the 'HNN extension' has a different role.

Definition. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. The direct product $\prod_{i \in I} G_{i}$ of the G_{i} is defined on the cartesian product of the G_{i} where multiplication is given componentwise $\left(g_{i}\right)_{i \in I} \cdot\left(h_{i}\right)_{i \in I}:=\left(g_{i} h_{i}\right)_{i \in I}$.

Example 2.5.1. (1) \mathbb{Z}^{n} with componentwise addition is the direct product of n copies of \mathbb{Z}.
(2) If $m, n \in \mathbb{N}$ are coprime, then $C_{m} \times C_{n}=C_{m n}$.

2.5.1 Free products (with amalgamation)

Definition. Let $\left(G_{i}\right)_{i \in I}$ be a family of disjoint groups with $G_{i}=\left\langle S_{i} \mid R_{i}\right\rangle$. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. Then the group

$$
\left\langle\bigcup_{i \in I} S_{i} \mid \bigcup_{i \in I} R_{i} \cup \bigcup_{i \neq j \in I}\left\{\left(\iota_{i}(a)\right)^{-1}\left(\iota_{j}(a)\right) \mid a \in A\right\}\right\rangle
$$

is the free product of the $\left(G_{i}\right)_{i \in I}$ with amalgamation over \boldsymbol{A} and we write $G=*_{A, i \in I} G_{i}$. If $A=1$, then we call the product simply the free product and write $G=*_{i \in I} G_{i}$.

If the groups G_{i} are not disjoint, we can make them disjoint artificially, e. g. by identifying every $g \in G_{i}$ with (g, i). Thereby, we can define free product of groups that need not be disjoint families $\left(G_{i}\right)_{i \in I}$.

Theorem 2.3.3 implies the existence of free products with amalgamation immediately.

Theorem 2.5.2. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. Then the free product of amalgamation $*_{A, i \in I} G_{i}$ exists.

Example 2.5.3. Let F be a free group with free generating set S. Let \mathcal{S} be a partition of S. For every $X \in \mathcal{S}$ let F_{X} be a free group with free generating set X. Then $F \cong *_{X \in \mathcal{S}} F_{X}$.

Definition. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. For every $i \in I$ let X_{i} be a transversal of $\iota_{i}(A)$ in G_{i}, i. e. a subset of G_{i} that contain exactly one element of each right coset of $\iota_{i}(A)$ in G_{i}, where 1 is the element in X for the left coset $\iota_{i}(A)$. A reduced form is a finite sequence $g_{1} \ldots g_{n}$ with $g_{j} \in \bigcup_{i \in I} G_{i} \backslash\{1\}$ such that $g_{j} \in G_{i}$ implies $g_{j+1} \notin G_{i}$. A normal form over $\left(G_{i}\right)_{i \in I}$ and A is a finite sequence $a g_{1} \ldots g_{n}$ with $a \in A$ and $g_{j} \in \bigcup_{i \in I} X_{i} \backslash\{1\}$ such that $g_{j} \in X_{i}$ implies $g_{j+1} \notin X_{i}$. We call n the length of the reduced form or the normal form. A (reduced form or) normal form is trivial if $n=0$ and $a=1$.

Remark 2.5.4. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. If $A=1$, then G_{i} is a transversal of $\iota_{i}(A)$ in G_{i} and thus, for free products, a reduced form is always a normal form. That is why we will use both notions interchangeably.

Theorem 2.5.5. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. Let X_{i} be transversals of $\iota_{i}(A)$ in G_{i}. Then every $g \in *_{A, i \in I} G_{i}$ has a unique normal form over $\left(G_{i}\right)_{i \in I}$ and A.

In particular, there exists no non-trivial normal form for 1.
Proof. First, we show the existence of a normal form and then its uniqueness. Let $g=s_{1} \ldots s_{n}$ with $s_{j} \in \bigcup_{i \in I} S_{i}$ for all $1 \leq j \leq n$. If there exists $i \in I$ with $s_{1}, \ldots, s_{n} \in S_{i}$, then there exists $x \in X_{i}$ such that the coset $\iota_{i}(A) x$ in G_{i} contains g. There exists $a \in A$ with $g=\iota_{i}(a) x$ and then $a x$ is a normal form over g. For general g, we apply induction on the number of subwords of $s_{1} \ldots s_{n}$ that lie in some common S_{i}. Let $s_{j} \ldots s_{n}$ be such that all s_{j}, \ldots, s_{n} lie in a common S_{i} but such that s_{j-1} does not lie in S_{i}. As we already saw, there exists $a \in A$ and $x_{1} \in X_{i}$ such that $\iota_{i}(a) x_{1}=s_{j} \ldots s_{n}$. Let i^{\prime} the index such that $s_{j-1} \in S_{i^{\prime}}$. Because of $\iota_{i}(a)=\iota_{i^{\prime}}(a)$, there exists $s_{j}^{\prime}, \ldots, s_{k}^{\prime} \in S_{i^{\prime}}$ such that $\iota_{i^{\prime}}(a)=s_{j}^{\prime} \ldots s_{k}^{\prime}$. By induction, $s_{1} \ldots s_{j-1} s_{j}^{\prime} \ldots s_{k}^{\prime}$ has a normal form $b x_{\ell} \ldots x_{2}$.

If $x_{2} \notin S_{i}$, then $b x_{\ell} \ldots x_{1}$ is a normal form of g. Otherwise, $\iota_{m}(b) x_{\ell} \ldots x_{1}$, where $m \in I$ with $x_{\ell} \in X_{m}$, has fewer maximal subwords in some common S_{p} for some $p \in I$ and we can apply induction directly to obtain a normal form $b^{\prime} y_{\ell^{\prime}} \ldots y_{1}$ of $\iota_{m}(b) x_{\ell} \ldots x_{1}$, which is also a normal form of g.

To show uniqueness of the normal form, we will apply an argument that is similar to the on we used for the existence of free groups in Theorem 2.1.3. Let Ω be the set of normal form over $\left(G_{i}\right)_{i \in I}$ and A. For $g \in \bigcup_{i \in I} G_{i}$, let $\varphi_{g}: \Omega \rightarrow \Omega$ such that

$$
a g_{1} \ldots g_{n} \mapsto \begin{cases}b x g_{n} \ldots g_{1}, & \text { if } g_{n} \notin G_{i} \\ b^{\prime} g_{n}^{\prime} g_{n-1} \ldots g_{1}, & \text { if } g_{n} \in G_{i} \text { and } g_{n} \neq x^{-1} \\ b g_{n-1} \ldots g_{1}, & \text { if } g_{n} \in G_{i} \text { and } g_{n}=x^{-1}\end{cases}
$$

where $g \in G_{i}$ and $\iota_{i}(b) x=g \iota_{i}(a)$ such that $b \in A$ and $x \in X_{i}$ or in the second case $b^{\prime} \in A$ and $g_{n}^{\prime} \in G_{i}$ such that $\iota_{i}\left(b^{\prime}\right) g_{n}^{\prime}=g \iota_{i}(a) g_{n}$. It is easy to see that φ_{g} and $\varphi_{g^{-1}}$ are inverse functions. So both of them lie in S_{Ω}. We consider the subgroup $H=\left\langle\varphi_{g} \mid g \in \bigcup_{i \in I} G_{i}\right\rangle$ of S_{Ω}. Note that each G_{i} acts on Ω and for every $i \neq j$ the maps $\varphi_{\iota_{i}(a)}$ and $\varphi_{\iota_{j}(a)}$ coincide. So we can extend the canonical map $\bigcup_{i \in I} S_{i} \rightarrow H, g \mapsto \varphi_{g}$ to a homomorphism $*_{A, i \in I} G_{i} \rightarrow H$ by Theorem 2.3.4 (universal property for group presentations). This implies that for every $g \in G$ its image φ_{g} is unique determined. If $c x_{1} \ldots x_{k}$ is a normal form of g, then $\varphi_{g}(1)=\varphi_{c} \varphi_{x_{1}} \ldots \varphi_{x_{k}}(1)=c x_{1} \ldots x_{k}$. If $c^{\prime} y_{1} \ldots y_{\ell}$ is a different normal form of g, then we have

$$
c^{\prime} y_{1} \ldots y_{\ell}=\varphi_{c^{\prime}} \varphi_{y_{1}} \ldots \varphi_{y_{\ell}}(1)=\varphi_{g}(1)=\varphi_{c} \varphi_{x_{1}} \ldots \varphi_{x_{k}}(1)=c x_{1} \ldots x_{k}
$$

Since $c^{\prime} y_{1} \ldots y_{\ell}$ and $c x_{1} \ldots x_{k}$ are the same element in Ω, we must have $c=c^{\prime}$, $k=\ell$ and $x_{i}=y_{i}$ for all $1 \leq i \leq k$. This shows the uniqueness of the normal form.

For free products with amalgamation over a non-trivial group, the reduced forms need not be unique. But for free products, this still holds, as we mentioned in Remark 2.5.4. Thus, we obtain the following corollary.

Corollary 2.5.6. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. For every $g \in *_{i \in I} G_{i}$ there exists a unique reduced form over $\left(G_{i}\right)_{i \in I}$.

As another corollary of Theorem 2.5.5 we obtain the existence of monomorphisms $\psi_{i}: G_{i} \rightarrow *_{A, i \in I} G_{i}$.

Corollary 2.5.7. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. Then there exist canonical monomorphisms $\psi_{i}: G_{i} \rightarrow *_{A, i \in I} G_{i}$.
Proof. Obviously, there are canonical homomorphisms $\varphi_{i}: G_{i} \rightarrow *_{A, i \in I} G_{i}$. Let X_{i} be a transversal of $\iota_{i}(A)$ in G_{i}. Since there exists for every $g \in G_{i}$ exactly one $a \in A$ and $x \in X_{i}$ with $\iota_{i}(a) x=g$ and since $a x$ is a non-trivial normal form of $\varphi_{i}(g)$, we obtain $\varphi_{i}(g) \neq 1$. Thus, φ_{i} is injective.

We obtain additional properties for the free product with amalgamation directly from Theorem 2.3.4 the universal property for group presentations and Corollary 2.3.5.

Theorem 2.5.8 (universal property). Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism and let $\psi_{i}: G_{i} \rightarrow *_{A, i \in I} G_{i}$ be the canonical monomorphisms. Let G be a group and let $\varphi_{i}: G_{i} \rightarrow G$ for all $i \in I$ be homomorphisms such that $\varphi_{i} \iota_{i}=\varphi_{j} \iota_{j}$ for all $i, j \in I$. Then there exists exactly one homomorphism $\varphi: *_{A, i \in I} G_{i} \rightarrow G$ such that $\varphi \psi_{i}=\varphi_{i}$ for all $i \in I$.

Corollary 2.5.9. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Let A be a group and, for every $i \in I$, let $\iota_{i}: A \rightarrow G_{i}$ be a monomorphism. Then $*_{A, i \in I} G_{i}$ is uniquely determined up to isomorphisms.

Definition. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. A reduced form $g_{1} \ldots g_{n}$ is cyclically reduced if $n=1$ or if g_{1} and g_{n} do not lie in the same G_{i}.

Lemma 2.5.10. Let $\left(G_{i}\right)_{i \in I}$ be a family of group.
(1) Every element of $*_{i \in I} G_{i}$ is conjugated to a cyclically reduced form.
(2) If $g=g_{1} \ldots g_{n}$ and $h=h_{1} \ldots h_{m}$ are two cyclically reduced forms such that g and h are conjugated in $*_{i \in I} G_{i}$, then $m=n$ and each reduced form is a cyclic permutation of the other.

Proof. Statement (1) follows directly by iterated conjugations with g_{i}^{-1} as long as necessary. This process terminates since the length of the reduced form gets strictly smaller for each conjugation.

Let $f \in *_{i \in I} G_{i}$ with $g=h^{f}$ and let $f_{1} \ldots f_{k}$ be a normal form of f. If $k=0$, then (2) is a consequence of Corollary 2.5.6. Since f and h are in reduced form and g is in cyclically reduced form, and thus in normal form, and since

$$
g_{1} \ldots g_{n}=f_{k}^{-1} \ldots f_{1}^{-1} h_{1} \ldots h_{m} f_{1} \ldots f_{k}
$$

Corollary 2.5.6 implies that $f_{k}^{-1} \ldots f_{1}^{-1} h_{1} \ldots h_{m} f_{1} \ldots f_{k}$ is not a normal form. So either f_{1} and h_{1} or f_{1} and h_{m} lie in the same factor G_{i}, which contains neither f_{2} nor h_{2} nor h_{m-1}. Then we must have $f_{1}=h_{1}$ or $h_{m}=f_{1}^{-1}$: otherwise we obtain a contradiction to the uniqueness of reduced form for the two cases $k=1$ and $k \neq 1$. Thus, we have

$$
g_{1} \ldots g_{n}=f_{k}^{-1} \ldots f_{2}^{-1} h_{2} \ldots h_{m} h_{1} f_{2} \ldots f_{k}
$$

or

$$
g_{1} \ldots g_{n}=f_{k}^{-1} \ldots f_{2}^{-1} h_{m} h_{1} \ldots h_{m-1} f_{2} \ldots f_{k}
$$

and by induction, we have $m=n$ and the two reduced forms $g_{1} \ldots g_{n}$ and $h_{1} \ldots h_{n}$ are cyclic permutations of each other.

Definition. An element of a group is a torsion element if it has finite order. A group is torsion free if its only torsion element is 1 .

We will prove two results on torsion elements or their absence in (sub-)groups of free products.

Theorem 2.5.11. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Every torsion element of $*_{i \in I} G_{i}$ is conjugated to a torsion element of one of the G_{i}.

Proof. Let $g \in *_{i \in I} G_{i}$ be conjugated to an element h with cyclically reduced form $h=h_{1} \ldots h_{n}$. The element h exists by Lemma 2.5.10(1). It suffices to prove $n=1$. If $n>1$, then $h_{1} \ldots h_{n} \ldots h_{1} \ldots h_{n}$ is the normal form of h^{k}. It is distinct from 1 and thus h and g have infinite order.

Theorem 2.5.12. Let G and H be finite groups. Then every torsion free subgroup of $G * H$ is a free group.

Proof. First, we will construct a tree that admits an action of $G * H$. Let T be the graph with vertex set

$$
V(T)=\{g G, g H \mid g \in G * H\}
$$

i. e., the vertices are the cosets of G and H. The edge set of T is

$$
E(T)=\{\{g G, g H\} \mid g \in G * H\}
$$

To prove that T is connected, it suffices to find a path from G to $g G$ or $g H$ for every $g \in G$. Let $g_{1} \ldots g_{n}$ be a normal form of g. We may assume that $g_{1} \in H$. Then

$$
G, H=g_{1} H, g_{1} G=g_{1} g_{2} G, g_{1} g_{2} H=g_{1} g_{2} g_{3} H, \ldots,\left(g_{1} \ldots g_{n}\right) G
$$

is a path that starts at G and ends at $\left(g_{1} \ldots g_{n}\right) G=g G$ (or at $\left(g_{1} \ldots g_{n}\right) H=$ $g H)$. Thus, T is connected. Every path from G to $g G$ defines a sequence $h_{1} \ldots h_{m}$ with $h_{m} \notin G$ such that two consecutive h_{i}, h_{i+1} are not both in G or not both in H. Thus, $h_{1} \ldots h_{m}$ is a normal form of an element of $g G$ and there exists $h_{m+1} \in G$ with $h_{1} \ldots h_{m+1}=g$. The uniqueness of the normal form of g (Theorem 2.5.5) implies that the path from G to $g G$ in T is uniquely determined. Thus, T is a tree. By Example 1.1.1(3) the group $G * H$ acts on T by multiplication.

Let us show that every vertex and every edge has a finite stabiliser in $G * H$. First, we have a look at the vertices. Since $G * H$ acts transitive on the cosets of G as well as on the cosets of H, it suffices to that the stabilisers of G and of H are finite by Lemma 1.1.10. The stabiliser of G in $G * H$ is G, since $g G=G$ holds if and only if $g \in G$. Thus, it is finite. Analogously, the stabiliser of H is finite. By the definition of the edges, we directly get that $G * H$ acts transitively on the edges. Thus, by Lemma 1.1.10, it suffices to show that the stabiliser of $\{G, H\}$ is finite. Theorem 2.5.5 implies that neither $g G=H$ nor $g H=G$ holds for any $g \in G * H$. Thus, the stabiliser of $\{G, H\}$ is a subgroup of G and of H; in particular, it must be finite. Thus, all stabilisers of vertices and edges are finite.

Let F be a torsion free subgroup of $G * H$. Then F acts on T and this action must be free, since the elements in the stabilisers of vertices or edges have finite order and there are none of such elements in F. Theorem 2.1.9 implies that F is a free group.

Remark. Theorem 2.5.12 also holds for free products of any finite number of groups, also with amalgamation. But in that proof, the construction of the tree has to be altered a bit. (How?)

2.5.2 HNN extensions

In this section, we will define an extension of groups that is not a product. The idea of this extension is to realise an isomorphism between subgroups as conjugation in the larger group.

Definition. Let $G=\langle S \mid R\rangle$ be a group and let $A, B \leq G$. Let $\varphi: A \rightarrow B$ be an isomorphism. Then the group $G *_{\varphi}$ with presentation

$$
\left\langle S \cup\{t\} \mid R \cup\left\{a^{t}=\varphi(a) \mid a \in A\right\}\right\rangle
$$

is the HNN extension ${ }^{3}$ of G.
Remark 2.5.13. In view of Theorems 2.3 .3 and 2.3 .4 and Corollary 2.3.5, we obtain the existence of HNN extensions, their universal property and their uniqueness (up to isomorphisms).

Next, we will define a normal form for HNN extension similar to the normal form for free products with amalgamations.

Definition. Let $G *_{\varphi}$ with $\varphi: A \rightarrow B$ be an HNN extension of G. Let X be a transversal of A and let Y be a transversal of B in G. A reduced form is a finite word $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ with $n \geq 0$ and $\varepsilon_{i}= \pm 1$ such that no subword $t^{-1} g_{i} t$ with $g_{i} \in A$ and no subword $t g_{i} t^{-1}$ with $g_{i} \in B$ exists. A normal form over G and t is a finite word $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ with $n \geq 0$ and $\varepsilon_{i}= \pm 1$ such that $g_{0} \in G$ and such that the following hold.
(i) If $\varepsilon_{i}=1$, then $g_{i} \in Y$.
(ii) If $\varepsilon_{i}=-1$, then $g_{i} \in X$.
(iii) If $g_{i}=1$ for some $i>0$, then $\varepsilon_{i} \neq-\varepsilon_{i+1}$.

We call n the length of the reduced form or normal form. A reduced form or normal form is trivial if $n=1$ and $g_{0}=1$.

We will show that every element of $G *_{\varphi}$ has a unique normal form. This will allow us to prove that we can embed G into $G *_{\varphi}$ canonically.

[^4]Theorem 2.5.14. Let $G *_{\varphi}=\left\langle S \cup\{t\} \mid R \cup\left\{a^{t}=\varphi(a) \mid a \in A\right\}\right\rangle$ be an HNN extension of the group $G=\langle S \mid R\rangle$ with isomorphism $\varphi: A \rightarrow B$. Then every $g \in G *_{\varphi}$ has a unique normal form.

Proof. Let X be a transversal of A and let Y be a transversal of B in G. We divide the proof into two parts: the existence and the uniqueness of the normal form. First, we will show the existence of a normal form for each $g \in G *_{\varphi}$. We can write g as product of the generators of $G *_{\varphi}$. So there exists $g_{i} \in G$ and $\varepsilon_{i}= \pm 1$ such that $g=g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$. We may assume that $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ is a reduced form, since we can replace every a^{t} or $b^{t^{-1}}$ for $a \in A, b \in B$ by $\varphi(a)$ or $\varphi^{-1}(b)$, respectively. Let us first consider the case $\varepsilon_{n}=-1$. Let $h_{n} \in X$ and $a \in A$ with $a h_{n}=g_{n}$. Then there exists $b \in B$ with $b=a^{t}$. Thus, we have $t^{-1} a h_{n}=t^{-1} a t t^{-1} h_{n}=b t^{-1} h_{n}$ and set $g_{n-1}^{\prime}:=g_{n-1} b$. The case $\varepsilon_{n}=1$ is analogous. By induction on n, we know that $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n-1}} g_{n-1}^{\prime}$ has a normal form $h_{0} t^{\varepsilon_{1}} \ldots h_{m}$. Thus, g has the normal form $h_{0} t^{\varepsilon_{1}} \ldots h_{m} t^{\varepsilon_{n-1}} g_{n-1}^{\prime}$; note that the case $h_{m}=1$ and $\varepsilon_{m}=-\varepsilon_{n-1}$ cannot happen: if $h_{m}=1$, then $g_{n-1}^{\prime} \in B$ (if $\varepsilon_{n}=-1$) or $g_{n-1}^{\prime} \in A$ (if $\varepsilon_{n}=1$) by induction and hence we have $g_{n-1} \in B$ or $g_{n-1} \in A$, which contradicts that $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ is a reduced form. We note that we have $m=n-1$ since the number of t or t^{-1} does not change during the induction.

Let us now show the uniqueness of the normal form. For this, we apply the same method as in the proofs of Theorems 2.1.3 and 2.5.5. Let Ω be the set of normal forms over G and t. We define an action of $G *_{\varphi}$ on Ω. For $g \in G$ we define the map $\varphi_{g}: \Omega \rightarrow \Omega$,

$$
g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n} \mapsto\left(g g_{0}\right) t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}
$$

for t we define the map $\varphi_{t}: \Omega \rightarrow \Omega$,

$$
g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n} \mapsto \begin{cases}a g_{1} t^{\varepsilon_{2}} g_{2} \ldots t^{\varepsilon_{n}} g_{n}, & \text { if } y=1 \text { and } \varepsilon_{1}=-1 \\ a t y t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}, & \text { if } y \neq 1 \text { and } \varepsilon_{1}=-1 \\ a t y t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}, & \text { if } \varepsilon_{1}=1\end{cases}
$$

where $g_{0}=b y$ with $b \in B, y \in Y$ and $a^{t}=b$, and for t^{-1} we define the map $\varphi_{t^{-1}}: \Omega \rightarrow \Omega$,

$$
g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n} \mapsto \begin{cases}b g_{1} t^{\varepsilon_{2}} g_{2} \ldots t^{\varepsilon_{n}} g_{n}, & \text { if } x=1 \text { and } \varepsilon_{1}=1 \\ b t^{-1} x t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}, & \text { if } x \neq 1 \text { and } \varepsilon_{1}=1 \\ b t^{-1} x t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}, & \text { if } \varepsilon_{1}=-1\end{cases}
$$

where $g_{0}=a x$ with $a \in A, x \in X$ and $b^{t^{-1}}=a$. Obviously, all φ_{g} are elements of S_{Ω}, since φ_{g} and $\varphi_{g^{-1}}$ are maps that are inverse to each other. Also, it is easy to see that φ_{t} and $\varphi_{t^{-1}}$ are inverse to each other, so they lie in S_{Ω}, too. We consider the subgroup $H=\left\langle\varphi_{g} \mid g \in G \cup\{t\}\right\rangle$ of S_{Ω}. We note that the image $\varphi_{g} \in S_{\Omega}$ is defined for every $g \in G$ and that $\varphi_{b}=\varphi_{t^{-1}} \varphi_{a} \varphi_{t}$ holds for all $a \in A$ and for $b=\varphi(a)$. As in the proof of Theorem 2.5.5, we can extend the canonical
map $S \cup\{t\} \rightarrow H, g \mapsto \varphi_{g}$ via the universal property for presentations of groups (Theorem 2.3.4) to a homomorphism $G *_{\varphi} \rightarrow H$. Thus, for every $g \in G *_{\varphi}$ its image $\varphi_{g} \in H$ is uniquely determined. If $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ is a normal form of g, then

$$
\varphi_{g}(1)=\varphi_{g_{0}} \varphi_{t^{\varepsilon_{1}}} \varphi_{g_{1}} \ldots \varphi_{t^{\varepsilon_{n}}} \varphi_{g_{n}}(1)=g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}
$$

If $h_{0} t^{\delta_{1}} h_{1} \ldots t^{\delta_{m}} h_{m}$ is another normal form of g, then

$$
\begin{aligned}
& h_{0} t^{\delta_{1}} h_{1} \ldots t^{\delta_{m}} h_{m} \\
= & \varphi_{h_{0}} \varphi_{t^{\delta_{1}}} \varphi_{h_{1}} \ldots \varphi_{t^{\delta_{m}}} \varphi_{h_{m}}(1) \\
= & \varphi_{g}(1) \\
= & \varphi_{g_{0}} \varphi_{t^{\varepsilon_{1}}} \varphi_{g_{1}} \ldots \varphi_{t^{\varepsilon_{n}}} \varphi_{g_{n}}(1) \\
= & g_{1} t^{\varepsilon_{1}} g_{2} \ldots t^{\varepsilon_{n}} g_{n} .
\end{aligned}
$$

The two elements $h_{0} t^{\delta_{1}} h_{1} \ldots t^{\delta_{m}} h_{m}$ and $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ must be the same element in Ω and thus the same normal form. So we have $m=n, g_{i}=h_{i}$ and $\varepsilon_{i}=\delta_{i}$ for all $0 \leq i \leq n$. This shows the uniqueness of the normal form.

Corollary 2.5.15. Let $G *_{\varphi}$ be an HNN extension for a group G and an isomorphism $\varphi: A \rightarrow B$. The the following statements hold.
(1) The canonical map $\psi: G \rightarrow G *_{\varphi}$ is a monomorphism and t generates an infinite subgroup.
(2) (Britton's lemma) Let $w:=g_{1} t^{\varepsilon_{1}} g_{2} \ldots t^{\varepsilon_{n-1}} g_{n}$ be a reduced form over G and t. If $n>1$, then $w \neq 1$.

Proof. For every $g \in G$, the word g is a normal form. If $g \in \operatorname{ker}(\psi)$, then $g=1$ in $G *_{\varphi}$. So 1 would have two distinct normal forms: 1 and g, which contradicts Theorem 2.5.14 For $n \in \mathbb{N}$, every t^{n} or t^{-n} has the normal form $1 t 1 t \ldots 1 t 1$ or $1 t^{-1} 1 t^{-1} \ldots 1 t^{-1} 1$, respectively. Thus, t has infinite order. This shows (1).

Let $g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}$ be a reduced form over G and t. By our construction of the normal form from the reduced form in the proof of Theorem 2.5.14, we have not changed the number of occurrences of t in that process. Since $1 \in G * \varphi$ has no non-trivial normal form by Theorem 2.5.14, we obtain (2).

Corollary 2.5.16. Let $G *_{\varphi}$ be an HNN extension of G for the isomorphism $\varphi: A \rightarrow B$. Then the subgroup of $G *_{\varphi}$ that is generated by G and G^{t} is isomorphic to the free product of those two groups with amalgamation over A, where $\iota_{1}=\varphi$ and ι_{2} is the conjugation with t, i. e. $\left\langle G, G^{t}\right\rangle \cong G *_{A} G^{t}$.

Proof. First, we note that the relators in the definition of the free product with amalgamation of G and G^{t} are already satisfied in $\left\langle G, G^{t}\right\rangle$. Thus, $K:=\left\langle G \cup G^{t}\right\rangle$ is a homomorphic image of $G *_{A} G^{t}$. Let $a g_{1} h_{1}^{t} g_{2} \ldots g_{m} h_{m}^{t}$ be a non-trivial normal form in $G *_{A} G^{t}$ with $m \geq 1$, where $g_{1}=1$ or $h_{m}=1$ may hold. This is a reduced form in $G *_{\varphi}$ and by Britton's lemma (Corollary 2.5.15(2)) it is distinct from 1. Thus, K is already the free product with amalgamation of G and G^{t}.

Theorem 2.5.17 (Higman-Neumann-Neumann). Let G be a countable group. Then there exists a group H that has a generating set consisting of two elements such that $G \leq H$.

Proof. Let $G=\left\{g_{0}, g_{1}, \ldots\right\}$ with $g_{0}=1$ and with repetitions if necessary. Let F be a free group with free generating set $\{a, b\}$. The sets $\left\{b^{-i} a b^{i}\right\}$ and $\left\{a^{-i} b a^{i}\right\}$ both freely generate free subgroups A and B of F (cf. Exercise 2 on Sheet 2). We consider the subgroup K of $G * F$ generated by $\left\{g_{i} a^{-i} b a^{i} \mid i \in \mathbb{N}\right\}$. Then the extension of the maps $\varphi: G \rightarrow F, g \mapsto 1$ and the identity on F extends to a homomorphism from $G * F \rightarrow F$ by Theorem 2.5.8, the projection to F. Thus, any non-trivial reduced word in K that represents 1 is mapped onto a non-trivial reduced word in B. Since B is free, this contradiction shows that K must be free as well and has $\left\{g_{i} a^{-i} b a^{i} \mid i \in \mathbb{N}\right\}$ as a free generating set.

We consider the map $\psi: A \rightarrow K$ that is induced uniquely by $\psi\left(b^{-i} a b^{i}\right)=$ $g_{i} a^{-i} b a^{i}$. Let H be the HNN extension of $G * F$ with the isomorphism ψ. By Corollaries 2.5.15 and 2.5.7, we find a canonical isomorphic image of G in $G * F$ and in H. Since the image of every g_{n} is generated by t, a, b, we have $\langle t, a, b\rangle=H$. Since $g_{0}=1$, we have

$$
t a t^{-1}=t g_{0} b^{-0} a b^{0} t^{-1}=a^{-0} b a^{0}=b
$$

So we have $H=\langle t, a\rangle$ and thus (an isomorphic image of) G lies in a group generated by two elements.

Chapter 3

Quasi-Isometries

3.1 Word metric and quasi-isometries

Definition. Let G be a group and let S be a generating set of G. The word metric d_{S} of G with respect to S is the metric of the Cayley graph of G and S.
Remark 3.1.1. Let G be a group and let S be a generating set of G. Then $d_{S}(g, h)$ is the length of a shortest word that represents $g^{-1} h$ for all $g, h \in G$, i. e., we have

$$
d_{S}(g, h)=\min \left\{n \in \mathbb{N} \mid \exists s_{1} \ldots s_{n} \in S \cup S^{-1}: g^{-1} h=s_{1} \ldots s_{n}\right\}
$$

Remark 3.1.2. Let G be a group and let S be a generating set of G. Left / right multiplication is an action of G on the metric space $\left(G, d_{S}\right)$. In particular, the multiplication with an element induces an isometry on G.

We directly observe that distinct generating sets can lead to distinct word metrics.

Example 3.1.3. Let $S_{1}=\{1\}$ and $S_{2}=\mathbb{Z}$ be two generating sets of \mathbb{Z}. Then we have $d_{S_{1}}(g, h)=|g-h|$ and $d_{S_{2}}(g, h)=1$ for all $g \neq h \in \mathbb{Z}$.

If we look at distinct locally finite Cayley graphs for the same finitely generated group, then the word metrics are 'essentially' the same. To make this precise, we introduce the notion of quasi-isometries.
Definition. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces.
(1) Let $f: X \rightarrow Y$ be a map.

- The map f is a quasi-isometric embedding if there are constants $\gamma \in \mathbb{R}_{\geq 1}$ and $c \in \mathbb{R}_{\geq 0}$ such that

$$
\frac{1}{\gamma} d_{X}\left(x, x^{\prime}\right)-c \leq d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq \gamma d_{X}\left(x, x^{\prime}\right)+c
$$

for all $x, x^{\prime} \in X$.

- The map f is quasi-dense if there is a constant $c \in \mathbb{R}_{\geq 0}$ such that

$$
d_{Y}(y, f(X)) \leq c
$$

for all $y \in Y$.

- The map f is a quasi-isometry if it is a quasi-dense quasi-isometric embedding.
(2) The metric spaces X and Y are quasi-isometric if there exists a quasiisometry $f: X \rightarrow Y$. Then we write $X \sim_{Q I} Y$.
(3) Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be quasi-isometries. They are quasiinverses of each other if there exists $c \geq 0$ such that for all $x \in X$ and all $y \in Y$ we have $d(x, g(f(x))) \leq c$ and $d(y, f(g(y))) \leq c$.
Proposition 3.1.4. (i) The relation $\sim_{Q I}$ is an equivalence relation on the class of metric spaces ${ }^{1}$
(ii) For every quasi-isometry there exists a quasi-inverse.

Proof. Exercise

Proposition 3.1.5. Let G be a finitely generated group and let S_{1}, S_{2} be two finite generating sets of G. The identity $i d_{G}:\left(G, d_{S_{1}}\right) \rightarrow\left(G, d_{S_{2}}\right)$ is a quasiisometry between these two metric spaces.

Proof. We may assume that G is not trivial. Thus, neither S_{1} nor S_{2} is empty. Since $i d_{G}$ is surjective, it is obviously quasi-dense and it remains to show that it is a quasi-isometric embedding. Set

$$
\gamma_{1}:=\sup \left\{d_{S_{2}}(1, s) \mid s \in S_{1} \cup S_{1}^{-1}\right\}
$$

Since S_{1} is finite but not empty, we have $\gamma_{1} \in \mathbb{N} \backslash\{0\}$. Let $g, h \in G$. Let $s_{1}, \ldots, s_{n} \in S_{1} \cup S_{1}^{-1}$ for $n=d_{S_{1}}(g, h)$ such that $g s_{1} \ldots s_{n}=h$. Then we have

$$
\begin{aligned}
d_{S_{2}}(g, h)= & d_{S_{2}}\left(g, g s_{1} \ldots s_{n}\right) \\
\leq & d_{S_{2}}\left(g, g s_{1}\right)+d_{S_{2}}\left(g s_{1}, g s_{1} s_{2}\right) \\
& +\ldots+d_{S_{2}}\left(g s_{1} \ldots s_{n-1}, g s_{1} \ldots s_{n}\right) \\
= & d_{S_{2}}\left(1, s_{1}\right)+d_{S_{2}}\left(1, s_{2}\right)+\ldots+d_{S_{2}}\left(1, s_{n}\right) \\
\leq & \gamma_{1} n \\
= & \gamma_{1} d_{S_{1}}(g, h) .
\end{aligned}
$$

Analogously, there exists

$$
\gamma_{2}:=\sup \left\{d_{S_{1}}(1, s) \mid s \in S_{2} \cup S_{2}^{-1}\right\}
$$

and we have $d_{S_{1}}(g, h) \leq \gamma_{2} d_{S_{2}}(g, h)$. Set $\gamma:=\max \left\{\gamma_{1}, \gamma_{2}\right\}$. Then $i d_{G}$ is a quasi-isometric embedding for the constants γ and $c=0$.

[^5]Because $\sim_{Q I}$ is an equivalence relation and distinct word metrics of finitely generated groups and finite generating sets lead to quasi-isometric metric spaces, the following definition is well-defined.

Definition. Let G and H be finitely generated groups.
(1) We call G quasi-isometric to a metric space X if for on ${ }^{2}$ finite generating set S of G the metric space $\left(G, d_{S}\right)$ (and thus the Cayley graph of G and S) is quasi-isometric to X.
(2) The groups G and H are quasi-isometric if there is a metric space X that is quasi-isometric to both groups.

Example 3.1.6. For every $n \in \mathbb{N}$, the group \mathbb{Z}^{n} is quasi-isometric to the euclidean space \mathbb{R}^{n}, since the canonical embedding is a quasi-dense map that is a quasi-isometric embedding with respect to the word metric for the standard generating set S of \mathbb{Z}^{n}.

Example 3.1.7. Let G and H be finite groups. Then G and H are quasiisometric for constants $\gamma=1$ and $c=\max \{|G|,|H|\}$.

3.2 Švarc-Milnor lemma

Definition. Let X be a metric space.
(1) Let $\ell \in \mathbb{R}_{\geq 0}$. A geodesic of length ℓ is an isometric embedding $f:[0, \ell] \rightarrow$ X. Its starting point is $f(0)$ and its end point is $f(\ell)$.
(2) The metric space X is geodesic if there exists a geodesic of length $d(x, y)$ with starting point x and end point y for all $x, y \in X$.
(3) A quasi-geodesic is a quasi-isometric embedding $f: I \rightarrow X$ of a closed interval $I=\left[t_{1}, t_{2}\right] \subseteq \mathbb{R}$. Then $f\left(t_{1}\right)$ is the starting point and $f\left(t_{2}\right)$ is the end point.
(4) The metric space X is quasi-geodesic if there are two constants $c \in \mathbb{R}_{\geq 1}$ and $\gamma \in \mathbb{R}_{\geq 0}$ such that there is a quasi-geodesic with constants γ and c and with starting point x and end point y for all $x, y \in X$.

Remark. (1) Every geodesic metric space ist quasi-geodesic.
(2) Every quasi-geodesic metric space with constants $\gamma=1$ and $c=0$ is geodesic.

Example 3.2.1. (1) Let Γ be a graph. Between every two of its vertices x, y, there exists a path of length $d(x, y)$. Thus, graphs are quasi-geodesic metric

[^6]spaces for $\gamma=1=c$. In general, Γ is not a geodesic metric space. Nevertheless, we interpret them as geodesic metric space: by interpreting edges as isometric copies of $[0,1]]^{3}$ the graph becomes a geodesic metric space ${ }^{4}$
(2) The space \mathbb{R}^{2} with the euclidean metric is a geodesic metric space.
(3) The space $\mathbb{R}^{2} \backslash\{0\}$ with the metric induced by the euclidean metric on \mathbb{R}^{2} is not geodesic, but it is quasi-geodesic for $\gamma=1$ and every $c>0$.

Theorem 3.2.2 (Švarc-Milnor lemma). Let G be a group acting on a metric space X Let X be quasi-geodesic for $\gamma \in \mathbb{R}_{\geq 1}$ and $c \in \mathbb{R}_{>0}$ and assume that there exists a subset $B \subseteq X$ with the following properties.
(i) the diameter of B is finite;
(ii) $\bigcup_{g \in G} g B=X$;
(iii) For $B^{\prime}:=\{x \in X \mid d(x, B) \leq 2 c\}$, the set $S:=\left\{g \in G \mid B^{\prime} \cap g B^{\prime} \neq \emptyset\right\}$ is finite.

The following statements are true.
(1) The set S generates G; in particular, G is finitely generated.
(2) For all $x \in X$, the map $\psi_{x}: G \rightarrow X, g \mapsto g x$ is a quasi-isometry.

Proof. We will show (1) in a similar way as used for Theorem 1.3.2 Let $g \in G$. We want to write g as a finite product of elements of S. Let $x \in B$ and let $\varphi:[0, \ell] \rightarrow X$ be a quasi-geodesic for constants γ and c that starts at x and end at $g x$. Set $n:=\left\lceil\frac{\gamma \ell}{c}\right\rceil$. Set $t_{j}:=j \cdot \frac{c}{\gamma}$ for all $j \in\{0, \ldots, n-1\}$ and $t_{n}:=\ell$ and set $x_{j}:=\varphi\left(t_{j}\right)$ for all $j \in\{0, \ldots, n\}$. By (ii) there exists for every $0 \leq j \leq n$ some $g_{j} \in G$ with $x_{j} \in g_{j} B$. We may assume that $g_{0}=i d$ and $g_{n}=g$, because $x_{0}=x$ and $x_{n}=g x$.

We have

$$
d\left(x_{j}, x_{j+1}\right) \leq \gamma \cdot\left|t_{j}-t_{j+1}\right|+c \leq \gamma \cdot \frac{c}{\gamma}+c=2 c .
$$

Thus, x_{j+1} lies in $g_{j} B^{\prime}$. Since it is also contained in $g_{j+1} B^{\prime}$, we obtain

$$
g_{j} B^{\prime} \cap g_{j+1} B^{\prime} \neq \emptyset
$$

and hence $s_{j}:=g_{j}^{-1} g_{j+1} \in S$. So we have $g=s_{0} \cdots s_{n-1} \in\langle S\rangle$, which implies (1). The additional statement is an immediate consequence of (iii).

For the proof of (2), we may assume $x \in B$ by (ii). We immediately obtain from (i) and (ii) that ψ_{x} is quasi-dense in X for the constant $\operatorname{diam}(B)$: for

[^7]every $y \in X$ there exists by (ii) a $g \in G$ with $y \in g B$ and thus we obtain $d\left(y, \psi_{x}(G)\right) \leq d(y, g x) \leq \operatorname{diam}(B)$ by (i).

Let $\varphi:[0, \ell] \rightarrow X$ be a quasi-geodesic starting at x and ending at $g x$ for constants γ and c as in the first part of the proof and let $n \in \mathbb{N}$ as we defined it in that part. Then we obtain

$$
\begin{aligned}
d\left(\psi_{x}(1), \psi_{x}(g)\right) & =d(x, g x) \\
& =d(\varphi(0), \varphi(\ell)) \\
& \geq \frac{1}{\gamma} \ell-c \\
& \geq \frac{1}{\gamma} \cdot \frac{c(n-1)}{\gamma}-c \\
& =\frac{c}{\gamma^{2}} n-\left(\frac{c}{\gamma^{2}}+c\right) \\
& \geq \frac{c}{\gamma^{2}} d_{S}(1, g)-\left(\frac{c}{\gamma^{2}}+c\right) .
\end{aligned}
$$

For the second inequality, let $s_{1} \ldots s_{n} \in S$ with $g=s_{1} \ldots s_{n}$ and $n=d_{S}(1, g)$. Because of $s_{j} B^{\prime} \cap B^{\prime} \neq \emptyset$ for all $1 \leq j \leq n-1$, we have

$$
\begin{aligned}
d\left(\psi_{x}(1), \psi_{x}(g)\right)= & d(x, g x) \\
\leq & d\left(x, s_{1} x\right)+d\left(s_{1} x, s_{1} s_{2} x\right)+\ldots \\
& +d\left(s_{1} \ldots s_{n-1} x, s_{1} \ldots s_{n} x\right) \\
= & d\left(x, s_{1} x\right)+d\left(x, s_{2} x\right)+\ldots+d\left(x, s_{n} x\right) \\
\leq & n \cdot 2 \operatorname{diam}\left(B^{\prime}\right) \\
\leq & 2 \operatorname{diam}\left(B^{\prime}\right) \cdot d_{S}(1, g)
\end{aligned}
$$

For $\gamma^{\prime}:=\max \left\{\frac{\gamma^{2}}{c}, 2 \operatorname{diam}\left(B^{\prime}\right)\right\}$ and $c^{\prime}:=\frac{c}{\gamma^{2}}+c$, the map ψ_{x} is a quasi-isometric embedding. Thus, we obtain (2).

Corollary 3.2.3. Let G be a finitely generated group and let H be a subgroup of G of finite index. Then H is finitely generated and $H \sim_{Q I} G$.

Proof. Let S be a finite generating set of G. The left multiplication of H on G is an action of H on the metric space $\left(G, d_{S}\right)$. By definition of d_{S}, the space $\left(G, d_{S}\right)$ is a quasi-geodesic metric space for $\gamma=c=1$ according to Example 3.2.1 11. Let B be a transversal of the right cosets of H in G. Since $|G: H|$ is finite, B is finite as well. Since B and S are finite, also the set $B^{\prime}:=\left\{g \in G \mid d_{S}(g, B) \leq 2\right\}$ is finite. Hence and since H acts freely on G, the set $\left\{h \in H \mid B^{\prime} \cap h B^{\prime} \neq \emptyset\right\}$ is finite. Because of $H B=G$, all assumptions of Theorem 3.2 .2 are satisfied and obtain that H is finitely generated and that the embedding $i d: H \rightarrow G$ is a quasi-isometry.

Corollary 3.2.4. Let G be a group and let H be a subgroup of G of finite index. Then G is finitely generated if and only if H is finitely generated.

3.3 Quasi-isometry invariants

In the rest of this chapter, we are interested in properties that are preserved by quasi-isometries. These are algebraic properties as well as geometric ones. For the geometric properties, we will also have a look at what algebraic results for groups they imply.

Definition. A quasi-isometry invariant (with values in a set U) is an assignment \mathcal{P} of finitely generated groups in U with $\mathcal{P}(G)=\mathcal{P}(H)$ for all finitely generated groups $G \sim_{Q I} H$.

We have seen in Example 3.1 .7 that being finite is a quasi-isometry invariant. Now we will show that finite presentability is one, too.

Theorem 3.3.1. Finite presentability is a quasi-isometry invariant for finitely generated groups.

Proof. Let G be a finitely presented group and let H be a finitely generated group. Let S_{G} and S_{H} be finite generating sets of G and H, respectively, and let R_{G} be a finite sets of relators of G such that $G=\left\langle S_{G} \mid R_{G}\right\rangle$. Let $\varphi: G \rightarrow H$ be a quasi-isometry and let $\psi: H \rightarrow G$ be a quasi-inverse of φ, where $\gamma \geq 1$ and $c \geq 0$ are the constants for the quasi-isometries and c is the constant for the quasi-inverse. We may assume that $\varphi(1)=1$ and $\psi(1)=1$. For all $g, h \in G$, let $w_{g, h}$ be a shortest word over $S_{H} \cup S_{H}^{-1}$ such that $\varphi(g) w_{g, h}=\varphi(g h)$. We choose $w_{g, h}$ such that $w_{g h, h^{-1}}$ is the inverse word ${ }^{6}$ of $w_{g, h}$. Analogously, we define words $v_{h, s}$ over $S_{G} \cup S_{G}^{-1}$ for $g, h \in H$.

Let $w=s_{1} \ldots s_{n}$ be a word over $S_{H} \cup S_{H}^{-1}$ with $w=1$. We replace every letter s_{i} by $w_{s_{1} \ldots s_{i-1}, s_{i}}$. Thereby, we obtain a word $v=v_{1} \ldots v_{k}$ over $S_{G} \cup S_{G}^{-1}$ with $v=1$. Note that there are subwords $v_{1} \ldots v_{i_{j}}$ for all $j \leq n$ such that $v_{1} \ldots v_{i_{j}}=\psi\left(s_{1} \ldots s_{j}\right)$ and such that $i_{j}<i_{j^{\prime}}$ for $j<j^{\prime}$. We say that v visits all $\psi(\emptyset), \ldots, \psi\left(s_{1} \ldots s_{n}\right)$ in that order.

Since v lies in the normal subgroup generated by R_{G} in the free group generated by S_{G}, there are $r_{1}, \ldots r_{m} \in R_{G}$ and words $p_{1}, \ldots p_{m}$ such that $p_{1}^{-1} r_{1} p_{1} \ldots p_{m}^{-1} r_{m} p_{m}$ has v as a reduction. We apply the same method we used to obtain v from w to all r_{i} and p_{i} using the words $v_{h, s}$ in order to get words r_{i}^{\prime} and p_{i}^{\prime} over $S_{H} \cup S_{H}^{-1}$. Then $w^{\prime}:=p_{1}^{\prime-1} r_{1}^{\prime} p_{1}^{\prime} \ldots p_{m}^{\prime}{ }^{-1} r_{m}^{\prime} p_{m}^{\prime}$ is a word over $S_{H} \cup S_{H}^{-1}$ that represents 1. Note that w^{\prime} visits $\varphi(\psi(\emptyset)), \ldots, \psi\left(\varphi\left(s_{1} \ldots s_{n}\right)\right)$ in that order.

For $1 \leq i \leq n$, let x_{i} be a shortest word such that $s_{1} \ldots s_{i} x_{i}=\varphi\left(\psi\left(s_{1} \ldots s_{i}\right)\right)$. Note that the length of x_{i} is at most c, since φ and ψ are quasi-inverse. Let y_{i} be the subword of w^{\prime} from the word that represents $\varphi\left(\psi\left(s_{1} \ldots s_{i-1}\right)\right)$ to $\varphi\left(\psi\left(s_{1} \ldots s_{i}\right)\right)$. Note that the length of y_{i} is at most $\gamma+c$. Then $z_{i}:=$ $x_{i} y_{i+1} x_{i+1}^{-1} s_{i+1}^{-1}$ is a word of length at most $\gamma+3 c+1$ that represents 1 . If we consider the word

$$
w^{\prime \prime}=z_{0}\left(s_{1} z_{1} s_{1}^{-1}\right) \ldots\left(s_{1} \ldots s_{n-1} z_{n-1} s_{n-1}^{-1} \ldots s_{1}^{-1}\right) s_{1} \ldots s_{n}
$$

[^8]then it can be reduced to w^{\prime}. Thus, w lies in the normal subgroup of the free group generated freely by S_{H} that is generated by all z_{i} and all r_{i}^{\prime}. Since each z_{i} has length at most $\gamma+3 c+1$ and each r_{i}^{\prime} has length at most $\ell(\gamma+c)$, where ℓ denotes the length of the longest relator in R_{G}. Since there are only finitely many words over $S_{H} \cup S_{H}^{-1}$ of length at most $\max \{\ell(\gamma+c), \gamma+3 c+1\}$, we obtain that H is finitely presented.

3.4 Ends of groups

In this section, we will look at ends of (finitely generated) groups. For this definition, we rely on the notion of ends of graphs, but will avoid making precise what an end of group is but instead just define the number of ends.

Definition. Let $\Gamma=(V, E)$ be a graph. A ray in Γ is a one-way infinite path. For every ray R in Γ and every finite set $U \subseteq V$ of vertices there is a unique component C of $\Gamma-U$ that contain infinitely many vertices of R. Then we say that R lies in C eventually. Two rays in Γ are equivalent if there is no finite subset $U \subseteq V$ such that the rays lie in distinct components of $\Gamma-U$ eventually. It follows easily that this defines an equivalence relation. Its equivalence classes are the ends of Γ.

We shall show first that ends behave well with respect to quasi-isometries.
Lemma 3.4.1. Let Γ and Δ be two locally finite graphs. If $f: \Gamma \rightarrow \Delta$ is a quasi-isometry, then f induces a bijection on the ends of the graphs.

In particular, both graphs have the same number of ends.
Proof. Let $\gamma \geq 1$ and $c \geq 0$ such that f is a (γ, c)-quasi-isometry. Let R be a ray of Γ. By joining every two vertices of $f(R)$ by a path of length at most $\gamma+c$, we obtain a one-way infinite walk W. Note that the distance between occurrences of the same vertex is bounded by some constant κ, since f is a quasi-isometry. Thus, every two rays in W are equivalent.

Let Q be a ray that is equivalent to R. Then for every $r \in \mathbb{N}$ they are connected by a path that lies outside the balls of radius r around the first vertex of R. This implies that we find paths outside of every ball of radius $r / \gamma-c$ around the f-image of the first vertex of R between every two rays R^{\prime}, Q^{\prime} that are defined by $f(R)$ and $f(Q)$ in Δ. Thus, every end of Γ is mapped to an end of Δ.

Since f has a quasi-inverse g, every two equivalent rays Δ define equivalent rays in Γ, too. Thus, the map induced on the ends is bijective.

Even though we will not talk about specific ends of groups Lemma 3.4.1 shows that the number of ends for each Cayley graph of a locally finite group and any of its finite generating sets is the same.
Definition. Let G be a finitely generated group. The number of ends of G is the number of ends of each of its locally finite Cayley graphs. We denote this number by $e(G)$.

We obtain from Lemma 3.4.1 more than just the basis of our definition of numbers of ends of groups, as we will se in the following corollary.

Corollary 3.4.2. The number of ends is a quasi-isometry invariant for finitely generated groups.

Natural questions that arise now are e.g. which values $e(G)$ can have and whether, for given number of ends, we can characterise the groups that have this number of ends.

Lemma 3.4.3. Let Γ be a transitive connected locally finite graph ${ }^{7}$ If Γ has at least three ends, then it has infinitely many ends.

Proof. Let us suppose that Γ has finitely many but more than two ends. Then there exists a finite subgraph Δ of Γ such that for every component C of $\Gamma-\Delta$ all rays in C are equivalent. Since Γ is locally finite, there exists in every component C of $\Gamma-\Delta$ a vertex x such that $d(x, \Delta)$ is larger than the diameter of Δ. Mapping $y \in V(\Delta)$ to x by an automorphism φ implies that $\Delta \cap \varphi(\Delta)$ is empty by the choice of x. Now there are at least three infinite components of $\Gamma-\varphi(\Delta)$ that contain ends. Since two of these components must lie in the same component of $\Gamma-\Delta$, this contradicts the choice of Δ that is separates all ends.

We directly obtain the following theorem from Lemma 3.4.3.
Theorem 3.4.4. If G is a finitely generated group, then $e(G) \in\{0,1,2, \infty\}$.
Example 3.4.5. Let G be a finitely generated group.
(1) We have $e(G)=0$ if and only if G is finite.
(2) If $G=\mathbb{Z}^{n}$ for some $n \in \mathbb{N}_{\geq 2}$, then $e(G)=1$.
(3) If $G=\mathbb{Z}$, then $e(G)=2$.
(4) If G is a free group of rank at least 2 , then $e(G)=\infty$.

We will prove in a later chapter that a finitely generated group with more than one end is either a free product with amalgamation or an HNN extension over a finite groups (Stallings' theorem).

In the rest of this section, we will characterise finitely generated groups that have exactly two ends.

Definition. A group is virtually cyclic if it has a cyclic subgroup of finite index.

Theorem 3.4.6. Let G be a finitely generated infinite group. Then the following statements are equivalent.
(1) G is virtually cyclic;

[^9](2) $G \sim_{Q I} \mathbb{Z}$;
(3) $e(G)=2$.

Proof. The implication $\sqrt{1}) \Rightarrow(2)$ is a consequence of Corollary 3.2.3. Corollary 3.4 .2 and Example 3.4.5 (3) imply the direction $(2) \Rightarrow(3)$.

Let us assume that $e(G)=2$. Let $\Gamma=(V, E)$ be a Cayley graph of G and some finite generating set S of G. Then there exists a finite connected subgraph $\Delta \subseteq \Gamma$ such that $\Gamma \backslash \Delta$ has exactly two components C_{1}, C_{2} both of which are infinite.

Claim 1. For every $g \in G$ either $C_{1} \cap g C_{1}$ and $C_{2} \cap g C_{2}$ or $C_{1} \cap g C_{2}$ and $C_{2} \cap g C_{1}$ are infinite. The other two intersections are finite.

Proof of Claim 1. Since $\Delta \cup g \Delta$ separates the four involved intersections, but it covers together with them covers the vertex set of Γ and since Δ separates two infinite components, there are precisely two infinite intersections. But not both of them can lie in any of $C_{1}, g C_{1}, C_{2}$ or $g C_{2}$, since its complement is infinite. Thus, we obtain the assertion.

Set

$$
H:=\left\{g \in G \mid C_{1} \cap g C_{1} \text { and } C_{2} \cap g C_{2} \text { are infinite }\right\} .
$$

Claim 2. The set H is a subgroup of G with $|G: H| \leq 2$.
Proof of Claim2. Obviously, H contains for every elements also the inverse one. If $g, h \in H$, then $g\left(C_{1} \cap h C_{1}\right)$ is infinite. Since $C_{2} \cap g\left(C_{1} \cap h C_{1}\right)$ is finite by Claim 1, we obtain that $C_{1} \cap g\left(C_{1} \cap h C_{1}\right)$ and hence $C_{1} \cap g h C_{1}$ is infinite. Thus, H is closed under multiplication. Hence, it is a subgroup.
Let us assume $G \neq H$. We shall show $|G: H|=2$. Let $g, h \in G \backslash H$. By Claim 1 and the definition of H, the sets $C_{1} \cap g C_{2}$ and $C_{2} \cap g C_{1}$ are infinite and the same holds if we replace g by h. Thus, the set $C_{1} \cap g\left(C_{1} \cap h C_{2}\right) \subseteq$ $C_{1} \cap g C_{1}$ must be finite. Since $C_{1} \cap g\left(C_{2} \cap h C_{2}\right)$ is finite, too, $C_{1} \cap g h C_{2}$ must be finite as well. By Claim 1 the element $g h$ lies in H. Thus, g and h are in the same coset of H, which implies $|G: H|=2$.

Claim 3. For $h \in H$ with $\Delta \cap h \Delta=\emptyset$ and for $\bar{C}_{1}:=V \backslash C_{1}$, we have either
(i) $C_{1} \cap h \bar{C}_{1}=\emptyset$ and $\bar{C}_{1} \cap h C_{1} \neq \emptyset$ or
(ii) $C_{1} \cap h \bar{C}_{1} \neq \emptyset$ and $\bar{C}_{1} \cap h C_{1}=\emptyset$.

Proof of Claim 3. The claim follows directly from the connectedness of Δ.

By the choice of H and by Claim 1 , the set $\left|C_{1} \cap h \bar{C}_{1}\right|-\left|\bar{C}_{1} \cap h C_{1}\right|$ is finite for all $h \in H$. We define the function

$$
\varphi: H \rightarrow \mathbb{Z}, \varphi(h):=\left|C_{1} \cap h \bar{C}_{1}\right|-\left|\bar{C}_{1} \cap h C_{1}\right|
$$

Claim 4. The function φ is a homomorphism.
Proof of Claim 4. Let $g, h \in H$. We have

$$
\begin{aligned}
\varphi(g h)= & \left|C_{1} \cap g h \bar{C}_{1}\right|-\left|\bar{C}_{1} \cap g h C_{1}\right| \\
= & \left|C_{1} \cap g \bar{C}_{1} \cap g h \bar{C}_{1}\right|+\left|C_{1} \cap g C_{1} \cap g h \bar{C}_{1}\right| \\
& -\left|\bar{C}_{1} \cap g C_{1} \cap g h C_{1}\right|-\left|\bar{C}_{1} \cap g \bar{C}_{1} \cap g h C_{1}\right| \\
= & \left|C_{1} \cap g \bar{C}_{1} \cap g h \bar{C}_{1}\right|+\left|C_{1} \cap g C_{1} \cap g h \bar{C}_{1}\right| \\
& -\left|\bar{C}_{1} \cap g C_{1} \cap g h C_{1}\right|-\left|\bar{C}_{1} \cap g C_{1} \cap g h \bar{C}_{1}\right| \\
& +\left|C_{1} \cap g \bar{C}_{1} \cap g h C_{1}\right|+\left|\bar{C}_{1} \cap g C_{1} \cap g h \bar{C}_{1}\right| \\
& -\left|\bar{C}_{1} \cap g \bar{C}_{1} \cap g h C_{1}\right|-\left|C_{1} \cap g \bar{C}_{1} \cap g h C_{1}\right| \\
= & \left|C_{1} \cap g \bar{C}_{1}\right|-\left|\bar{C}_{1} \cap g C_{1}\right| \\
& +\left|g C_{1} \cap g h \bar{C}_{1}\right|-\left|g \bar{C}_{1} \cap g h C_{1}\right| \\
= & \varphi(g)+\left|C_{1} \cap h \bar{C}_{1}\right|-\left|\bar{C}_{1} \cap h C_{1}\right| \\
= & \varphi(g)+\varphi(h) .
\end{aligned}
$$

Thus, φ is a homomorphism.
Claim 5. The kernel of φ is finite.
Proof of Claim 5. Since Δ is a finite subgraph of Γ and since G acts freely on Γ, there are only finitely many $h \in H$ with $\Delta \cap h \Delta \neq \emptyset$. For all other $h \in H$, we obtain by Claim 3 that $\varphi(h)$ and 0 are distinct.

Let $h \in H \backslash \varphi^{-1}(0)$. Then $\varphi(h)$ and hence h have infinite order. Thus, we have $\langle h\rangle \cong \mathbb{Z}$. Since the index of $\langle\varphi(h)\rangle$ in \mathbb{Z} is finite and $\operatorname{ker}(\varphi)$ is also finite by Claim 5 the subgroup $\langle h\rangle$ has finite index in H and thus in G by Claim 2 .

3.5 Growth of groups

Definition. Let G be a finitely generated group and let S be a finite generating set of G. For $r \in \mathbb{N}$ and $g \in G$ we set

$$
B_{r}^{G, S}(g):=\left\{h \in G \mid d_{S}(g, h) \leq r\right\}
$$

Then

$$
\beta_{G, S}: \mathbb{N} \rightarrow \mathbb{N}, r \mapsto\left|B_{r}^{G, S}(1)\right|
$$

is the growth function of G with respect to S.
Note that $\left|B_{r}^{G, S}(1)\right|=\left|B_{r}^{G, S}(g)\right|$ for all $g \in G$.
Example 3.5.1. (1) Let G be a finitely generated group and let S be a finite generating set of G. Then G is finite if and only if $\beta_{G, S}$ becomes stationary.
(2) Let S_{1} be the standard generating set of \mathbb{Z}. Then $\beta_{\mathbb{Z}, S_{1}}(r)=2 r+1$ for all $r \in \mathbb{N}$.
(3) Let $S_{2}:=\{2,3\}$ be another generating set of \mathbb{Z}. Then

$$
\beta_{\mathbb{Z}, S_{2}}(r)= \begin{cases}1, & \text { if } r=0 \\ 5, & \text { if } r=1 \\ 6 r+1 & \text { otherwise }\end{cases}
$$

(4) Let S be the standard generating set of \mathbb{Z}^{2}. Then

$$
\beta_{\mathbb{Z}^{2}, S}(r)=1+4 \cdot \sum_{j=1}^{r} j=2 r^{2}+2 r+1
$$

(5) Let F be a finitely generated free group of rank at least 2 and let S be a free generating set of F. Then $\beta_{F, S}$ is an exponential function ${ }^{8}$

Example 3.5.1 shows that distinct generating sets of the same group lead to distinct growth functions. We will see later that all these functions are similar for each groups.

Proposition 3.5.2. Let G be a finitely generated group and let S be a finite generating set of G.
(1) (Sub-multiplicativity) For all $r, r^{\prime} \in \mathbb{N}$ we have

$$
\beta_{G, S}\left(r+r^{\prime}\right) \leq \beta_{G, S}(r) \cdot \beta_{G, S}\left(r^{\prime}\right)
$$

(2) Let F be a free group with free generating set S. For all $r \in \mathbb{N}$ we have

$$
\beta_{G, S} \leq \beta_{F, S}
$$

Proof. Exercise
Definition. Let $f, g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be maps.
(i) If f is increasing then it is a generalised growth function.
(ii) Let f and g be generalised growth functions. The map g dominates f if there are $c \in \mathbb{R}_{\geq 0}$ and $\gamma \in \mathbb{R}_{>0}$ such that

$$
f(r) \leq \gamma g(\gamma r+c)+c
$$

for all $r \in \mathbb{R}_{\geq 0}$. Then we write $f \preccurlyeq g$.
(iii) Let f and g be generalised growth functions. They are equivalent if $f \preccurlyeq g$ and $g \preccurlyeq f$. Then we write $f \sim g$.

[^10]Example and Definition 3.5.3. Let G be a finitely generated group and let S be a finite generating set of G. Then the map

$$
f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}, r \mapsto \beta_{G, S}(\lceil r\rceil)
$$

is a generalised growth function. If H is another finitely generated group and T a finite generating set of H, then $\beta_{G, S}$ dominates/is equivalent to $\beta_{H, T}$ if the same holds for their generalised growth functions.

Lemma 3.5.4. (1) Domination of (generalised) growth functions is a quasiorder ${ }^{9}$
(2) Equivalence of (generalised) growth functions is an equivalence relation.

Proof. Exercise
Now we are going to prove that distinct finite generating sets of the same group essentially lead to the same growth functions: they are equivalent.
Proposition 3.5.5. Let G and H be finitely generated groups with finite generating sets S of G and T of H. If there is a quasi-isometric embedding $\varphi:\left(G, d_{S}\right) \rightarrow\left(H, d_{T}\right)$, then

$$
\beta_{G, S} \preccurlyeq \beta_{H, T}
$$

Proof. Let $\gamma \in \mathbb{R}_{\geq 1}$ and $c \in \mathbb{R}_{\geq 0}$ be the constants for the quasi-isometric embedding φ. Let $e:=\varphi\left(1_{G}\right)$. Then we have

$$
d_{T}(e, \varphi(g)) \leq \gamma d_{S}\left(1_{G}, g\right)+c \leq \gamma r+c
$$

for all $g \in B_{r}^{G, S}\left(1_{G}\right)$ and hence

$$
\varphi\left(B_{r}^{G, S}\left(1_{G}\right)\right) \subseteq B_{\gamma r+c}^{H, T}(e)
$$

Let $g, g^{\prime} \in G$ with $\varphi(g)=\varphi\left(g^{\prime}\right)$. Then we have

$$
\frac{1}{\gamma} d_{S}\left(g, g^{\prime}\right)-c \leq d_{T}\left(\varphi(g), \varphi\left(g^{\prime}\right)\right)
$$

and hence

$$
d_{S}\left(g, g^{\prime}\right) \leq \gamma\left(d_{T}\left(\varphi(g), \varphi\left(g^{\prime}\right)\right)+c\right)=\gamma c
$$

Thus, we have

$$
\begin{aligned}
\beta_{G, S}(r) & =\left|B_{r}^{G, S}\left(1_{G}\right)\right| \\
& \leq\left|B_{\gamma c}^{G, S}\left(1_{G}\right)\right| \cdot\left|B_{\gamma r+c}^{H, T}(e)\right| \\
& \leq\left|B_{\gamma c}^{G, S}\left(1_{G}\right)\right| \cdot\left|B_{\gamma r+c}^{H, T}\left(1_{H}\right)\right| \\
& =\beta_{G, S}(\gamma c) \cdot \beta_{H, T}(\gamma r+c) .
\end{aligned}
$$

Since the first factor does not depend on r, we obtain $\beta_{G, S} \preccurlyeq \beta_{H, T}$.

[^11]Proposition 3.1.5 implies the following two corollaries.
Corollary 3.5.6. Distinct growth functions of the same finitely generated group are equivalent.
Corollary 3.5.7. Quasi-isometric groups have equivalent growth functions.
Definition. Let G be a finitely generated group. The growth type of G is the equivalence class of the generalised growth functions that contains all growth functions of G (with respect to finite generating sets. The groups G has ...
(i) ... exponential growth if the growth type contains the map $x \mapsto e^{x}$;
(ii) ... polynomial growth if, for every finite generating set S of G, there exists an $a \in \mathbb{R}_{\geq 0}$ such that

$$
\beta_{G, S} \preccurlyeq\left(x \mapsto x^{a}\right) ;
$$

(iii) ...intermediate growth if it has neither exponential nor polynomial growth.
Example 3.5.8. (1) Let $n \in \mathbb{N}$. The growth type of the group \mathbb{Z}^{n} is polynomial 10
(2) Let F be a finitely generated free group of rank $n \geq 2$. Then the growth type of F is exponential.

Remark 3.5.9. (1) By Corollary 3.5.6, the growth type of a finitely generated group is a quasi-isometry invariant.
(2) Since free groups of rank at least 2 have exponential growth, we obtain by Proposition 3.5.2 that every group has at most exponential growth. A theorem of van den Dries and Wilkies implies that every polynomial function is dominated by the growth functions of finitely generated groups of intermediate growth.
Remark 3.5.10. We already know groups with polynomial and with exponential growths. There are examples of groups of intermediate growth, e.g. the so-called Grigorchuk group.

Theorem 3.5.11. Let G be a finitely generated group with finite generating set S and let H be a finitely generated subgroups of G with finite generating set T. Then

$$
\beta_{H, T} \preccurlyeq \beta_{G, S}
$$

Proof. The set $S^{\prime}:=S \cup T$ is a finite generating set of G. Let $r \in \mathbb{N}$. Then we have

$$
d_{S^{\prime}}(1, h) \leq d_{T}(1, h) \leq r
$$

for all $h \in B_{r}^{H, T}(1)$. Thus, we have $B_{r}^{H, T}(1) \subseteq B_{r}^{G, S^{\prime}}(1)$. This implies together with Corollary 3.5.6

$$
\beta_{H, T} \preccurlyeq \beta_{G, S^{\prime}} \preccurlyeq \beta_{G, S} .
$$

[^12]Corollary 3.5.12. If a finitely generated group G has a free subgroup of rank 2 , then G has exponential growth.

Definition. Let G be a group.
(i) Let $G_{1}:=G$. For $n \in \mathbb{N}$, we define G_{n} recursively as commutator

$$
\left[G_{n-1}, G\right]:=\left\{h^{-1} g^{-1} h g \mid h \in G_{n-1}, g \in G\right\}
$$

of G_{n-1} and G. We call G nilpotent if there exists $n \in \mathbb{N}$ such that $G_{n}=1$. (The sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ is called a central series.)
(ii) The group G is virtually nilpotent if it has a nilpotent subgroup of finite index.

We cite the main theorem in the area of growth of groups without proof.
Theorem 3.5.13 (Gromov). A finitely generated group has polynomial growth if and only if it is virtually nilpotent.

Corollary 3.5.14. Being virtually nilpotent is a quasi-isometry invariant for finitely generated groups.

Chapter 4

Bass-Serre theory

Definition. A group G acts without (edge-)inversion on a graph if every element of G that fixes an edge $x y$ fixes already the two incident vertices x and y.

4.1 Group actions on trees

We have already seen that every finite Group that acts on a tree fixes either a vertex or an edge but that we cannot expect the same if we drop the assumption of finiteness. In this section, we will prove an analogue for infinite groups.

First, we need a notion from infinite graph theory.
Definition. Let $\Gamma=(V, E)$ be a graph. A two-way infinite sequence $\ldots x_{-1} x_{0} x_{1} \ldots$ of pairwise distinct vertices and such that $x_{i} x_{i+1} \in E$ for all $i \in \mathbb{Z}$ is a double ray.

Definition. Let the group G act on the tree T without inversion. For $g \in G$, let $R=\ldots x_{-1} x_{0} x_{1} \ldots$ be a g-invariant double ray, i. e. $g R=R$. Then g acts by translation on R if there exists $z \in \mathbb{Z}$ with $g x_{i}=x_{i+z}$ for all $i \in \mathbb{Z}$ and g acts by reflection on R if there exists $z \in \mathbb{Z}$ with $g x_{z-i}=x_{z+i}$ for all $i \in \mathbb{Z}$.

For every $g \in G$ we set $|g|:=\min \{d(v, g v) \mid v \in V(T)\}$ and call it the translation length of g. We call g elliptic if $|g|=0$ and hyperbolic otherwise.

Remark 4.1.1. Every elliptic element has a fixed vertex.
Notation. For two vertices x, y in a tree, we denote by $[x, y]$ the unique path between them.

Let us obtain some easy properties of hyperbolic group elements.
Lemma 4.1.2. Let the group G act on the tree T without inversion. Then the following hold for all hyperbolic $g \in G$.
(i) There exists a unique g-invariant double ray R in T. Furthermore, g acts on R by translation.
(ii) The order of g is infinite.
(iii) We have $d\left(v, g^{z} v\right)=|z| \cdot|g|+2 d(v, R)$ for all $v \in V(T)$ and $z \in \mathbb{Z} \backslash\{0\}$.
(iv) We have $\left|g^{z}\right|=|z| \cdot|g|$ for all $z \in \mathbb{Z}$.

Proof. Let $v \in V(T)$ with $d(v, g v)=|g|$ and let $R:=\bigcup_{z \in \mathbb{Z}}\left[g^{z} v, g^{z+1} v\right]$. First, we will show that R is a double ray. It suffices to prove that $\left[g^{z-1} v, g^{z} v\right]$ and $\left[g^{z} v, g^{z+1} v\right]$ meet only in $g^{z} v$ and thus it suffices to show that $\left[g^{-1} v, v\right]$ and $[v, g v]$ meet only in v. Let us suppose that there exists a vertex in the intersection of these two paths that is not v. Then the neighbour w of v on $[v, g v]$ lies in the intersection $\left[v, g^{-1} v\right] \cap[v, g v]$. Then $g^{-1} w$ lies in $\left[g^{-1} v, g v\right]$ and because of $d(w, g w)=d\left(w, g^{-1} w\right) \leq d(v, g v)$ the choice of v implies $w=g^{-1} v$ and $g^{-1} w=v$, which is a contradiction to the action without inversion of G on T, since g fixes the edge $v w$ but neither of the two incident vertices. This, R is a double ray.

Obviously, R is g-invariant. Thus and since g acts on R by translation, it remains to show the uniqueness of R in order to show (i). So let R^{\prime} be a double ray that is distinct from R. Then there is a vertex u on R that has minimum distance to R^{\prime} and, since R and R^{\prime} are distinct, there is a vertex on R of arbitrarily large distance to R^{\prime} that lies in the same g-orbit as u. But then R^{\prime} cannot be g-invariant. This shows (i).

Since R is a double ray, infinitely many $g^{z} v$ must be distinct. Thus, g cannot have finite order, which shows (iii).

We note that the definition of R implies that (iii) holds for all vertices on R. Let $x \in V(T)$ and $z \in \mathbb{Z} \backslash\{0\}$. There exists a unique vertex $y \in R$ with $d(x, y)=d(x, R)$. So we have $\left[x, g^{z} x\right]=[x, y] \cup\left[y, g^{z} y\right] \cup\left[g^{z} y, g^{z} x\right]$ and thus (iii).

It remains to show (iv), which follows immediately from (iii).
In the proof of Lemma 4.1.2 we used a property of hyperbolic group elements which is even sufficient for a characterisation of these elements.

Lemma 4.1.3. Let the group G act without inversion on the tree T. Let $g \in G$. Then g is hyperbolic, if and only if there exists a vertex $v \in V(T)$ with $v \neq g v$ and such that $[v, g v] \cap\left[g v, g^{2} v\right]$ contains only $g v$.
Proof. If g is hyperbolic, then we have already seen in the proof of Lemma 4.1.2(ii) that for every $v \in V(T)$ with $d(v, g v)=|g|$ the intersection $[v, g v] \cap$ $\left[g v, g^{2} v\right]$ contains only $g v$. For the other direction, we obtain directly from the assumption that $\bigcup_{z \in \mathbb{Z}}\left[g^{z} v, g^{z+1} v\right]$ is a double ray and g acts on it as translation. In particular, g cannot fix any vertex and we obtain $|g|>0$. Thus, g is hyperbolic.

If two elliptic elements have a common fixed vertex, then their product must fix that vertex, too. This obvious obstacle for two elliptic elements to have a hyperbolic product is the only one, as we will see now.
Lemma 4.1.4. Let the group G acts on the tree T without inversion. Let g, h be elliptic elements of G. Then gh is hyperbolic, if and only if g and h have no common fixed vertex.

Proof. It suffices to prove that $g h$ is hyperbolic if g and h have no common fixed vertex. Let x be a fixed vertex of g and let y be a fixed vertex of h such that $d(x, y)$ is minimal. By assumption, we have $d(x, y)>0$. Then $[x, y] \cap[g x, g y]=$ $[x, y] \cap[x, g y]$ only contains the vertex x by minimality of $d(x, y)$. Analogously, $[x, y] \cap[h x, h y]=[x, y] \cap[h x, y]$ only contains the vertex y and both statements also hold for g^{-1} instead of g and h^{-1} instead of h. Since x separates y from $g^{-1} y$, we obtain that $h^{-1} x$ separates $h^{-1} y=y$ from $h^{-1} g^{-1} y$. Thus, and since y separates $h^{-1} x$ from x and x separates y from $g y=g h y$, we obtain that y separates $h^{-1} g^{-1} y$ from $g h y=g y$. Together with Lemma 4.1.3 this implies the assertion.

Definition. Let the group G act on X. We denote by $\operatorname{Fix}(g)$ the set of fixed points of $g \in G$, i. e. $\operatorname{Fix}(g)=\{x \in X \mid g x=x\}$.

Lemma 4.1.5. Let G be a finitely generated group that act on the tree T without inversion. If each element of G is elliptic, then there exists $x \in V(T)$ with $G x=\{x\}$.

Comment. We will see later (Lemma 4.1.9) that Lemma 4.1.5 is wrong if we drop the assumption on G being finitely generated.

Beweis von Lemma 4.1.5. Let S be a finite generating set of G. For every $g \in G$, the set $\operatorname{Fix}(g)$ forms a non-empty subtree of T. Lemma 4.1.4 implies $\operatorname{Fix}(g) \cap \operatorname{Fix}(h) \neq \emptyset$ for all $g, h \in G$. Thus, the finite intersection $\bigcap_{s \in S} \operatorname{Fix}(s)$ is non-empty as well and every element of this intersection is fixed by each element of G.

Lemma 4.1.6. Let the group G act on the tree T without inversion. Let $g, h \in$ G be hyperbolic. Let R_{g} be the unique g-invariant double ray and let R_{h} be the unique h-invariant double ray. If $R_{g} \cap R_{h}$ is finite, then there are $m, n \in \mathbb{N}$ such that g^{m} and h^{n} freely generate a free group of rank 2.

Proof. We set $P:=R_{g} \cap R_{h}$. Let $m, n \in \mathbb{N}$ with $|P|+2 \leq \min \left\{\left|g^{m}\right|,\left|h^{n}\right|\right\}$. If $P \neq \emptyset$, then let x_{g}, y_{g} be the two neighbours of the end vertices of P on $R_{g} \backslash P$ such that $g^{m} x_{g}$ lies in the component of $R_{g} \backslash P$ that contains y_{g}. Otherwise, let a be on R_{g} and b on R_{h} such that $d(a, b)$ is smallest possible and let x_{g} and y_{g} be neighbour of a with the corresponding property. If $P \neq \emptyset$, then let A_{g} be the component of $T \backslash P$ that contains y_{g} and let B_{g} be the component of $T \backslash P$ that contains x_{g}. Otherwise, let A_{g} and B_{g} be the corresponding components of $T-x_{g} y_{g}$. Analogously, we choose vertices x_{h}, y_{h} on R_{h} and components A_{h}, B_{h} of $T \backslash P$. Since g^{m} acts on R_{g} as translation with translation length $\left|g^{m}\right| \geq d\left(x_{g}, y_{g}\right)$, we obtain $\left(T \backslash B_{g}\right) g^{m} \subseteq A_{g}$. Similarly, we obtain $\left(T \backslash B_{h}\right) h^{n} \subseteq A_{h}$. Lemma 2.1.12 implies that g^{m} and h^{n} freely generate a free subgroup of G.

Theorem and Definition 4.1.7. Let the group G act on the tree T without inversion. Then exactly one of the following hold.
(1) G acts trivially on T, i.e., there exists $v \in V(T)$ with $G v=\{v\}$. We call this action elliptic.
(2) There are two hyperbolic elements in G that freely generate a free subgroup of G of rank 2 and such that the g-invariant and the h-invariant double rays meet only in a finite subpath. We call this action hyperbolic.
(3) The action of G on T is not elliptic and there exists a G-invariant double ray in T such that all elements of G act on it as translations. We call this action cyclic.
(4) The action of G on T is neither elliptic nor cyclic and there exists a G invariant double ray in T such that all elements of G act on it as translations and reflections. We call this action dihedral.
(5) The action of G is neither elliptic nor cyclic and there exists a ray R such that, for every $g \in G$, the intersection $R \cap R g$ is a subray of R. We call this action parabolic.

Proof. Obviously, no two of these five statements can hold simultaneously. Thus, we just have to show that one of the statements holds for the action of G on T.

First, we consider the case that all elements of G are elliptic. We assume that (1) does not hold and show (5). For this, we construct to sequences: one sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ of vertices and one sequence $\left(g_{i}\right)_{i \in \mathbb{N}}$ of group elements. Let $g_{0} \in G$ and $x_{0} \in \operatorname{Fix}\left(g_{0}\right)$ be arbitrary. For $i \in \mathbb{N}$, let $g_{i} \in G$ such that $g_{i} x_{i-1} \neq x_{i-1}$ and let $x_{i} \in V(T)$ such that $g_{j} x_{i}=x_{i}$ for all $j \leq i$ and such that $d\left(x_{i}, x_{i-1}\right)$ is minimal with this property. Since G is not finitely generated by Lemma 4.1.5 but since the finite intersection $\bigcap_{j \leq i} \operatorname{Fix}\left(g_{j}\right)$ is not empty by the same lemma, we find these two sequences. We set

$$
R=\left[x_{0}, x_{1}\right] \cup\left[x_{1}, x_{2}\right] \cup \ldots
$$

Then R is a ray by minimality of $d\left(x_{i}, x_{i-1}\right)$ and by Lemma 4.1.4. Let us now show that for every $g \in G$ the intersection $R \cap g R$ is a ray again. If this does not hold for some $g \in G$, then $R \cap g R$ must be finite. Since g is elliptic, there exists a fixed vertex of g. Let x be such a vertex that has minimal distance to R and let y be the vertex on R that realises this distance. Let $i \in \mathbb{N}$ with $g x_{i} \neq x_{i}$ and $d\left(x_{0}, x_{i}\right)>d\left(x_{0}, y\right)$. We have already mentioned in the proof of Lemma 4.1.5 that $\operatorname{Fix}\left(g_{i+1}\right)$ and $\operatorname{Fix}(g)$ each span subtrees of T. Since $g_{i+1} x_{i} \neq x_{i} \neq g x_{i}$ and since x_{i+1} and x lie in distinct components of $T-x_{i}$, the elements g and g_{i+1} have no common fixed vertex. Thus, Lemma 4.1.4 implies that $g g_{i+1}$ is hyperbolic, a contradiction to our assumption. Thus, the action of G on T is parabolic.

Let us now consider the case that G contains hyperbolic elements. Thus, the action of G on T cannot be elliptic. If there are two hyperbolic elements g, h such that the intersection of their two invariant double rays is finite, then Lemma 4.1.6 implies (2). Thus, we may assume that for every two hyperbolic elements g, h the intersection of their invariant double rays R_{g} and R_{h} is infinite.

Since $R_{g} \cap R_{h}$ must be connected, it is either a ray or a double ray. If it is a double ray for any two hyperbolic elements, then all these double rays must be the same. Since g^{f} is hyperbolic for all elements $f \in G$ and $R_{g^{f}}=f^{-1} R_{g}$ holds because of $g^{f}\left(f^{-1} R_{g}\right)=f^{-1} g R_{g}=f^{-1} R_{g}$ for the unique g^{f}-invariant double ray $R_{g^{f}}$, also the elliptic elements leave R_{g} invariant. Thus, we have either (3) or (4). So let us assume that there are g and h such that $R^{\prime}:=R_{g} \cap R_{h}$ is a ray. We set $f:=g^{h}$. Then f is hyperbolic and we have as before $R_{f}=h^{-1} R_{g}$. Since $h^{-1} R^{\prime} \cap R^{\prime}$ is infinite and lies in $h^{-1} R_{g}$, the double ray R_{f} contains a subray of R^{\prime}. Let $R:=R^{\prime} \cap R_{f}$. Let us suppose that (5) does not hold, i. e., there exists $e \in G$ such that $e R \cap R$ is finite. We have $e R=R_{f^{-1}} \cap R_{g^{e^{-1}}} \cap R_{h^{-1}}$ and thus one of the three double rays $R_{f^{-1}}, R_{g^{e^{-1}}}$ or $R_{h^{e^{-1}}}$ has only finite intersection with R and thus also finite intersection with one of the three (distinct!) double rays R_{f}, R_{g} or R_{h}. This contradiction shows (5).

We have already seen the following.
Lemma 4.1.8. Actions without inversions of finite groups on trees are elliptic.
Proof. Let G be a finite groups that acts on a tree T without inversion. Let $t \in V(T)$. Then the orbit of t is finite. Thus, the minimal subtree T^{\prime} of T that contains this orbit is finite, too, and G acts on T^{\prime}. The middle vertex or edge (depending on the parity of the diameter of T^{\prime}) of a longest path in T^{\prime} must be fixed by G : otherwise we would obtain a contradiction to the maximal length of that path. Since the action of G on T and thus on T^{\prime} is without inversion, this fixed vertex or edge must be a vertex and hence the action of G on T^{\prime} and hence on T is elliptic.

Lemma 4.1.9. For every countable group G that is not finitely generated, there is a tree T such that G acts on T without inversion parabolically and every element of G is elliptic.

Proof. There exists countably many subgroups $U_{0}<U_{1}<\ldots$ with $\bigcup_{i \in \mathbb{N}} U_{i}=$ G : since G is countable, there exists a countable generating set $S=\left\{s_{i} \mid i \in \mathbb{N}\right\}$ of G; we set $V_{i}:=\left\langle s_{j} \mid j \leq i\right\rangle$ and choose a stricly ascending infinite subsequence. If this sequence would not exists, there would exist some $n \in \mathbb{N}$ such that $\left\langle s_{1}, \ldots, s_{n}\right\rangle=G$, which is impossible by our assumption.

We consider the graph T whose vertex set is the set of cosets of the subgroups U_{i}, i. e. $V(T)=\left\{g U_{i} \mid g \in G, i \in \mathbb{N}\right\}$. Two vertices $g U_{m}$ and $h U_{n}$ are adjacent if and only if $|m-n|=1$ and either $g U_{m} \subseteq h U_{n}$ or $h U_{n} \subseteq g U_{m}$. Let us show that T is connected. Because of $\bigcup_{i \in \mathbb{N}} U_{i}=G$, there exists $i \in \mathbb{N}$ with $g, h \in U_{i}$. Then

$$
g U_{m}, g U_{m+1}, \ldots, g U_{i}=U_{i}=h U_{i}, h U_{i-1}, \ldots, h U_{n}
$$

contains a path from $g U_{m}$ to $h U_{n}$.
Every $g U_{0}$ has exactly one neighbour, since the cosets of U_{1} form a partition of G and since $g U_{0}$ and $g U_{1}$ are adjacent. Additionally, every $g U_{i}$ has a unique neighbour in the cosets of U_{i+1}. Thus, T contains no cycle.

Obviously, G acts by left multiplication on T. Since there exists for every $g \in G$ an $i \in \mathbb{N}$ with $g \in U_{i}$, we have $g U_{i}=U_{i}$ and hence g is elliptic. Also, for every U_{i} there exists g in $U_{i+1} \backslash U_{i}$. We have $g U_{i} \neq U_{i}$ for g. Furthermore, $h^{-1}\left(h U_{i}\right) \neq h U_{i}$ for every coset $h U_{i}$ that is distinct from U_{i}. Thus, there is no vertex fixed by all of G. By the proof of Theorem 4.1.7, the action of G on T must be parabolic.

In the rest of this section. we will use knowledge of all action of a group on all trees to gain informations about the group.

Definition. A group is noetherian if it contains no infinite strictly ascending sequence of subgroups.

A group has property (AR) if each of its actions without inversion on trees is either elliptic, cyclic or dihedral.

Theorem 4.1.10. Let G be a group. The following are equivalent.
(a) G is noetherian.
(b) Every subgroup of G is finitely generated.
(c) Every subgroup of G has property (AR).

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ follows immediately, since every group that is not finitely generated has an infinite strictly ascending sequence of subgroups.

To prove $(\mathrm{b}) \Rightarrow(\mathrm{c})$, we suppose that some subgroup H of G does not have property (AR). So there exists a tree T such that H acts on T without inversion either hyperbolically or parabolically. First, we consider the case that the action of H on T hyperbolic. Then U contains a free subgroup F of rank 2 and thus a subgroup of F that is not finitely generated in contradiction to (b). So let us assume that the action of H on T is parabolic. Let $R=x_{0} x_{1} \ldots$ be a ray such that for all $h \in H$ the intersection $h R \cap R$ is a ray again. The subgroup $U:=\bigcup_{i \in \mathbb{N}} H_{x_{i}}$ of H is finitely generated by assumption. Thus, there exists $n \in \mathbb{N}$ with $H_{x_{i}}=H_{x_{n}}$ for all $i \geq n$. We may assume $n=0$. If $g \in H$ is elliptic, then it fixes a vertex $v \in V(T)$. Since $R \cap g R$ is a ray and $d\left(g x_{i}, v\right)=d\left(x_{i}, v\right)$ holds for that $i \in \mathbb{N}$ with minimum distance to v, we have $g x_{j}=x_{j}$ for all $j \geq i$. Thus, we have $g \in U$ and U is the group of all elliptic elements of H. Since T has no vertex that is fixed by all of G but $U x_{i}=\left\{x_{i}\right\}$, there exists a hyperbolic element h in H. Let R_{h} be the h-invariant double ray in T. For every vertex x on R_{h} there exists $z \in \mathbb{Z} \backslash\{0\}$ such that $h^{z} x$ and $h^{2 z x}$ lie on R. We have $H_{x}=U$ because of $H_{h^{z} x}=H_{h^{2 z} x}=U$. Thus, R_{h} is invariant under U. Let g be another hyperbolic element and let R_{g} be the unique g-invariant double ray in T. By replacing g by g^{-1} or h by h^{-1}, if necessary, we may assume $g x_{j}=x_{j+|g|}$ for all x_{j} on $R \cap R_{g}$ and $h x_{j}=x_{j+|h|}$ for all x_{j} on $R \cap R_{h}$. We set $f:=h^{-|g|} g^{|h|}$. Then f is elliptic, so it lies in U. In particular, we have $R_{h}=h^{|g|} f R_{h}=g^{|h|} R_{h}$. Hence, R_{h} is $g^{|h|}$-invariant and thus g-invariant. Thus, R_{h} is invariant under H and the action of H on T is not parabolic. This shows the implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$.

It remains to show the implication $(\mathrm{c}) \Rightarrow(\mathrm{a})$. Let us assume that G is not noetherian. So we find an infinite strictly ascending sequence $\left(H_{i}\right)_{i \in \mathbb{N}}$ of subgroups of G. Let $s_{0} \in H_{0}$ and, for $i \geq 1$, let $s_{i} \in H_{i} \backslash H_{i-1}$. Then $\left(U_{i}\right)_{i \in \mathbb{N}}$ with $U_{i}:=\left\langle s_{j} \mid j \leq i\right\rangle$ is an infinite strictly ascending sequence of countable subgroups of G and $U:=\bigcup_{i \in \mathbb{N}} U_{i}$ is a countable subgroup of G. Since every finite subset of U lies in some U_{i}, the group U is not finitely generated. By Lemma 4.1.9 there exists a tree T such that U acts without inversion on T and this action is parabolic. We obtain that U does not have property (AR).

Now we will look at connections between free products and actions without inversion on trees. For this, we first consider the case that our group is a free product (Proposition 4.1.11) and afterwards we look at the situation of a group action with certain properties in which we will show that the group that we are considering is a free product (Propositions 4.1.13 and 4.1.14.

Proposition 4.1.11. Let A and B be groups. Then there exists a tree T such that $G:=A * B$ acts on T and such that this action has the following properties.
(1) The action induced on the edges is free and transitive.
(2) The action is without inversion.
(3) There are exactly two orbits on the vertex set.
(4) There is an edge $u v \in E(T)$ with $A=G_{u}$ and $B=G_{v}$.

Proof. Let T be the graph whose vertex set consists of the left cosets of A and of B and such that two vertices $g A$ and $h B$ are adjacent if $g=h$. The proof that T is a tree is analogous to the corresponding part of the proof of Theorem 2.5.12, we just have to note that we did not use finiteness of the involved groups in that part of the proof.

We also verified $G_{A}=A$ and $G_{B}=B$ in that proof. (Again, we did not use finiteness of the involved groups.) Since A and B are adjacent, we obtain (4). The action of G on T has exactly two orbits on the vertices: the left cosets of A form one orbits and the left cosets of B form the other. This implies (2) and (3). It remains to show (1). Note that transitivity directly follows from the definition of the edges. The stabiliser of an edge $u v$ must lies in the intersection of G_{u} and G_{v} because of (3). Since this intersection is trivial, G acts freely on the edges of T.

We need the following version of the ping-pong lemma.
Lemma 4.1.12. Let the group G act on X. Let $H_{1}, H_{2} \leq G$ with $\left|H_{1}\right| \geq 3$. Let A, B be two non-empty disjoint subsets of X. We assume $g B \subseteq A$ for all $g \in H_{1}$ with $g \neq 1$ and $g A \subseteq B$ for all $g \in H_{2}$ with $g \neq 1$. Then the subgroup of G generated by H_{1} and H_{2} is isomorphic to $H_{1} * H_{2}$.

Proof. Exercise

Proposition 4.1.13. Let T be an infinite tree. Let the group G act on T without inversion with the following properties.
(1) G acts transitively and free on the edges of T.
(2) G acts transitively on the vertices of T.

Let $v w \in E(T)$ and $g \in G$ with $g v=w$. Then $G \cong G_{v} *\langle g\rangle$.
Proof. Since the action of G on T is without inversion and because of $g e \neq e$ for all $e \in E(T)$, Lemma 4.1.3 implies that g is hyperbolic and thus has infinite order by Lemma 4.1.2 (iii.

Let $e=v w$. Obviously, $(\{v\}, \emptyset)$ is a fundamental domain of the action of G on T. Thus, Theorem 1.3.2 implies

$$
G=\left\langle G_{v} \cup\{h \in G \mid v h v \in E(T)\}\right\rangle
$$

Note that there are at most two orbits of G_{v} on the edges incident with v and thus, there are at most two G_{v}-orbits on the neighbours of v. If $g^{-1} v$ and $g v$ lie in the same G_{v}-orbit, then we obtain a contradiction since the existence of $h \in G_{v}$ with $h g v=g^{-1} v$ implies that $h g$ fixes e, which is impossible since $h g \neq 1$. Thus, there are exactly two G_{v}-orbits on the neighbours of v. Those in the same orbit as w are obtained as the image of v under $h g$ for some suitable $h \in G_{v}$ and those in the same orbit as $g^{-1} v$ are obtained as the image of v under $h g^{-1}$ for some suitable $h \in G_{v}$. Thus, we have shown

$$
G=\left\langle G_{v} \cup\{g\}\right\rangle
$$

Let A be the set of all those vertices that can be reached by a path from v that contains either $g v$ or $g^{-1} v$ and let B be the set of all those vertices that can be reached by a path from v that contains neither $g v$ nor $g^{-1} v$. Obviously, we have $g^{z} B \subseteq A$ for all $z \in \mathbb{Z} \backslash\{0\}$. Since G acts freely on the edges of T and because of $g \notin G_{v}$, we have $h g v \notin\left\{g v, g^{-1} v\right\}$ and $h g^{-1} v \notin\left\{g v, g^{-1} v\right\}$ for all $h \in G_{v} \backslash\{1\}$. Thus, we obtain $h A \subseteq B$. Lemma4.1.12 implies $G \cong G_{v} *\langle g\rangle$.

A modification of the proof of Proposition 4.1.13 leads to the following proposition.

Proposition 4.1.14. Let T be an infinite tree that is not a double ray. Let the group G act on T without inversion with the following properties.
(1) G acts transitively and free on the edges of T.
(2) There are exactly two g-orbit on the vertex set of T.

Then we have $G \cong G_{v} * G_{w}$ for adjacent vertices $v, w \in V(T)$.
Proof. Exercise

4.2 Fundamental groups of graphs

Definition. A graph with involution is an oriented multigraph Γ together with a map ${ }^{-}: E(\Gamma) \rightarrow E(\Gamma)$ with $\bar{e} \neq e$ and $\overline{\bar{e}}=e$ and such that \bar{e} is an edge from v to u if e is an edge from u to v. We denote by $i(e)$ the initial vertex of e and by $t(e)$ its terminal vertex. (So we have $t(e)=i(\bar{e})$ and $t(\bar{e})=i(e)$.)

Example 4.2.1. In a (multi-)graph, we can replace every edge by two inversely directed edges between the same vertices. That way, we obtain a graph with involution.

Definition. Let Γ be a graph with involution. Let $K=v_{0} e_{0} v_{1} \ldots e_{k-1} v_{k}$ be a directed walk in Γ, i. e., the edge e_{i} satisfies $i\left(e_{i}\right)=v_{i}$ and $t\left(e_{i}\right)=v_{i+1}$. If $\bar{e}_{i}=e_{i+1}$, then we call $v_{i} v_{i+1} v_{i+2}$ a spike. If K has no spike, then it is spikeless. If $v_{i} v_{i+1} v_{i+2}$ is a spike, then

$$
K^{\prime}=v_{0} e_{0} \ldots e_{i-1} v_{i} e_{i+2} \ldots v_{k}
$$

is obtained from K by removing a spike. Let $K_{1}=v_{0} e_{0} v_{1} \ldots e_{k-1} v_{k}$ and $K_{2}=w_{0} f_{0} w_{1} \ldots f_{\ell-1} w_{\ell}$ be two directed walks with $v_{k}=w_{0}$. Then

$$
K_{1} K_{2}:=v_{0} e_{0} v_{1} \ldots e_{k-1} v_{k} f_{0} w_{1} \ldots f_{\ell-1} w_{\ell}
$$

is a directed walk as well, the composition of K_{1} and K_{2}.
Remark 4.2.2. In a graph with involution, every directed walk can be transferred by removing spikes to a spikeless directed walk.

Definition. Let K, K^{\prime} be two directed walks of a graph Γ with involution. We write $K \sim K^{\prime}$ if there exists a sequence $K=K_{0}, \ldots, K_{n}=K^{\prime}$ of directed walks such that with K_{i} is obtained from K_{i-1} or K_{i-1} is obtained from K_{i} by removing a spike.

Remark 4.2.3. The relation \sim is an equivalence relations on the directed walks of a graph with involutions.

Lemma 4.2.4. Let $\Gamma=(V, E)$ be a connected graph with involution. Then every equivalence class of \sim contains exactly one spikeless walk.

Proof. Exercise
Lemma 4.2.5. Let $K_{1}, K_{2}, L_{1}, L_{2}$ be four directed walks of a graph with involution such that the compositions $K_{1} K_{2}$ and $L_{1} L_{2}$ exist. If $K_{1} \sim L_{1}$ and $K_{2} \sim L_{2}$, then we have $K_{1} K_{2} \sim L_{1} L_{2}$.

Proof. Let $K_{1}=M_{1}, \ldots, M_{m}=L_{1}$ be a sequence of directed walks that verify the equivalence $K_{1} \sim L_{1}$ and let $K_{2}=N_{1}, \ldots, N_{n}=L_{2}$ be an analogous sequence for $K_{2} \sim L_{2}$. Then $M_{1} N_{1}, \ldots, M_{m} N_{1}, \ldots, M_{m} N_{n}$ is a sequence that shows $K_{1} K_{2} \sim L_{1} L_{2}$.

Definition. Let Γ be a graph with involution. Let $\pi_{1}(\Gamma, v)$ with $v \in V(\Gamma)$ be the set of equivalence classes of \sim on the directed walks in Γ that start and end at v. We define a multiplication on $\pi_{1}(\Gamma, v)$ by $[K][L]:=[K L]$. Lemma 4.2.5 implies that this multiplication is well-defined.

Lemma 4.2.6. Let Γ be a connected graph with involution and let $v \in V(\Gamma)$.
(1) $\pi_{1}(\Gamma, v)$ is a group.
(2) If $u \in V(\Gamma)$, then $\pi_{1}(\Gamma, v)$ and $\pi_{1}(\Gamma, u)$ are isomorphic.

Proof. Since the multiplication is well-defined, we obtain (1).
To prove (2), we choose a directed $v-u$ walk K and note that every element $[L]$ of $\pi_{1}(\Gamma, v)$ can be transferred into an element $\left[K^{-1} L K\right]$ of $\pi_{1}(\Gamma, u)$ by 'conjugation with K^{\prime}, where K^{-1} is the reverse of the walk K obtained by replacing each edge e on K by \bar{e}. Conversely, every element $[M]$ of $\pi_{1}(\Gamma, u)$ can be transferred into an element $\left[K M K^{-1}\right]$ of $\pi_{1}(\Gamma, v)$ by 'conjugation with K^{-1} '. The corresponding maps are inverse to each other. Furthermore, these maps are homomorphisms, so we obtain (2).

Definition. The fundamental group $\pi_{1}(\Gamma)$ of a connected graph Γ with involution is an element of the isomorphism class of the groups $\pi_{1}(\Gamma, v)$ for $v \in V(\Gamma)$.

Comment. Eventhough the elements of the fundamental group are equivalence classes of directed walks, we usually only look at representatives of such equivalence classes.

Remark 4.2.7. Accordingly to Example 4.2.1. our definitions can be transferred directly to (multi-)graphs.

Example 4.2.8. If T is a tree, then $\pi_{1}(T)=1$.
Definition. For a (directed) multigraph Γ and a subset $F \subseteq E(\Gamma)$ of the edge set, let Γ / F be the (directed) multigraph whose vertex set is the set of components of $(V(\Gamma), F)$. For every edge e in $E(\Gamma) \backslash F$, we add an edge between the components that contain the incident vertices of e. We note that loops and multi-edges may be created that way.

Lemma 4.2.9. Let Γ be a connected multigraph and let T be a subtree of Γ. Then we have $\pi_{1}(\Gamma) \cong \pi_{1}(\Gamma / E(T))$.

Proof. It suffices to prove the assertion for graphs with involutions, in which case the 'tree' then contains for every edge e also the edge \bar{e}. We consider the fundamental group $\pi_{1}(\Gamma, x)$ with respect to a vertex $x \in V(T)$ and the fundamental group $\pi_{1}(\Gamma / E(T))$ with respect to the vertex v_{T} of $\Gamma / E(T)$ that contains all vertices of T. We define a $\operatorname{map} \varphi_{T}: \pi_{1}(\Gamma) \rightarrow \pi_{1}(\Gamma / E(T))$. For a closed directed walk $K=v_{0} e_{0} v_{1} \ldots v_{k}$ with $v_{0}=x=v_{k}$ in Γ, let $\varphi_{T}(K)$ be the canonical image of K in $\Gamma / E(T)$: we replace every maximal subwalk in T by v_{T} and replace every edge incident with exactly one vertex of T by its canonical
image in $\Gamma / E(T)$. Obviously, φ_{T} is a well-defined group homomorphism. It remains to show that φ_{T} is bijective.

Let $K=v_{0} e_{0} v_{1} \ldots e_{k-1} v_{k}$ be a closed directed walk in $\Gamma / E(T)$. By replacing the vertex $v_{i}=v_{T}$ for $i \neq 0$ and $i \neq k$ by a directed walk hat connects the end vertices of the edges e_{i} and e_{i+1} in T and adding a directed walk from x to the initial vertex of e_{0} in $V(\Gamma)$ and one from the terminal vertex of the edge e_{k-1} in $V(\Gamma)$ to x, we obtain a closed directed walk in Γ that starts and ends at x. Obviously, this will be mapped by φ_{T} to K. Thus, φ_{T} is surjective.

Let $K=v_{0} e_{0} v_{1} \ldots e_{k-1} v_{k}$ with $v_{0}=x=v_{k}$ be a spikeless directed walk in the kernel of φ_{T}. Then we can view K as composition $K_{1} L_{1} K_{2} \ldots L_{m-1} K_{m}$ of directed walks, where the walks K_{i} lies in T and the walks L_{i} lie in $\Gamma \backslash T$. Let us suppose that K is non-trivial. Since $L_{1} L_{2} \ldots L_{m}$ in $\Gamma / E(T)$ is equivalent to the trivial walk and, by Lemma 4.2.4. the trivial walk is the unique spikeless directed walk in its equivalence class, the walk $L_{1} L_{2} \ldots L_{m}$ must contain a spike. This spike cannot lie in any of the L_{i}, so it is created by the composition of L_{i} an L_{i+1} for some $1 \leq i \leq m-1$. This spike corresponds to a directed walk $v e w \bar{e} v$ in Γ. Thus, K_{i+1} is a closed directed walk in T with starting and end vertex w. Since $\pi_{1}(T)$ is trivial by Example 4.2 .8 and since K_{i+1} is spikeless, K_{i+1} is the trivial walk. This contradicts the choice of K having no spike and thus φ_{T} is injective.

Lemma 4.2.10. For every connected multigraph $\Gamma=(V, E)$, the fundamental group $\pi_{1}(\Gamma)$ is a free group.

If Γ is finite, then $|E|-|V|+1$ is the rank of $\pi_{1}(\Gamma)$.
Proof. As before, it suffices for the first part to show the assertion for graphs with involution. So let us assume that Γ is a graph with involution. Let T be a spanning tree of Γ. (Again, T contains for every edge e also the edge \bar{e}.) By Lemma 4.2.9. we have $\pi_{1}(\Gamma) \cong \pi_{1}(\Gamma / T)$ and we may assume that Γ has exactly one vertex.

Let S be a minimal subset of $E(\Gamma)$ such that

$$
E(\Gamma)=S \cup\{\bar{s} \mid s \in S\}
$$

We will show that $\pi_{1}(\Gamma)$ and the free group freely generated by S are isomorphic. Every element of $\pi_{1}(\Gamma)$ contains a unique directed walk without spikes as representative by Lemma 4.2.4. By replacing each edge \bar{s} by s^{-1} and by dropping the vertices, this walk corresponds to a reduced word over $S \cup S^{-1}$, which is trivial if and only if the walk is trivial. Conversely, every reduced word over $S \cup S^{-1}$ corresponds to a directed walk in Γ by replacing s^{-1} by \bar{s} and inserting the correct vertices. Since these correlations respect compositions of walks and concatenations of words, $\pi_{1}(\Gamma)$ and the free group freely generated by S must be isomorphic.

Now let Γ be a connected multigraph. Then we have

$$
|E|-|V|+1=|E(\Gamma / E(T))|-|V(\Gamma / E(T))|+1
$$

by the considerations for the first part and hence, we obtain the second part.

Comment. The existence of a spanning tree can be shown using Zorn's lemma. Furthermore, the existence of spanning trees for all (multi-)graphs is equivalent to the axiom of choice over the system ZF.
Definition. Let a group G act on a graph Γ. Then the quotient graph Γ / G is defined as multigraph whose vertex set consists of the orbits of G in $V(\Gamma)$ and whose edge set is induced by the orbits of G in $E(\Gamma){ }^{1}$
Example 4.2.11. Let G be a group with generating set S and let Γ be the Cayley graph of Γ and S. Then Γ / G is a graph with exactly one vertex and at most $|S|$ loops. (Note that there may be fewer loops if $S \cap S^{-1}$ is not empty.)
Remark 4.2.12. Let G be a group acting on the graph Γ. Then the canonical projection $\varrho: \Gamma \rightarrow \Gamma / G$ is a surjective graph homomorphism, i. e., adjacent vertices are mapped onto adjacent vertices by ϱ.

Proposition and Definition 4.2.13. For every connected graph Γ there exists a tree T_{Γ} and a free action of $\pi_{1}(\Gamma)$ on T_{Γ} such that $T_{\Gamma} / \pi_{1}(\Gamma) \cong \Gamma$. The tree T_{Γ} is the universal cover of Γ.
Proof. Let T be a spanning tree of Γ. If S is an orientation of the edges of $\Gamma-T$, then we have seen in the proof of Lemma 4.2 .10 that $\pi_{1}(\Gamma)$ is isomorphic to the free group that is freely generated by S. In particular, there exists a canonical map $\varphi: S \rightarrow \pi_{1}(\Gamma)$ that maps each $s \in S$ to the uniquely determined cycle in $T+s$. (Note that, formally, we have to replace each edge of T by two conversely oriented edges to obtain a directed cycle.) We define a graph T_{Γ} as follows: let

$$
\bigcup_{g \in \pi_{1}(\Gamma)}\{(g, v) \mid v \in V(T)\}
$$

be its vertex set and let the union of the two sets

$$
E_{1}:=\bigcup_{g \in \pi_{1}(\Gamma)}\{\{(g, u),(g, v)\} \mid\{u, v\} \in E(T)\}
$$

and

$$
E_{2}:=\bigcup_{s=(u, v) \in S} \bigcup_{g \in \pi_{1}(\Gamma)}\{\{(g, u),(g s, v)\}\}
$$

be its edge set. Note that E_{1} implies that T_{Γ} consists of copies of T and E_{2} describes the edges between these copies of T.

To show that T_{Γ} satisfies the assertion will be left as exercise.
We have already verified the following corollary in the proof of Proposition 4.2.13.
Corollary 4.2.14. Let Γ be a graph, T a spanning tree of Γ and T_{Γ} the universal covering of Γ (constructed with respect to the spanning tree T). Then T_{Γ} contains an isomorphic copy of T that is mapped onto T by the canonical projection $\varrho: T_{\Gamma} \rightarrow \Gamma$.

[^13]
4.3 Graphs of groups

Remark 4.3.1. Let us consider an action without inversion of a group G on a graph Γ. Then the following holds.
(1) Γ / G is a multigraph $\widehat{\Gamma}$.
(2) For every vertex $v \in V(\widehat{\Gamma})$ there exists a group G^{v} such that $G^{v} \cong G_{x}$ for all $x \in V(\Gamma)$ with $G x=v$.
(3) For every edge $e \in E(\widehat{\Gamma})$ there exists a group G^{e} such that $G^{e} \cong G_{f}$ for all $f \in E(\Gamma)$ that are mapped onto e.
(4) For every edge $e \in E(\widehat{\Gamma})$ there are two injective group homomorphisms $\iota_{e, i(e)}: G^{e} \rightarrow G^{i(e)}$ and $\iota_{e, t(e)}: G^{e} \rightarrow G^{t(e)}$.
In view of this remark, let us make the following definition.
Definition. A graph of groups is a triple $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$, where Γ is a connected graph with involution and \mathcal{G} is a map that that assigns to each vertex v a group G_{v} and to each edge e a group G_{e} such that $G_{e}=G_{\bar{e}}$ and Λ is a family of monomorphisms $\alpha_{e}: G_{e} \rightarrow G_{i(e)}$, one for every edge e. We call the groups G_{v} the vertex groups and the groups G_{e} the edge groups.
Example 4.3.2. Let G be a group that acts without inversion on a graph Γ.
(1) The quotient graph Γ / G defines a graph of groups according to Remark
(2) If \mathcal{G} maps each vertex v and each edge e to their stabiliser G_{v} or G_{e} and Λ is the family of the canonical embeddings of the edge stabilisers into the stabilisers of the vertices incident with that edge, then $(\mathcal{G}, \Gamma, \Lambda)$ is a graph of groups. 4.3.1.
Remark 4.3.3. Generally, we will denote by G_{v} and G_{e} the vertex and edge groups. Even though this collides with the notion for the stabilisers of vertices and edges, we stick to it, in particular, since the stabilisers will be the important examples and thus play a major role for us. In case it is not obvious which notion we mean, we will explicitly name it.

Next, we will define the fundamental group of graphs of groups in two different ways such that the groups obtained by each definition are isomorphic in a canonical way. Compared to Section 4.2, we need a new definition of the fundamental group to take the function \mathcal{G} and the family Λ into account.
Definition. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of group and let T be a spanning tree of Γ. This time, T contains at most one element of $\{e, \bar{e}\}$ for every $e \in E(\Gamma)$. For every vertex group G_{v}, let $\left\langle S_{v} \mid R_{v}\right\rangle$ be a presentation of G_{v} and, for every edge group G_{e}, let S_{e} be a generating set of G_{e}. Then the fundamental group of \mathbb{G} (with respect to T) is defined by the presentation

$$
\pi_{1}(\mathbb{G}, T):=\left\langle\bigcup_{v \in V(\Gamma)} S_{v} \cup\left\{g_{e} \mid e \in E(\Gamma)\right\} \mid \bigcup_{v \in V(\Gamma)} R_{v} \cup N\right\rangle
$$

where the g_{e} are new generators and the set N of relators is defined as follows:

$$
\begin{aligned}
N:= & \left\{g_{e} \mid e \in E(T)\right\} \cup\left\{g_{e} g_{\bar{e}} \mid e \in E(\Gamma)\right\} \\
& \cup\left\{g_{e} \alpha_{\bar{e}}(s) g_{e}^{-1}\left(\alpha_{e}(s)\right)^{-1} \mid e \in E(\Gamma), s \in S_{e}\right\} .
\end{aligned}
$$

Let us look at some examples of these fundamental groups, examples where the graph essentially only has one edge. That mean, that its edge set is $\{e, \bar{e}\}$ for some e.

Example 4.3.4. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups with $E(\Gamma)=\{e, \bar{e}\}$. Let T be a spanning tree of Γ and let $\left\langle S_{v} \mid R_{v}\right\rangle$ be a presentation of G_{v} for every vertex v and let S_{e} be a generating set of G_{e} for every edge e
(1) If Γ has exactly two vertices u, v, then T contains an edge of Γ and in the presentation of $\pi_{1}(\mathbb{G}, T)$ all g_{e} with $e \in E(\Gamma)$ are trivial. Using Tietze transformations (removing the generators g_{e}) we obtain the presentation

$$
\pi_{1}(\mathbb{G}, T)=\left\langle S_{u} \cup S_{v} \mid R_{u} \cup R_{v} \cup\left\{\alpha_{\bar{e}}(s)\left(\alpha_{e}(s)\right)^{-1} \mid e \in E(\Gamma), s \in S_{e}\right\}\right\rangle
$$

We directly obtain

$$
\pi_{1}(\mathbb{G}, T) \cong G_{u} *_{G_{e}} G_{v}
$$

where the monomorphisms for the free product with amalgamations are α_{e} and $\alpha_{\bar{e}}$.
(2) If Γ has exactly one vertex v, then the edges of Γ are loops. Using Ti etze transformations, we can remove the generator $g_{\bar{e}}$ (but not at the same time g_{e}) from the presentation of the fundamental group and we obtain

$$
\pi_{1}(\mathbb{G}, T)=\left\langle S_{v} \cup\left\{g_{e}\right\} \mid R_{v} \cup\left\{g_{e} \alpha_{\bar{e}}(s) g_{e}^{-1}\left(\alpha_{e}(s)\right)^{-1} \mid s \in S_{e}\right\}\right\rangle
$$

Thus, we have

$$
\pi_{1}(\mathbb{G}, T) \cong G_{v} *_{\alpha_{\bar{e}}^{-1} \alpha_{e}}
$$

where the isomorphism for the HNN extensions is $\alpha_{\bar{e}}^{-1} \alpha_{e}$ that maps the images of G_{e} under α_{e} onto those of $\alpha_{\bar{e}}$.

Let us now move to the second definition of the fundamental group of a graph of groups. While the first definition depends on the choice of a spanning tree, the second one will depend on the choice of a vertex. Later, we will show the equivalence of these two definitions and thereby show that the groups are isomorphic for any choice of spanning trees or vertices. Our second definition of the fundamental group follows the strategy of Section 4.2 that we still have to adapt to to our new situation.

Definition. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups. A \mathbb{G}-walk (of length $|P|=k$) from $u \in V(\Gamma)$ to $v \in V(\Gamma)$ is a sequence $P=g_{0} e_{1} \ldots e_{k} g_{k}$, where $e_{1} \ldots e_{k}$ induces a directed walk in Γ and such that $g_{0} \in G_{u}, g_{k} \in G_{v}$ and $g_{i} \in G_{t\left(e_{i}\right)}=G_{i\left(e_{i+1}\right)}$ for all $0<i<k$. For $0 \leq i \leq j \leq k$, the sequence
$g_{i} e_{i+1} \ldots e_{j} g_{j}$ is a \mathbb{G}-subwalk of P. If $P=g_{0} e_{1} \ldots e_{k} g_{k}$ is a \mathbb{G}-walk from u to v and $Q=h_{0} f_{1} \ldots f_{\ell} h_{\ell}$ is a \mathbb{G}-walk from v to w, then their concatenation is the \mathbb{G}-walk

$$
P Q=g_{0} e_{1} \ldots e_{k}\left(g_{k} h_{0}\right) f_{1} \ldots f_{\ell} h_{\ell}
$$

from u to w. Two \mathbb{G}-walks P and Q are elementarily equivalent if Q can be obtained from P by one of the following operations or their reverses:
(i) Replace a \mathbb{G}-walk $g e\left(\alpha_{\bar{e}}(c)\right) \bar{e} g^{\prime}$ with $e \in E(\Gamma), c \in G_{e}$ and $g, g^{\prime} \in G_{i(e)}$ by $g\left(\alpha_{e}(c)\right) g^{\prime}$.
(ii) Replace a \mathbb{G}-walk $g e g^{\prime}$ with $e \in E(\Gamma), g \in G_{i(e)}$ and $g^{\prime} \in G_{t(e)}$ by

$$
\left(g\left(\alpha_{e}(c)\right)\right) e\left(\left(\alpha_{\bar{e}}(c)\right)^{-1} g^{\prime}\right)
$$

where c is an element of G_{e}.
Let \sim be a relation on the \mathbb{G}-walks such that for two \mathbb{G}-walks P, Q we have $P \sim Q$ if there exists a sequence $P=P_{1} \ldots P_{k}=Q$ of \mathbb{G}-walks such that P_{i} and P_{i+1} are elementarily equivalent for all $1 \leq i<k$. Obviously, \sim is an equivalence relation.

Later, we will take a closer look at the elements of the equivalence classes and show that the minimal elements with respect to the first operation, which lie in the same equivalence class, are equivalent by using only the second operation. But first, we are interested in the second definition of the fundamental group and the equivalence of both definitions.

Definition. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. Then the equivalence classes of \mathbb{G}-walks from v to v form the fundamental group $\pi_{1}(\mathbb{G}, v)$ of \mathbb{G} (with respect to v), where the multiplication is defined by concatenation: $[P][Q]:=[P Q]$.

Remark 4.3.5. That the multiplication on $\pi_{1}(\mathbb{G}, v)$ is well-defined follows by an argumentation similar to the one we used in the proof of Lemma 4.2.5. This then directly implies that the fundamental group with respect to a vertex $v \in V(\Gamma)$ is a group.

Proposition 4.3.6. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups, let $v \in V(\Gamma)$ and let T be a spanning tree of Γ. Then the map

$$
\varphi: \pi_{1}(\mathbb{G}, v) \rightarrow \pi_{1}(\mathbb{G}, T),\left[g_{0} e_{1} \ldots e_{k} g_{k}\right] \mapsto g_{0} g_{e_{1}} \ldots g_{e_{k}} g_{k}
$$

is a group isomorphism.
Proof. From the definition of the relation \sim and the third set in the definition of N in the definition of $\pi_{1}(\mathbb{G}, T)$, we obtain that φ is well-defined. It is a homomorphism by the definition of the concatenation of \mathbb{G}-walks. Thus, it remains to show that φ is bijective. For this, we construct the inverse map of φ.

Let us construct a map from the generating set of $\pi_{1}(\mathbb{G}, T)$ to $\pi_{1}(\mathbb{G}, v)$. For $u \in V(\Gamma)$, let $P_{u}=x_{0} e_{1} x_{1} \ldots e_{k} x_{k}$ be the walk corresponding to the unique path in T from v to u and let $P_{u, \mathbb{G}}=1 e_{1} 1 \ldots e_{k} 1$ be the corresponding \mathbb{G}-walk. For $g \in G_{u}$ with $u \in V(\Gamma)$ we define the image of g as the equivalence class of $P_{u, \mathbb{G}} g P_{u, \mathbb{G}}^{-1}$. For $e \in E(\Gamma)$ we define the image of g_{e} as the equivalence class of $P_{i(e), \mathbb{G}} e P_{t(e), \mathbb{G}}^{-1}$.

It is easy to verify that the relators in the definition of $\pi_{1}(\mathbb{G}, T)$ are all mapped onto the equivalence class of the trivial \mathbb{G}-walk. Using the universal property of group presentations (Theorem 2.3.4, we obtain that the map we just defined can be extended to a homomorphism

$$
\psi: \pi_{1}(\mathbb{G}, T) \rightarrow \pi_{1}(\mathbb{G}, v)
$$

Obviously, this is the reverse map of φ.
Corollary 4.3.7. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups, let $v \in V(\Gamma)$ and let T be a spanning tree of Γ. Using the notations from the proof of Proposition 4.3.6, the set

$$
\left\{\left[P_{u, \mathbb{G}} g P_{u, \mathbb{G}}^{-1}\right] \mid u \in V(\Gamma), g \in G_{u}\right\} \cup\left\{\left[P_{i(e), \mathbb{G}} e P_{t(e), \mathbb{G}}^{-1}\right] \mid e \in E(\Gamma \backslash T)\right\}
$$

is a generating set of $\pi_{1}(\mathbb{G}, v)$.
Proof. The assertion follows directly from the proof of Proposition 4.3.6, since the given set is the image of the generating set of $\pi_{1}(\mathbb{G}, T)$.

By multiple applications of Proposition 4.3.6, we obtain the following corollary.

Corollary 4.3.8. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups, let $v, w \in V(\Gamma)$ and let T, T^{\prime} be spanning tree of Γ. Then we have

$$
\pi_{1}(\mathbb{G}, v) \cong \pi_{1}(\mathbb{G}, w) \cong \pi_{1}(\mathbb{G}, T) \cong \pi_{1}\left(\mathbb{G}, T^{\prime}\right)
$$

Definition. The fundamental group $\pi_{1}(\mathbb{G})$ of a graph of groups \mathbb{G} is a group of the isomorphism class of the fundamental groups with respect to an arbitrary spanning tree or an arbitrary vertex.
Definition. We call a \mathbb{G}-walk \mathbb{G}-reduced if we cannot apply operations of type (i) from the definition of elementary equivalence. For every edge group G_{e}, let X_{e} be a transversal (of the right cosets) of $\alpha_{e}\left(G_{e}\right)$ in $G_{i(e)}$. A \mathbb{G}-reduced \mathbb{G}-walk $g_{0} e_{1} g_{1} \ldots e_{k} g_{k}$ is a normal form if $g_{i} \in X_{\bar{e}_{i}}$ for all $0<i \leq k$.

We will show (similar to previous situations) that every equivalence class contains a unique normal form.

Theorem 4.3.9. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $P=g_{0} e_{1} \ldots e_{k} g_{k}$ and $Q=h_{0} f_{1} \ldots f_{\ell} h_{\ell}$ be two \sim-equivalent \mathbb{G}-reduced \mathbb{G}-walks. Then we have $k=\ell$ and $e_{i}=f_{i}$ for all $1 \leq i \leq k$ and there are $a_{i} \in G_{e_{i}}$ such that

1. $g_{0}=h_{0}\left(\alpha_{e_{1}}\left(a_{0}\right)\right)$ and
2. $g_{i}=\left(\alpha_{\bar{e}_{i}}\left(a_{i}^{-1}\right)\right) h_{i}\left(\alpha_{e_{i+1}}\left(a_{i+1}\right)\right)$ for all $1 \leq i<k$ and
3. $g_{k}=\left(\alpha_{\bar{e}_{k}}\left(a_{k}^{-1}\right)\right) h_{k}$.

In particular, every equivalence class contains a unique normal form.
Proof. It suffices to show the additional statement since then every two equivalent \mathbb{G}-reduced \mathbb{G}-walks are equivalent (by operations of type (ii)) to the same normal form. The according operations put after another (with inverting the second one) show that both \mathbb{G}-reduced \mathbb{G}-walks are equivalent using only the operation (ii) - which is exactly what we claim in the assertion of this theorem.

Obviously, every \mathbb{G}-walk is equivalent to a \mathbb{G}-reduced \mathbb{G}-walk and also to a normal form, where the second claim follows by replacing g_{i} by $\alpha_{\bar{e}_{i}}\left(c_{i}\right) x_{i}$ for $x_{i} \in X_{\bar{e}_{i}}$ and $c_{i} \in G_{\bar{e}_{i}}=G_{e_{i}}$ and then pushing $\alpha_{\bar{e}_{i}}\left(c_{i}\right)$ backwards across the edge e_{i} using the second operation. Inductively, we obtain the second claim.

For vertices $u, v \in V(\Gamma)$, let $P_{\mathbb{G}}(u, v)$ be the set of \mathbb{G}-walks from u to v and let $N_{\mathbb{G}}(u, v)$ be the set of normal forms from u to v. For a normal form $P=g_{0} e_{1} \ldots e_{k} g_{k}$ from u to v and for $g \in G_{u}$, we set

$$
\varphi\left(g, g_{0} e_{1} \ldots e_{k} g_{k}\right):=\left(g g_{0}\right) e_{1} \ldots e_{k} g_{k}
$$

and, if e is an edge with $t(e)=u$, we set

$$
\varphi\left(1 e 1, g_{0} e_{1} \ldots e_{k} g_{k}\right):= \begin{cases}\alpha_{e}\left(g_{e}\right) g_{2} e_{2} \ldots e_{k} g_{k}, & \text { if } e=\bar{e}_{1} \text { and } x_{e}=1 \\ \alpha_{e}\left(g_{e}\right) e x_{e} e_{1} \ldots e_{k} g_{k}, & \text { otherwise }\end{cases}
$$

where $g_{e} \in G_{e}$ and $x_{e} \in X_{e}$ with $\alpha_{\bar{e}}\left(g_{e}\right) x_{e}=g_{0}$. Every \mathbb{G}-walk can be written as concatenation of \mathbb{G}-walks $g \in G_{w}$ or $1 e 1$. For a normal form N from u to v and a \mathbb{G}-walk P with $P=P_{1} \ldots P_{n}$, where the P_{i} are of the just described form, we define recursively

$$
\varphi(P, N):=\varphi\left(P_{1}, \varphi\left(P_{2} \ldots P_{n}, N\right)\right)
$$

Using this definition, we obviously obtain

$$
\varphi(N, 1)=N
$$

for every normal form N from u to v and for the trivial \mathbb{G}-walk 1 from v to v. We want to verify the following for every two equivalent \mathbb{G}-walks P_{1}, P_{2} from u to v and every normal form N from v to w :

$$
\varphi\left(P_{1}, N\right)=\varphi\left(P_{2}, N\right)
$$

If we have this, then we obtain for every two equivalent normal forms N_{1}, N_{2} from u to v :

$$
N_{1}=\varphi\left(N_{1}, 1\right)=\varphi\left(N_{2}, 1\right)=N_{2}
$$

And hence every equivalence class of \sim contains exactly one normal form. It suffices to verify

$$
\varphi\left(P_{1}, N\right)=\varphi\left(P_{2}, N\right)
$$

for all \mathbb{G}-walks P_{1}, P_{2} that can be transferred to each other by a single operation of the elementary equivalence. First, let $P=P_{1} g e\left(\alpha_{\bar{e}}(c)\right) \bar{e} g^{\prime} P_{2}$ be a \mathbb{G}-walk. If we prove

$$
\varphi\left(g e \alpha_{\bar{e}}(c) \bar{e} g^{\prime}, N\right)=\varphi\left(g \alpha_{e}(c) g^{\prime}, N\right)
$$

for normal forms N from v to $t(e)$, then we obtain the following for normal forms N from v to the end vertex of P :

$$
\begin{aligned}
& \varphi\left(P_{1} g e \alpha_{\bar{e}}(c) \bar{e} g^{\prime} P_{2}, N\right) \\
= & \varphi\left(P_{1}, \varphi\left(g e \alpha_{\bar{e}}(c) \bar{e} g^{\prime}, \varphi\left(P_{2}, N\right)\right)\right) \\
= & \varphi\left(P_{1}, \varphi\left(g \alpha_{e}(c) g^{\prime}, \varphi\left(P_{2}, N\right)\right)\right) \\
= & \varphi\left(P_{1} g \alpha_{e}(c) g^{\prime} P_{2}, N\right) .
\end{aligned}
$$

So let us prove in this situation the remaining equation. For this, let $N=$ $g_{N} e_{1} g_{1} \ldots e_{k} g_{k}$ be a normal form and set $N^{-}:=1 e_{1} g_{1} \ldots e_{k} g_{k}$. Let $\operatorname{ge} \alpha_{\bar{e}}(c) \bar{e} g^{\prime}$ be as just described and let $x_{e} \in X_{\bar{e}}$ be an element of the transversal of $\alpha_{\bar{e}}\left(G_{e}\right)$ in $G_{t(e)}$ and let $b \in G_{e^{\prime}}$ such that $g^{\prime} g_{N}=\alpha_{e}(b) x_{e}$. If $e \neq e_{1}$, then we have:

$$
\begin{aligned}
& \varphi\left(g e \alpha_{\bar{e}}(c) \bar{e} g^{\prime}, N\right) \\
= & \varphi\left(g e \alpha_{\bar{e}}(c), \varphi\left(1 \bar{e} 1, \alpha_{e}(b) x_{e} N^{-}\right)\right) \\
= & \varphi\left(g e 1, \varphi\left(\alpha_{\bar{e}}(c) \alpha_{\bar{e}}(b) \bar{e} x_{e} N^{-}\right)\right) \\
= & \varphi\left(g \alpha_{e}(c) \alpha_{e}(b) 1 \bar{e} 1 e 1, x_{e} N^{-}\right) \\
= & g \alpha_{e}(c) g^{\prime} N \\
= & \varphi\left(g \alpha_{e}(c) g^{\prime}, N\right) .
\end{aligned}
$$

The case $e=e_{1}$ follows analogously. Also, in case of the second operation we obtain the claim by a similar argumentation.

Let us get two corollaries from Theorem 4.3.9.
Corollary 4.3.10. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups, let $v \in V(\Gamma)$ and let $P=g_{0} e_{1} \ldots e_{k} g_{k}$ be a \mathbb{G}-reduced \mathbb{G}-walk from v to v. Then we have $[P]=1 \in$ $\pi_{1}(\Gamma, v)$ if and only if $k=0$ and $g_{0}=1 \in G_{v}$.

Corollary 4.3.11. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups, let $u, v \in V(\Gamma)$ and let $P=g_{0} e_{1} \ldots e_{k} g_{k}$ be $a \mathbb{G}$-walk from v to u. Then the map

$$
G_{u} \rightarrow \pi_{1}(\mathbb{G}, v), g \mapsto\left[P g P^{-1}\right]
$$

is a group monomorphism.

4.4 Structure theorem of the Bass-Serre theory

Now we are aiming at obtaining an analogue for the universal covering of graphs via trees (using the fundamental group of graphs, see Proposition 4.2.13) in the situation of graph of groups and their fundamental group.

Definition. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. On the set of \mathbb{G}-walks that start at v we will define a relation \approx via $P_{1} \approx P_{2}$ if and only if

- P_{1} and P_{2} end at the same vertex w and
- there exists $g \in G_{w}$ with $P_{1} \sim P_{2} g$.

Obviously, \approx is an equivalence relation on the \mathbb{G}-walks that start at v. We denote by $P_{w}^{\mathbb{G}}$ the equivalence class of a \mathbb{G}-walk P from v to w. Similar to the proof of Theorem 4.3.9, every equivalence class $P_{w}^{\mathbb{G}}$ of \approx contains exactly one representative of the form $x_{0} e_{1} x_{1} \ldots x_{k-1} e_{k} 1$ with $x_{i} \in X_{i}$, where X_{i} is a transversal of $\alpha_{\bar{e}_{i}}\left(G_{e_{i}}\right)$ in $G_{i\left(\bar{e}_{i}\right)}$ for $i>0$.

Let us define a graph $\widetilde{\mathbb{G}}_{v}$: its vertex set is the set of equivalence classes of \approx. Two vertices ${ }^{2} P_{u}^{\mathbb{G}}, Q_{w}^{\mathbb{G}}$ are adjacent by the edge $f:=\left(P_{u}^{\mathbb{G}}, e, Q_{w}^{\mathbb{G}}\right)$ with $e \in E(\Gamma)$ if $i(e)=u$ and $t(e)=w$ and if there exists $g \in G_{u}$ with Pge1 $\in Q_{w}^{\mathbb{G}}$. (Note that this definition does not depend on the choice of P.) Let $i(f)=P_{u}^{\mathbb{G}}$ and $t(f)=Q_{w}^{\mathbb{G}}$. The involution is defined by $\overline{\left(P_{u}^{\mathbb{G}}, e, Q_{w}^{\mathbb{G}}\right)}:=\left(Q_{w}^{\mathbb{G}}, \bar{e}, P_{u}^{\mathbb{G}}\right)$.
Remark 4.4.1. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. Let $P=g_{0} e_{1} \ldots e_{k} g_{k}$ and $Q=h_{0} f_{1} \ldots f_{\ell} h_{\ell}$ be two \mathbb{G}-reduced \mathbb{G}-walks from v to u and w such that $P_{u}^{\mathbb{G}}$ and $Q_{w}^{\mathbb{G}}$ are adjacent in $\widetilde{\mathbb{G}}_{v}$. We may assume that $k \leq \ell$. Let $\left(P_{u}^{\mathbb{G}}, e, Q_{w}^{\mathbb{G}}\right)$ be the corresponding edge. Then there exists $g \in G_{u}$ such that Pge $1 \approx Q$. Since P and Q are \mathbb{G}-reduced, Theorem 4.3.9implies $k+1=\ell$ and $f_{\ell}=e$.

Theorem and Definition 4.4.2. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. Then $\widetilde{\mathbb{G}}_{v}$ is a tree. It is called the universal covering tree or Bass-Serre tree.
Proof. Obviously, every vertex lies in the same component of $\widetilde{\mathbb{G}}_{v}$ as $1_{v}^{\mathbb{G}}$. Thus, the graph is connected and it remains to show that it contains no cycle.

Let

$$
P=\left(P_{0}\right)_{v_{0}}^{\mathbb{G}} e_{1} \ldots e_{k}\left(P_{k}\right)_{v_{k}}^{\mathbb{G}}
$$

be a closed non-trivial walk in $\widetilde{\mathbb{G}}_{v}$, where every P_{i} is a \mathbb{G}-reduced \mathbb{G}-walk. (Note that this is not a restriction to the walk itself.) If we show that P contains a spike

$$
\left(P_{i-1}\right)_{v_{i-1}}^{\mathbb{G}} e_{i}\left(P_{i}\right)_{v_{i}}^{\mathbb{G}} e_{i+1}\left(P_{i+1}\right)_{v_{i+1}}^{\mathbb{G}},
$$

then we directly obtain that $\widetilde{\mathbb{G}}_{v}$ contains no cycle. Let $0 \leq i \leq k$ such that the length of P_{i} is maximum. By cyclic permutations of the walk \bar{P} we may assume that $0<i<k$. We consider $\left(P_{i-1}\right)_{v_{i-1}}^{\mathbb{G}}$ and $\left(P_{i+1}\right)_{v_{i+1}}^{\mathbb{G}}$. Remark 4.4.1 implies that both vertices contain a common \mathbb{G}-walk. Thus, they lie in the same vertex in $\widetilde{\mathbb{G}}_{v}$ and remark 4.4.1 implies

$$
e_{i}=\left(\left(P_{i-1}\right)_{v_{i-1}}^{\mathbb{G}}, f_{i},\left(P_{i}\right)_{v_{i}}^{\mathbb{G}}\right)
$$

[^14]and
$$
e_{i+1}=\left(\left(P_{i}\right)_{v_{i}}^{\mathbb{G}}, \bar{f}_{i},\left(P_{i+1}\right)_{v_{i+1}}^{\mathbb{G}}\right) \text {. }
$$

Thus, we have $e_{i}=\bar{e}_{i+1}$ and so P contains a spike, which implies that $\widetilde{\mathbb{G}}_{v}$ contains no cycle.

Remark. It is easily verifiable that Bass-Serre trees for distinct vertices v, w from Γ are isomorphic: Choose a \mathbb{G}-walk P from v to w. Then the map $Q \mapsto P Q$ from the set of \mathbb{G}-walks starting at w to the set of \mathbb{G}-walks starting at v defines an isomorphism of the corresponding Bass-Serre trees $\widetilde{\mathbb{G}}_{w}$ and $\widetilde{\mathbb{G}}_{v}$.
Lemma 4.4.3. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. Then by setting

$$
[P] Q_{w}^{\mathbb{G}}:=(P Q)_{w}^{\mathbb{G}}
$$

and

$$
[Q]\left(\left(P_{1}\right){ }_{u}^{\mathbb{G}}, e,\left(P_{2}\right)_{w}^{\mathbb{G}}\right):=\left([Q]\left(P_{1}\right)_{u}^{\mathbb{G}}, e,[Q]\left(P_{2}\right)_{w}^{\mathbb{G}}\right)
$$

we obtain an action without inversion from $\pi_{1}(\mathbb{G}, v)$ on $\widetilde{\mathbb{G}}_{v}$.
Proof. We obtain from the definition of the vertices of $\widetilde{\mathbb{G}}_{v}$ that the assignment is a well-defined action on the vertex set and on the edge set. Since we directly obtain from the definition that edges and non-edges are preserved by this map, we obtain the assertion.

We will state two small facts on the stabilisers of the vertices and edges of the universal covering tree in the fundamental group of the graph of groups.

Lemma 4.4.4. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. The action of $\pi_{1}(\mathbb{G}, v)$ on $\widetilde{\mathbb{G}}_{v}$ as defined in Lemma 4.4.3 satisfies the following properties.
(1) The stabiliser of a vertex $P_{w}^{\mathbb{G}}$ is $\left\{\left[P g P^{-1}\right] \mid g \in G_{w}\right\}$.
(2) The stabiliser of an edge $\left(P_{w}^{\mathbb{G}}, e,\left(\text { Pgeg }^{\prime}\right)_{u}^{\mathbb{G}}\right)$ with $g \in G_{w}$ is

$$
\left\{\left[P g \alpha_{e}(c) g^{-1} P^{-1}\right]=\left[P g e \alpha_{\bar{e}}(c) \bar{e} g^{-1} P^{-1}\right] \mid c \in G_{e}\right\}
$$

Proof. Simple calculation.
Analogously to the universal covering of graphs, we obtain also for graphs of groups the following statement whose proof is similar to the case of graphs and remains as exercise.

Lemma 4.4.5. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups and let $v \in V(\Gamma)$. Let $G:=\pi_{1}(\mathbb{G}, v)$ and $T:=\widetilde{\mathbb{G}}_{v}$. Then $T / G \cong \Gamma$.
Definition. Let G be a group acting on a tree T and let H be a group acting on a tree T^{\prime}. Then T und T^{\prime} are isomorphic with respect to the actions of \boldsymbol{G} and \boldsymbol{H} if there is a group isomorphism $\varphi: G \rightarrow H$ and a graph isomorphism $f: T \rightarrow T^{\prime}$ with $f(g v)=\varphi(g) f(v)$ for all $g \in G$ and $v \in V(T)$. We call (φ, f) an isomorphism from (G, T) to $\left(H, T^{\prime}\right)$.

Let G be a group that acts without inversion on a tree T. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be the graph of groups from Example $4.3 .2(1)$ with $\Gamma=T / G$ and let $v \in V(\Gamma)$. Set $H:=\pi_{1}(\Gamma, v)$. Let \mathcal{T} be a spanning tree of Γ. By an exercise, there exists a monomorphism $\iota: \mathcal{T} \rightarrow T$. Thus, ι is defined on all vertices of Γ but only on the edge of \mathcal{T}. We want to extend ι to all of Γ. We have to emphasise that we are just defining images of vertices and edges but in general this will not lead to a homomorphism. For every $e \in E(\Gamma) \backslash E(\mathcal{T})$ we set $\iota(e)$ so that $\iota(\bar{e})=\overline{\iota(e)}$ is satisfied and also either ${ }^{3} i(\iota(e))=\iota(i(e))$ or $t(\iota(e))=\iota(t(e))$ and additionally that e is the G-orbit of $\iota(e)$. If $i(\iota(e)) \neq \iota(i(e))$, then let $g_{e} \in G$ with $i(\iota(e))=g_{e} \iota(i(e))$ and, if $i(\iota(e))=\iota(i(e))$, then let $g_{e}:=g_{\bar{e}}^{-1}$. For every spikeless walk $P=v_{0} e_{1} \ldots e_{k} v_{k}$ in \mathcal{T} we set $P_{\mathbb{G}}:=1 e_{1} 1 \ldots e_{k} 1$.

We will define a map from H to G and a map from $\widetilde{\mathbb{G}}_{v}$ to T and then prove that these maps are isomorphisms. We define $\varphi: H \rightarrow G$. First, we set

$$
\varphi\left(\left[P_{\mathbb{G}} g P_{\mathbb{G}}^{-1}\right]\right):=\psi_{u}(g)
$$

for all spikeless walks P in \mathcal{T} from v to u, for all $g \in G_{u}$ and for the canonical isomorphism $\psi_{u}: G_{u} \rightarrow G_{\iota(u)}$; additionally, we set

$$
\varphi\left(\left[P_{i(e), \mathbb{G}} e P_{t(e), \mathbb{G}}^{-1}\right]\right):=g_{e}
$$

for all $e \in E(\Gamma \backslash \mathcal{T})$, where $g_{e} \in G$ is chosen as above (i.e. with $i(\iota(e))=$ $\left.g_{e} \iota(i(e))\right)$. By Corollary 4.3.7 we have defined φ at a generating set of H. Let ϕ be the isomorphism from $\pi_{1}(\mathbb{G}, \mathcal{T})$ to $\pi_{1}(\mathbb{G}, v)$ as constructed in Proposition 4.3.6 Obviously, the images under ϕ of the relators in the definition of $\pi_{1}(\mathbb{G}, \mathcal{T})$ are mapped to 1 by $\varphi \bigsqcup^{4}$ The universal property for group presentations, Theorem 2.3.4, implies that we can extend φ to a homomorphism $H \rightarrow G$.

Let us define a map $f: \widetilde{\mathbb{G}}_{v} \rightarrow T$ by $f\left(P_{u}^{\mathbb{G}}\right):=\iota(u)$ for all $u \in V(\Gamma)$ and all \mathbb{G}-reduced \mathbb{G}-walks P in \mathcal{T} from v to u and set $f\left(h P_{u}^{\mathbb{G}}\right):=\varphi(h) f\left(P_{u}^{\mathbb{G}}\right)$ for all $u \in V(\Gamma)$, all \mathbb{G}-reduced \mathbb{G}-walks P in \mathcal{T} from v to u and all $h \in H$. Obviously, f is well-defined and preserves edges and non-edges; thus, f is a graph homomorphism.

Note that φ induces canonically isomorphisms of vertex and edge stabilisers.
Proposition 4.4.6. Let the group G act without inversion on the tree T. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be the graph of groups from Example 4.3.2 with $\Gamma=T / G$ and let $v \in V(\Gamma)$. Then there exists an isomorphism from $\left(\pi_{1}(\mathbb{G}, v), \widetilde{\mathbb{G}}_{v}\right)$ to (G, T).

Proof. We choose \mathcal{T}, φ and f as in the discussion before the proposition and want to show that (φ, f) is an isomorphism from $\left(\pi_{1}(\mathbb{G}, v), \widetilde{\mathbb{G}}_{v}\right)$ to (G, T). For this, it only remains to show that φ and f are bijective maps, since by definition of f we have $f\left(h P_{u}^{\mathbb{G}}\right)=\varphi(h) f\left(P_{u}^{\mathbb{G}}\right)$ for all $h \in H$ and all $P_{u}^{\mathbb{G}} \in V\left(\widetilde{\mathbb{G}}_{v}\right)$.

[^15]Let us show that f is surjective. By definition we have $\varphi(H) \iota(V(\mathcal{T}))=$ $f\left(\widetilde{\mathbb{G}}_{v}\right)$. Thus, it suffices to prove $\varphi(H) \iota(V(\mathcal{T}))=V(T)$. Let us suppose $\varphi(H) \iota(V(\mathcal{T})) \neq V(T)$. Then there exists an edge $e_{T} \in E(T)$ with $i\left(e_{T}\right) \in$ $\varphi(H) \iota(V(\mathcal{T}))$ and $t\left(e_{T}\right) \notin \varphi(H) \iota(V(\mathcal{T}))$. We may replace e_{T} by $\varphi(h) e_{T}$ in order to assume $i\left(e_{T}\right) \in \iota(V(\mathcal{T}))$. Let $e \in E(\Gamma)$ with $G(\iota(e))=G e_{T}$. Then we have either $i\left(e_{T}\right)=i(\iota(e))$ or $g_{e_{T}} i\left(e_{T}\right)=i(\iota(e))$. This implies either $g e_{T}=\iota(e)$ or $g g_{e_{T}} e_{T}=\iota(e)$ for some $g \in G_{i(\iota(e))} \leq \varphi(H)$ and hence we obtain $e_{T} \in \varphi(H) \iota(E(\Gamma))$ and in particular $t\left(e_{T}\right) \in \varphi(H) \iota(V(\Gamma))$. This contradiction shows that f is surjective.

Let us show that f is injective. First, we show that no two edges $e_{1}, e_{2} \in$ $E\left(\tilde{\mathbb{G}}_{v}\right)$ with $i\left(e_{1}\right)=i\left(e_{2}\right)$ exist such that $f\left(e_{1}\right)=f\left(e_{2}\right)$. Suppose such edges e_{1}, e_{2} exist. Then there exists $h \in H$ with $h e_{1}=e_{2}$. We obtain $\varphi(h) \in G_{f\left(e_{1}\right)}=$ $G_{f\left(e_{2}\right)}$. This contradicts our observation that φ induces isomorphisms between edge stabilisers. Thus, we have $f\left(e_{1}\right) \neq f\left(e_{2}\right)$. Since $\widetilde{\mathbb{G}}_{v}$ and T are trees (by Theorem 4.4.2 and assumption), we directly obtain that f is injective.

Let us show that φ is surjective. Since φ induces isomorphisms on the vertex stabilisers, we have $G_{v} \leq \varphi(H)$ for all $v \in V(T)$. Let $g \in G$ and $w \in \iota(V(\mathcal{T}))$. Since $\varphi(H) \iota(V(\Gamma))=V(T)$, there exists $h \in \varphi(H)$ with $h g w \in V(\Gamma)$. Every two distinct vertices of $\iota(V(\Gamma))$ lie in distinct G-orbits. Thus, we have $h g w=w$ and $h g \in G_{w} \leq \varphi(H)$. We obtain $g=h^{-1}(h g) \in \varphi(H) \cdot G_{w}=\varphi(H)$. Thus, φ is surjective.

Let us show that φ is injective. For this, we show that the kernel of φ is trivial. Let $h \in H \backslash\{1\}$. If h has a fixed point, then the observation that φ induces isomorphisms on the stabilisers implies $\varphi(h) \neq 1$. So let us assume that h has no fixed point. Then we have $h v \neq v$ for all $v \in V(\Gamma)$ and thus $\varphi(h) f(v)=f(h v) \neq f(v)$, since f is injective. Thus, $\varphi(h) \neq 1$ and φ is injective.

Theorem 4.4.7 (structure theorem). Let the group G act on a graph X without inversion. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be the graph of groups from Example 4.3.2 (1) with $\Gamma=X / G$, let $v \in V(\Gamma)$ and let φ and f as in the discussion before Proposition 4.4.6. Then the following statements are equivalent.
(1) X is a tree;
(2) $f: \widetilde{\mathbb{G}}_{v} \rightarrow X$ is an isomorphism;
(3) $\varphi: \pi_{1}(\mathbb{G}, v) \rightarrow G$ is an isomorphism.

Proof. If X is a tree, then (2) and (3) holds by Proposition 4.4.6. Since $\widetilde{\mathbb{G}}_{v}$ is a tree by Theorem 4.4.2, the implication from (2) to (1) follows. The remaining implication $(3) \Rightarrow(2)$ follows directly from the definition of f.
Remark 4.4.8. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups with $G_{v}=1$ for all $v \in V(\Gamma)$. Then $\pi_{1}(\mathbb{G}) \cong \pi_{1}(\Gamma)$.

As corollary of Theorem 4.4.7 using Remark 4.4.8, we obtain the following.
Corollary 4.4.9. A group that acts freely on a tree is free.

4.5 Minimal actions

Definition. A group G acts on a tree T minimally if there is no non-empty G invariant proper subtree of T. A graph of group is minimal if its fundamental groups acts minimally on its Bass-Serre tree.

Remark 4.5.1. Let G be a group acting on a tree T. If there exists a hyperbolic element $g \in G$, then there exists a g-invariant double ray R. Thus, the intersection of all G-invariant subtrees of T that contain R is not empty and according to Lemma 4.1.2(iiii) the ray R must lie in the intersection of all non-empty G-invariant subtrees. Then G acts minimally on this intersection. If G contains only elliptic elements, then Theorem 4.1.7 implies that the action of G on T is either elliptic, where we may choose for our G-invariant subtree one that has only one vertex, or it is parabolic. In the second case, T does not contain any minimal G-invariant subtree, since the intersection of all G-invariant subtrees is empty (exercise).

This discussion implies that for a minimal parabolic action, the group must contain hyperbolic elements.

Proposition 4.5.2. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a minimal graph of groups and let $v \in V(\Gamma)$. Then the action of $\pi_{1}(\mathbb{G}, v)$ on $\widetilde{\mathbb{G}}_{v}$ is \ldots
(i) elliptic if and only if Γ consists of a unique vertex and no edge;
(ii) cyclic if and only if Γ is a cycle and all monomorphisms from the edge groups into the vertex groups are isomorphisms;
(iii) dihedral if and only if Γ is a non-trivial path and the monomorphisms from the edge groups into the vertex groups of the inner vertices are surjective and the image of the monomorphisms in the vertex groups for the end vertices of the path are subgroups of index 2 each;
(iv) parabolic if and only if Γ is a cycle and for some closed spikeless walk $v_{0} e_{0} \ldots e_{k-1} v_{k}$ the maps $\alpha_{e_{i}}$ are surjective for all $1 \leq i \leq n$ but at least on $\alpha_{\bar{e}_{i}}$ is not surjective;
(v) hyperbolic otherwise.

Proof. In all cases, the backward implication is easy. That is, why we restict ourselves to the forward direction. Let $G:=\pi_{1}(\mathbb{G}, v)$ and $T:=\widetilde{\mathbb{G}}_{v}$. If the action of G on T is elliptic, then T has a unique vertex by the minimal action. Thus, Γ also has a unique vertex and no edge.

Let the action of G on T be cyclic. By the minimality of the action, T is a double ray and G acts as translations on T. Thus, T / G is a cycle. Since every group element that fixes a vertex of T must fix the two incident edge (since it acts as a translation on T), the monomorphisms from the edge groups into the vertex groups must be surjective.

Let us assume that the action of G on T is dihedral. As in the previous case, T is a double ray. Since there exists an element that acts as a reflection on
that double ray, we obtain that T / G is a path that is non-trivial (so it contains at least two vertices) as the action is without inversion. Every group element that stabilises an edge must already fix all of T. Since the stabilisers of the end vertices of T / G have index 2 in the fix group of T (an element from such a stabiliser must either fix all of T or act on T as a reflection), we obtain the assertion. This proves (iii).

Now let the action of G on T be parabolic. In the case that every element of G is elliptic on T, Remark 4.5.1 implies that the action cannot be minimal. Thus, there exists a hyperbolic element. Let $g \in G$ be such an element of minimal translation length. Then, T contains a G-invariant double ray R_{g} by Lemma 4.1.2(i). This double ray contains a subray R such that $R \cap h R$ is a ray again for all $h \in G$. Thus, the subgraph $\bigcup_{h \in G} h R_{g}$ is connected, so it is a subtree. Since it is G-invariant, the minimality of the action implies that it is already T. Thus, every edge of T lies in a common orbit with an edge from R_{g}. The minimality of $|g|$ implies that T / G is a cycle with $|g|$ edges. Obviously, the stabiliser of a vertex u on R_{g} must fix the incident edge that separates u from infinitely many vertices of R. Thus, there exists an orientation of the cycle Γ such that the monomorphisms for those edge groups are surjective into the vertex groups. Furthermore, for one edge e of those, the map $\alpha_{\bar{e}}$ is not surjective since otherwise (ii) implies that the action would be cyclic.

The final case follows from Theorem 4.1.7

Definition. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups. A pair (v, e) with $v \in V(\Gamma)$ and $e \in E(\Gamma)$ such that v has degree 2^{5} and $i(e)=v \neq t(e)$ is inessential if α_{e} is surjective. A graph of groups is reduced if it contains no inessential pair.

Remark 4.5.3. If $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ is a graph of groups and (v, e) an inessential pair, then we can suppress v and e, i. e., we delete v as well as e and \bar{e} from the vertex or and edge set and we set $t(f)=t(e)$ for all edges f in Γ with $t(f)=v$ and $i(f)=i(\bar{e})$ for all edges f in Γ with $i(f)=v{ }^{6}$ For the monomorphism $\alpha_{f}: G_{f} \rightarrow G_{v}$, we set the new monomorphism as $\alpha_{f}^{\prime}:=\alpha_{\bar{e}} \alpha_{e}^{-1} \alpha_{f}$. It is easy to verify that this operation preserves the fundamental group - or more precise: that the fundamental groups before and after the operation are isomorphic. One way to see that is to consider a spanning tree of Γ that contains e. Then the relators $g_{e} \alpha_{\bar{e}}(s) g_{e}^{-1}\left(\alpha_{e}(s)\right)^{-1}$ reduce to $\alpha_{\bar{e}}(s)\left(\alpha_{e}(s)\right)^{-1}$ and we can put this information into the relators of the other edge with initial vertex $i(e)$. Applying Tietze transformations lead to the fundamental group obtained after the operation.

In particular, we can transfer a graph of groups $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ with finite graph Γ to a reduced graph of groups by multiple such operations while keeping an isomorphic fundamental group.

[^16]Using Remark 4.5.3, we can sharpen the formulation of the possibilities in Proposition 4.5 .2 in the cases (ii)-(iv). We will note these new version, where we also follow the statements on the group structure from Example 4.3.4.

Proposition 4.5.4. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a minimal reduced graph of groups and let $v \in V(\Gamma)$. Let $G:=\pi_{1}(\mathbb{G}, v)$ and $T:=\widetilde{\mathbb{G}}_{v}$. Then the action of G on T is ...
(i) elliptic if and only if Γ consists of a unique vertex and no edge. Then G is exactly the kernel of the action ${ }^{7}$
(ii) cyclic if and only if Γ consists of a unique vertex and a unique edg \S^{8} and the monomorphisms of both edge groups in the vertex groups are isomorphisms. Then we have $G \cong G_{v}{ }_{\varphi}$, where v is the vertex of Γ, e is an edge of Γ and $\varphi=\alpha_{\bar{e}} \alpha_{e}^{-1}$.
(iii) dihedral if and only if Γ consists of exactly two vertices and a unique edge and the image of the monomorphisms in the vertex group are subgroups of index 2 each. Then we have $G \cong G_{u} *_{G_{e}} G_{v}$ with $\left|G_{u}: G_{e}\right|=2=\left|G_{v}: G_{e}\right|$, where u and v are the two vertices of Γ and $e \in E(\Gamma)$ an edge.
(iv) parabolic if and only if Γ consists of a unique vertex and a unique edge such that exactly one of the monomorphisms into the vertex groups is surjective. Then we have $G \cong G_{v}{ }_{\varphi}$, where v is the vertex of Γ, e its edge such that $\alpha_{\bar{e}}: G_{\bar{e}} \rightarrow G_{v}$ is not surjective and $\varphi=\alpha_{\bar{e}} \alpha_{e}^{-1}$.
(v) hyperbolic otherwise.

Definition. A free product with amalgamation $A *_{C} B$ is proper if none of the monomorphisms $\iota_{A}: C \rightarrow A$ and $\iota_{B}: C \rightarrow B$ is surjective.

Proposition 4.5.5. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a minimal graph of groups such that Γ has at least one edge. Then $\pi_{1}(\mathbb{G})$ is either a proper free product with amalgamation or an HNN extension.

Proof. Exercise
Definition. A group has property (FA) if every action without inversion of it on every tree is elliptic.

We have already seen that finite groups always have the property (FA), see Lemma 4.1.8. Now, we want to give a group theoretic characterisation of the groups with property (FA).

Theorem 4.5.6. A countable group G has property (FA) if and only if the following statements hold.

[^17](1) G is finitely generated;
(2) G is not a proper free product with amalgamation;
(3) G is not an HNN extension.

Proof. By Lemma 4.1.9 we obtain that G is finitely generated since it has property (FA). Let us suppose that that G is a proper free product with amalgamation $G \cong A *_{C} B$ for groups A, B, C. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be the graph of groups with exactly two vertices and one edge, where the edge groups are C and the vertex groups are A and B. By Example 4.3.4 1 we have $G \cong \pi_{1}(\mathbb{G})$. The action of $\pi_{1}(\mathbb{G})$ on $\widetilde{\mathbb{G}}_{v}$ with $v \in V(\Gamma)$ is without inversion but not elliptic. Thus G is no proper free product with amalgamation. Analogously, we obtain that G is not an HNN extension.

For the reverse direction, we assume that (1)-(3) hold. Let T be a tree such that G acts on T without inversion. By Lemma 4.1.5, it suffices to prove that every element of G is elliptic. Let us suppose that G contains a hyperbolic element. According to Remark 4.5.1 there exists a minimal G-invariant subtree of T and we may assume that the action of G on T is minimal. By Theorem4.4.7. we may assume that $G=\pi_{1}(\mathbb{G})$ and $T=\widetilde{\mathbb{G}}_{v}$ with $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ and $v \in V(\Gamma)$, where \mathbb{G} is the graph of groups with $\Gamma=T / G$ as defined in Example 4.3.2(1). Since G contains a hyperbolic element, the action of G on T is not elliptic and there is an edge in Γ by Proposition 4.5.4(i). Thus, Proposition 4.5.5 leads to a contradiction to (2) or (3). So the action of G on T is elliptic.

4.6 Kurosh's theorem

Example 4.6.1. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups with $G_{e}=1$ for all $e \in E(\Gamma)$ and let T be a spanning tree of Γ. Let $G_{v}=\left\langle S_{v} \mid R_{v}\right\rangle$ be presentation of the vertex groups. Then we have

$$
\begin{aligned}
\pi_{1}(\mathbb{G}, T)=\langle & \bigcup_{v \in V(\Gamma)} S_{v} \cup\left\{g_{e} \mid e \in E(\Gamma) \backslash E(T)\right\} \mid \\
& \left.\bigcup_{v \in V(\Gamma)} R_{v} \cup\left\{g_{e} g_{\bar{e}} \mid e \in E(\Gamma) \backslash E(T)\right\}\right\rangle
\end{aligned}
$$

Thus, there exists a free group F with $\pi_{1}(\mathbb{G}, T) \cong\left(*_{v \in V(\Gamma)} G_{v}\right) * F$.
Example 4.6.2. Let $\mathbb{G}=(\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups, where Γ is a star, and let A be a group. Let $G_{e}=A$ for all $e \in E(\Gamma)$ and $G_{z}=A$ for the central vertex z of Γ. Let $G_{v}=\left\langle S_{v} \mid R_{v}\right\rangle$ be the presentation of the vertex groups. Then $\pi_{1}(\mathbb{G}, \Gamma)$ has the presentation

$$
\begin{aligned}
\langle & \bigcup_{v \in V(\Gamma), v \neq z} S_{v} \mid \\
\bigcup_{v \in V(\Gamma), v \neq z} & R_{v} \\
& \left.\cup\left\{\alpha_{e}(a)\left(\alpha_{\bar{e}}(a)\right)^{-1} \mid e \in E(\Gamma) \text { und } i(e)=z ; a \in A\right\}\right\rangle
\end{aligned}
$$

So we have $\pi_{1}(\mathbb{G}, \Gamma) \cong{ }_{A} G_{v}$.
Theorem 4.6.3. Let $G=*_{A, i \in I} G_{i}$ be a free product with amalgamation over A of a family $\left(G_{i}\right)_{i \in I}$ of groups. Let $H \leq G$ be a subgroup whose intersection with each A^{g} with $g \in G$ is trivial. For $x \in G$ and $i \in I$, set $H_{i, x}:=H \cap x G_{i} x^{-1}$. Let X_{i} be a set of representatives of the double cosets $H g G_{i}$. Then there exists a free group F such that

$$
H \cong\left(*_{i \in I, x \in X_{i}} H_{i, x}\right) * F
$$

Proof. Let $\mathbb{G}=(\mathcal{G}, X, \Lambda)$ be a graph of groups, where X is a star with centre v_{A} and there exists a leaf v_{i} for each $i \in I$. The edge groups are all A and the vertex groups of the centre is A, too. Let G_{i} be the vertex group for the leaf v_{i}. The maps α_{e} are the identity if $i(e)=v_{A}$ and the monomorphism from A to G_{i} given by the free product with amalgamation otherwise. Set $T:=\widetilde{\mathbb{G}}_{v_{A}}$. By Example 4.6.2 we have $\pi_{1}(\mathbb{G}) \cong G$. Thus, G and hence H act without inversion on T and we may think of the vertex and edge stabilisers of vertices or edges of T in $\pi_{1}(\mathbb{G})$ as stabilisers in G (cf. Lemmas 4.4.3 and 4.4.4). In particular, the edge stabilisers are subgroups of G that are conjugated to A.

Let $\Gamma:=T / H$ and let \mathcal{T} be a spanning tree of Γ. Let $\mathbb{G}_{H}=\left(\mathcal{G}_{H}, \Gamma, \Lambda_{H}\right)$ be the graph of groups that is induced by the action of H on T : we have $G_{v}^{H}=G_{v} \cap H$ and $G_{e}^{H}=G_{e} \cap H$ for all vertices v and edges e of Γ. Then Theorem 4.4.7 implies $H \cong \pi_{1}\left(\mathbb{G}_{H}, \mathcal{T}\right)$. Since H has trivial intersection with each subgroup of G that is conjugated to A, we obtain $G_{e}^{H}=1$ for all edge groups of Γ. By Example 4.6.1 we obtain

$$
H \cong \pi_{1}\left(\mathbb{G}_{H}, \mathcal{T}\right) \cong\left(*_{v \in V(\Gamma)} G_{v}^{H}\right) * F
$$

where F is a free group.
The vertices of T correspond to the set ${ }^{9}$

$$
G / A \cup \bigcup_{i \in I} G / G_{i}
$$

and thus the vertices of Γ and thus \mathcal{T} correspond to the ser ${ }^{10}$

$$
H \backslash G / A \cup \bigcup_{i \in I} H \backslash G / G_{i}
$$

since we just combine the H-orbits. The embedding of \mathcal{T} in T defines a set of representatives $X_{A} \subseteq G / A$ of $H \backslash G / A$ and a set of representatives $X_{i} \subseteq G / G_{i}$ of $H \backslash G / G_{i}$. If $x \in X_{A}$, then the corresponding group $G_{v_{A}}$ is exactly $H \cap x A x^{-1}$ and, if $x \in X_{i}$, then the corresponding group $G_{v_{i}}$ is exactly $H \cap x G_{i} x^{-1}$. Since $H \cap x A x^{-1}=1$, we obtain the assertion.

[^18]Theorem 4.6.3 for $A=1$ implies the subgroup theorem of Kurosh.
Corollary 4.6.4 (Kurosh's subgroup theorem). Let $G=*_{i \in I} G_{i}$ be a free product of a family $\left(G_{i}\right)_{i \in I}$ of groups. Let $H \leq G$ be a subgroup. For $x \in G$ and $i \in I$ let $H_{i, x}:=H \cap x G_{i} x^{-1}$. Let X_{i} be a set of representatives of the double cosets $H g G_{i}$. Then there exists a free group F such that

$$
H \cong\left(*_{i \in I, x \in X_{i}} H_{i, x}\right) * F .
$$

Note that Corollary 4.6.4 implies in particular that the order of any element of H must be the order of some element of one of the G_{i}, if it is finite.

4.7 Stallings' theorem

In this section, we will show that finitely generated groups with more than one end always split over a finite subgroup either as free product with amalgamation or as HNN extension.

Theorem 4.7.1 (Stallings' theorem). Let G be a finitely generated group with more than one end. Then one of the following holds.
(1) There exists three subgroups A, B, H of G such that H is finite and $A *_{H} B \cong$ G is a proper free product with amalgamation.
(2) There exists a subgroup H of G and an isomorphism φ between two finite subgroups of G with $G \cong H *_{\varphi}$.

We will obtain Theorem 4.7.1 as corollary of Proposition 4.7.2.
Proposition 4.7.2. Let G be a finitely generated group with more than one end. Then there exists a tree T such that G acts on T edge-transitively and without inversion such that all edge stabilisers are finite and no vertex stabiliser is G.

Proof of Theorem 4.7.1. Let T be the tree from Proposition 4.7.2. The graph of groups for the action of G on T consists of a single edge and at most two vertices because of the edge transitivity. Then Example 4.3.4 directly implies Theorem 4.7.1, since the monomorphisms of the edge groups into the vertex groups in Example 4.3.4 cannot be surjective.

Thus, we want to construct a tree such that G acts on that tree in a suitable way.

Proof of Proposition 4.7.2. Let $\Gamma=(V, E)$ be a locally finite Cayley graph of G. Then Γ has more than one end, since G has more than one end. First, we consider the case that Γ has at least three ends. Then Lemma 3.4.3implies that Γ has infinitely many ends. We set

$$
\mathcal{B}_{i}:=\{U \subseteq V| | U|=\infty=|V \backslash U| \text { and }| E(U, V \backslash U) \mid \leq i\}
$$

Since Γ has more than one end, there exists a finite set $S \subseteq V$ such that two rays lie in distinct components of $G-S$ eventually. If i is the number of edge from S into one of these components, then we obtain $\mathcal{B}_{i} \neq \emptyset$. Let $m \in \mathbb{N}$ be minimal with $\mathcal{B}_{m} \neq \emptyset$. The minimality of m implies that all $U \in \mathcal{B}_{m}$ are connected. If $U \subseteq V$, then we set $\bar{U}:=V \backslash U$.
Claim 1. If $U_{1} \supsetneq U_{2} \supsetneq \ldots$ is a chain in \mathcal{B}_{m}, then we have $\bigcap_{i \in \mathbb{N}} U_{i}=\emptyset$.
Proof of Claim 1. Let us suppose that there exists a chain $U_{1} \supsetneq U_{2} \supsetneq \ldots$ in \mathcal{B}_{m} such that $U:=\bigcap_{i \in \mathbb{N}} U_{i}$ is not empty. Then there exists an edge e_{1} one of whose incident vertices lies in U and the other lies in U_{1} but outside of U and there is an index $i_{1} \in \mathbb{N}$ such that

$$
e_{1} \in E\left(\overline{U_{i_{1}}}, U\right) \backslash E\left(\overline{U_{i_{1}-1}}, U\right)
$$

Analogously, there exists an edge $e_{2} \in E\left(U_{i_{1}}\right)$ with exactly one of its incident vertices in U. Let $i_{2} \in \mathbb{N}$ such that

$$
e_{2} \in E\left(\overline{U_{i_{2}}}, U\right) \backslash E\left(\overline{U_{i_{2}-1}}, U\right)
$$

Then we have $i_{2}>i_{1}$ and e_{1} and e_{2} lie in $E\left(\overline{U_{i_{2}}}, U\right)$. This way, we can find infinitely many edges and for every $n \in \mathbb{N}$ there exists i_{n} such that the first n of these edges lie in $E\left(\overline{U_{i_{n}}}, U\right)$. For $n>m$ this contradicts our choice of the sets $U_{i} \in \mathcal{B}_{m}$.
Because of Claim 1, there exists a minimal $W \in \mathcal{B}_{m}$ with $1 \in W$.
Claim 2. For every $U \in \mathcal{B}_{m}$ one of the following four sets is finite:

$$
U \cap W, \bar{U} \cap W, U \cap \bar{W}, \bar{U} \cap \bar{W}
$$

Proof of Claim 2. Let us suppose that all four intersections are infinite. Then each of these sets contains a ray, since Γ is locally finite. For all $A \in\{U, \bar{U}\}$ and $B \in\{W, \bar{W}\}$ we obtain

$$
E(A \cap B, \overline{A \cap B}) \geq m
$$

by the minimality of m. Every edge of $E(U, \bar{U}) \cup E(W, \bar{W})$ lies in exactly two of the sets $E(A \cap B, \overline{A \cap B})$. We obtain

$$
\begin{aligned}
& \leq \sum_{\substack{A \in\{U, \bar{U}\} \\
B \in\{W, \bar{W}\}}}|E(A \cap B, \overline{A \cap B})| \\
& \leq 2|E(U, \bar{U})|+2|E(W, \bar{W})| \\
& \leq 4 m
\end{aligned}
$$

and thus, all inequalities must be equalities and all infinite components of these intersections must lie in \mathcal{B}_{m}. We may assume that 1 lies in $U \cap W$. Because of $U \cap W \in \mathcal{B}_{m}$ and the minimality of W with respect to containing 1, we have $U \cap W=W$. This implies $\bar{U} \cap W=\emptyset$. This contradiction proves the claim.

We define an equivalence relation \cong on \mathcal{B}_{m} via

$$
U_{1} \cong U_{2}: \Longleftrightarrow U_{1} \cap \overline{U_{2}} \text { and } \overline{U_{1}} \cap U_{2} \text { are finite }
$$

and a strict order $\sqrt{11}$ via

$$
U_{1} \prec U_{2}: \Longleftrightarrow \overline{U_{1}} \cap U_{2} \text { finite, but } U_{1} \neq U_{2}
$$

It is easy to verify that these two relations have the properties as claimed; we will skip it at this point.

Claim 3. Let $A, U \in \mathcal{B}_{m}$ with $W \prec A \prec U$. Then there are only finitely many $g \in G$ with $W \prec g A \prec U$.

Proof of Claim 3. Let $\Delta \subseteq \Gamma$ be a finite connected subgraph that contains $E(X, \bar{X})$ for all $X \in\{A, U, W\}$. For all $g \in G$ except for finitely many, this implies $\Delta \cap g \Delta=\emptyset$. Let $g \in G$ with $\Delta \cap g \Delta=\emptyset$ and suppose $W \prec g A \prec U$. Then $U \cap g \bar{A}$ and $g A \cap \bar{W}$ are finite. Since Δ is connected but avoids $E(g A, g \bar{A})$, it lies in either $g A$ or in $g \bar{A}$. First, we assume that Δ lies in $g A$. Then we have either $W \subseteq g A$ or $\bar{W} \subseteq g A$, since W and \bar{W} are connected. Since $g A \cap \bar{W}$ is finite, we must have $W \subseteq g A$, which implies $g \bar{A} \cap W=\emptyset$ and hence $g A \cong W$, a contradiction to $W \prec g A$. With a similar argument, the case that Δ lies in $g \bar{A}$ leads to a contradiction.

We set

$$
T:=\{g W, g \bar{W} \mid g \in G\} / \cong
$$

We extend the definition of the complement and of \prec to T : for $\mathcal{U}_{1}, \mathcal{U}_{2} \in T$ set

$$
\overline{\mathcal{U}_{1}}:=\left\{\overline{U_{1}} \mid U_{1} \in \mathcal{U}_{1}\right\}
$$

and

$$
\mathcal{U}_{1} \prec \mathcal{U}_{2}: \Longleftrightarrow \exists U_{1} \in \mathcal{U}_{1}, U_{2} \in \mathcal{U}_{2}: U_{1} \prec U_{2}
$$

Claim 4. The triple $\left(T,{ }^{-}, \prec\right)$ is a tree set, i. e., it has the following properties:
(1) $\overline{\bar{t}}=t$ and $t \neq \bar{t}$ for all $t \in T$;
(2) \prec is a strict order on T;
(3) $t_{1} \prec t_{2} \Longleftrightarrow \overline{t_{2}} \prec \overline{t_{1}}$ for all $t_{1}, t_{2} \in T$;
(4) for $t_{1}, t_{2} \in T$ exactly one of the following cases is true:

$$
t_{1}=t_{2}, \overline{t_{1}}=t_{2}, t_{1} \prec t_{2}, t_{1} \prec \overline{t_{2}}, \overline{t_{1}} \prec t_{2}, \overline{t_{1}} \prec \overline{t_{2}}
$$

(5) for no $t \in T$, the set $T_{t}^{\prec}:=\left\{t^{\prime} \in T \mid t^{\prime} \prec t\right\}$ contains an infinite chain $t_{1} \prec t_{2} \prec \cdots$.

[^19]Additionally, the tree set has the following property.
(6) there exist no maximal and minimal elements with respect to \prec.

Proof of Claim 4. Statement (1) follows directly from the definition of the complement and (3) follows directly from the definition of \prec. Since \prec is a strict order on \mathcal{B}_{m}, the same holds for \prec on T. Because of Claim 2, we obtain (4) and Claim 3 implies (5).
Let us suppose that $U \in \mathcal{B}_{m}$ is maximal with respect to \prec. In particular, U is infinite. Let Δ be a finite subgraph of Γ such that $\Gamma-\Delta$ has three infinite components. Let $g \in G$ such that $g \Delta$ lies in U. This element g exists, since Γ is locally finite. Let $h \in G$ such that $h E(W, \bar{W})$ lies in an infinite component of $\Gamma-g \Delta$ that intersects \bar{U} trivially. Then we have either $U \prec h W$ or $U \prec h \bar{W}$, which contradicts the maximality of U. Analogously, we obtains a contradiction, if U is minimal with respect to \prec. Thus, T has no maximal and no minimal elements with respect to \prec.

By an exercise, we obtain the existence of a tree \mathcal{T} with edges T and vertices T / \sim, where

$$
t_{1} \sim t_{2}: \Longleftrightarrow t_{1}=t_{2} \vee\left(t_{1} \prec \bar{t}_{2} \wedge \neg \exists t \in T: t_{1} \prec t \prec \bar{t}_{2}\right)
$$

Since T is G-invariant ${ }^{12}, G$ acts on \mathcal{T}. The action of G has at most two orbits on the tree set since it consists of the equivalence classes of elements $g W$ or $g \bar{W}$. In the exercise, we also saw that $g W$ and $g \bar{W}$ form the same edge (up to its direction). Thus, G acts on \mathcal{T} and it acts transitively on the edges of \mathcal{T}. If this action is not without inversion, we subdivide each edge once and obtain an action without inversion. The stabiliser of W is finite, since it is the stabiliser of the finite edge set $E(W, \bar{W})$ is and since G acts freely on Γ. In order to show that the stabilisers of the edge of \mathcal{T}, that are the elements of T, are finite, too, it suffices to show that only finitely many elements of $\{g W, g \bar{W} \mid g \in G\}$ are equivalent with respect to \cong. This is a direct consequence of Claim 3 and Claim 4 (6). Thus, the statement on the edge stabilisers follows from Lemma 1.1.10, since every element of T lies in the orbit of the equivalence class of W or of \bar{W}.

Since there are no maximal or minimal elements with respect to \prec by Claim 4(6), there exists a path of length at least 3 in \mathcal{T}. This and the transitivity of the action on the edges implies that there is no vertex that is fixed by all of G.

Let us now briefly discuss the case that Γ has exactly two ends. The reason, why the above proof fails is that the proof of Claim 4 (6) fails, the set T consists of at most two elements and thus we cannot conclude that the splitting is proper. In this situation, we have to work more to find some $U \in \mathcal{B}_{m}$ such that for U and $g U$ we have one of the cases of Statement (4) in the definition of a tree set, where \prec is now replaced by \subseteq. Then we also obtain a tree that contains a path of length at least 3 , which implies that the splitting is proper ${ }^{133}$

[^20]Corollary 4.7.3. The property of being a proper free product with amalgamation or an HNN extension over a finite group is a quasi-isometry invariant.

We have shown that we can split groups with more than one end, e.g. as free product with amalgamation $A *_{H} B$. But now it can happen that one or two of these groups A and B have more than one end, too. Can we continue this indefinitely? Can it happen that again and again one of the groups involed in the product has more than one end?

Definition. A finitely generated group G is $\mathbf{0}$-accessible if it has at most one end. For $n \in \mathbb{N} \backslash\{0\}$, the group is \boldsymbol{n}-accessible if it is isomorphic either to $A *_{H} B$ for subgroups $A \neq H \neq B$, where H is finite and, for some $i_{A}, i_{B}<n$, the groups A and B are $i_{A^{-}}$and i_{B}-accessible, respectively, or to $A *_{\varphi}$ for some i-accessible group A with $i<n$ and an isomorphism φ between finite subgroups. We call G accessible if it is n-accessible for some $n \in \mathbb{N}$.

Accessibility of groups can be characterised using the Bass-Serre theory as follows.

Proposition 4.7.4. A finitely generated group is accessible if and only if it is the fundamental group of a finite graph of groups whose edge groups are finite and whose vertex groups are finitely generated have at most one end.

Proof. Exercise
Wall conjectured the following.
Conjecture 4.7.5 (Wall 1971). Every finitely generated group is accessible.
A first positive result is due to Dunwoody.
Theorem 4.7.6 (Dunwoody 1985). Every finitely presented group is accessible.
The general conjecture, however, was disproved a bit later.
Theorem 4.7.7 (Dunwoody 1991). There are finitely generated groups that are not accessible.

Another important result for accessible groups follows from a theorem of Thomassen and Woess.

Theorem 4.7.8 (Thomassen and Woess 1993). A finitely generated group is accessible if and only if one (and hence every) of its locally finite Cayley graphs has the following property: there exists $n \in \mathbb{N}$ such that every two ends can be separated by at most n edges.

Corollary 4.7.9. Accessibility is a quasi-isometry invariant.

Chapter 5

Hyperbolic groups

5.1 Hyperbolic graphs and groups

Definition. Let $\Gamma=(V, E)$ be a graph and let $\delta \in \mathbb{R}_{\geq 0}$. Let $x_{1}, x_{2}, x_{3} \in V$ and let P_{i} be a shortest path between x_{i} and $x_{i+1}(\bmod 3)$. We call the tupel

$$
\left(x_{1}, x_{2}, x_{3} ; P_{1}, P_{2}, P_{3}\right)
$$

a geodesic triangle. It is δ-thin if for every $x \in V\left(P_{i}\right)$ there exists a $y \in$ $\bigcup_{i \neq j} V\left(P_{j}\right)$ with $d(x, y) \leq \delta$. The graph Γ is δ-hyperbolic if every geodesic triangle is δ-thin and hyperbolic if it is δ^{\prime}-hyperbolic for some $\delta^{\prime} \in \mathbb{R}_{\geq 0}$.

Example 5.1.1. (1) Trees are 0-hyperbolic.
(2) The grid \mathbb{Z}^{2} is not hyperbolic.

Remark. In the literature, hyperbolicity is usually defined for metric spaces. In this context, edges of graphs will be considered as continuous images of $[0,1]$, similar to planar graphs. Thus, there are small differences for the involved constants δ. Often, the result trees are the 0-hyperbolic graphs is mentioned, which is wrong for our definition.

We obtain directly from the definition of δ-thin geodesic triangles that in hyperbolic graphs geodesic paths between the same vertices lie close to each other.

Lemma 5.1.2. Let Γ be a δ-hyperbolic graph and let $x, y \in V(G)$. Let P_{1}, P_{2} be two geodesic $x-y$ paths. Then we have $d\left(v, P_{i}\right) \leq \delta$ for all $v \in V\left(P_{j}\right)$ with $i, j \in\{1,2\}$.

The previous lemma even holds for quasi-geodesic paths. But before we can show that, we first have to prove a result on the divergence of geodesic paths.

Definition. Let Γ be a graph. A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is a divergence function for Γ if for all geodesic paths $P_{1}=x_{0} \ldots x_{n}$ and $P_{2}=y_{0} \ldots y_{m}$ with $x_{0}=y_{0}$
and for all $r, R \in \mathbb{N}$ with $r+R \leq \min \{m, n\}$ we have the following as soon as $d\left(x_{R}, y_{R}\right)>f(0)$: for all paths Q outside of $B_{R+r-1}\left(x_{0}\right)$ from x_{R+r} to y_{R+r} we have $\ell(Q)>f(r)$.

We say that geodesic paths diverge exponentially if there is an exponential divergence function ${ }^{1}$

Proposition 5.1.3. A graph is hyperbolic if and only if geodesic paths diverge exponentially in it.

Proof. First, let Γ be a hyperbolic graphs. Let $P_{1}=x_{0} \ldots x_{R+r}$ and $P_{2}=$ $y_{0} \ldots y_{R+r}$ be two geodesic paths with common first vertex $x_{0}=y_{0}$ and length $R+r$ with $r, R \in \mathbb{N}$ such that $d\left(x_{R}, y_{R}\right)>2 \delta$. Let Q be a $x_{R+r}-y_{R+r}$ path that lies outside of $B_{R+r-1}\left(x_{0}\right)$ and let Q_{g} be a geodesic $x_{R+r}-y_{R+r}$ path.

Let $v \in V\left(Q_{g}\right)$ and let $w \in V(Q)$ with

$$
d_{Q}\left(x_{R+r}, w\right)=\left\lceil\frac{d_{Q}\left(x_{R+r}, y_{R+r}\right)}{2}\right\rceil
$$

Let Q_{1} be a geodesic $x_{R+r}-w$ path and Q_{2} a geodesic $w-y_{R+r}$ path. Then there exists $u \in V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ with $d(v, u) \leq \delta$. We may assume that u lies on Q_{1}. Inductively, we obtain

$$
d(v, Q) \leq \delta \log _{2}\left(d_{Q}\left(x_{R+r}, y_{R+r}\right)\right)
$$

Because of $d\left(x_{R}, y_{R}\right)>2 \delta$ there is no vertex a on P_{2} with $d\left(x_{R}, a\right) \leq \delta$: such a vertex had distance at least $R-\delta$ and at most $R+\delta$ to x_{0} and thus distance at most δ to y_{R}. Thus, there exists a vertex on Q_{g} with distance at most δ to x_{R}. We may assume that this vertex is v. We obtain

$$
r+R=d(x, Q) \leq d(x, v)+d(v, Q) \leq R-\delta+\delta \log _{2}(\ell(Q))
$$

Thus, we have

$$
\ell(Q) \geq 2^{\frac{r+\delta}{\delta}}
$$

and hence geodesic paths diverge exponentially in Γ.
Let us now assume that geodesic paths diverge exponentially in Γ. For this, let f be an exponential divergence function for Γ. Let $\left(x, y, z ; P_{1}, P_{2}, P_{3}\right)$ be a geodesic triangle in Γ. Let $x_{1} \in V\left(P_{1}\right)$ and $x_{2} \in V\left(P_{3}\right)$ with $d\left(x, x_{1}\right)=d\left(x, x_{2}\right)$ maximal such that $d(u, v) \leq f(0)$ for all $u \in V\left(P_{1}\right)$ and all $v \in V\left(P_{3}\right)$ with $d\left(x, x_{1}\right) \geq d(x, u)=d(x, v)$. Analogously, we define y_{1} and y_{2} on P_{2} and P_{1}, respectively, and z_{1} and z_{2} on P_{3} and P_{2}, respectively.

First, we consider the case that $x P_{1} x_{1}$ and $y_{2} P_{1} y$ cover P_{1}. Then there exists $x_{3} \in V\left(x P_{3} x_{2}\right)$ and $y_{3} \in V\left(y P_{2} y_{1}\right)$ with

$$
d\left(x_{3}, y_{3}\right) \leq 2 f(0)+1
$$

[^21]The paths P_{2} and P_{3} are geodesic and thus we obtain

$$
d\left(z, x_{3}\right)+2 f(0)+1 \geq d\left(z, y_{3}\right)
$$

Since f is an exponential divergence function, the distances $d\left(z_{1}, x_{3}\right)$ and $d\left(z_{2}, y_{3}\right)$ are bounded by $f^{-1}(4 f(0)+2)$. Thus, the distances $d\left(z_{1}, x_{2}\right)$ and $d\left(z_{2}, y_{1}\right)$ are bounded by the same value. Thus, our geodesic triangle is λ-thin for

$$
\lambda=f^{-1}(4 f(0)+2)+2 f(0)+1
$$

Let us now consider the case that there exists a vertex on P_{1} outside of $x P_{1} x_{1}$ and $y_{2} P_{1} y$ and that the analogous statement hold for the other two sides. We set

$$
\begin{aligned}
K_{1} & :=d\left(x_{1}, y_{2}\right) \\
K_{2} & :=d\left(y_{1}, z_{2}\right) \text { and } \\
K_{3} & :=d\left(z_{1}, x_{2}\right)
\end{aligned}
$$

We may assume $K_{1} \geq K_{2} \geq K_{3}$. Let $v \in V\left(P_{1}\right)$ with $d\left(x_{1}, v\right)=\left\lceil d\left(x_{1}, y_{2}\right) / 2\right\rceil$.
Claim 1. The path $x_{2} P_{3} z$ lies outside of $B_{d(y, v)-1}(y)$.
Proof of Claim 1. Let us suppose that there exists a vertex $u \in V\left(x_{2} P_{3} z\right)$ with $d(u, y) \leq d(y, v)-1$. Because of

$$
d(y, v)+d(x, v)-1<d(x, y)
$$

we have $u \notin B_{d(x, v)}(x)$ and thus $d\left(u, x_{2}\right) \geq K_{1} / 2$. Because of $K_{2} \geq K_{3}$ there exists $w \in V\left(P_{2}\right)$ with $d(u, z)=d(w, z)$. We obtain

$$
\begin{aligned}
K_{1} / 2 & \leq d\left(u, x_{2}\right) \\
& =d\left(x_{2}, z\right)-d(u, z) \\
& =d\left(x_{2}, z_{1}\right)+d\left(z_{1}, z\right)-d(u, z) \\
& \leq d\left(z_{2}, y_{1}\right)+d\left(z_{2}, z\right)-d(z, w) \\
& =d\left(z, y_{1}\right)-d(z, w) \\
& =d\left(w, y_{1}\right)
\end{aligned}
$$

Thus, w does not lie in $B_{d(y, v)-1}(y)$. We obtain

$$
\begin{aligned}
d(y, z) & =d(z, w)+d(w, y) \\
& \leq d(z, u)+d(u, y) \\
& <d(z, w)+d(w, y) \\
& =d(y, z)
\end{aligned}
$$

This contradiction shows the assertion.

Let $s \in V\left(P_{2}\right)$ with $d(y, s)=d(y, v)$. Note that Claim 1 implies the existence of s. There exists a $v-s$ path in the complement of $B_{d(y, v)-1}(y)$ of length at most

$$
\begin{aligned}
& d\left(v, x_{1}\right)+f(0)+K_{3}+3 f(0)+d\left(z_{2}, s\right) \\
\leq & \left\lceil K_{1} / 2\right\rceil+4 f(0)+K_{1}+\left\lceil K_{1} / 2\right\rceil \\
\leq & 2 K_{1}+4 f(0)+1
\end{aligned}
$$

Thus, we have

$$
f\left(\left\lfloor\frac{K_{1}}{2}\right\rfloor\right) \leq 2 K_{1}+4 f(0)+1
$$

Since f is an exponential function, there exists $K \in \mathbb{N}$ (independent of K_{1}) with $K_{1} / 2 \leq K$. Thus, our geodesic triangle in λ^{\prime}-thin for $\lambda^{\prime}:=4 K+4 f(0)+1$. For $\delta=\max \left\{\lambda, \lambda^{\prime}\right\}$ we obtain that Γ is δ-hyperbolic.
Proposition 5.1.4. Let Γ be a hyperbolic graph and let $x, y \in V(G)$. Let P_{1} be a geodesic path and let P_{2} be $a(\gamma, c)$-quasi-geodesic $x-y$ path with $\gamma \in \mathbb{R}_{\geq 1}$ and $c \in \mathbb{R}_{\geq 0}$.
(1) There exists $\lambda \in \mathbb{N}$, depending only on (δ, γ, c), such that $d\left(v, P_{2}\right) \leq \lambda$ for all $v \in V\left(P_{1}\right)$.
(2) There exists $\kappa \in \mathbb{N}$, depending only on (δ, γ, c), such that $d\left(v, P_{i}\right) \leq \kappa$ for all $v \in V\left(P_{j}\right)$ with $i, j \in\{1,2\}$.
Proof. By Proposition 5.1.3 there exists an exponential divergence function $f: \mathbb{N} \rightarrow \mathbb{R}$. Let $D:=\max \left\{d\left(v, P_{2}\right) \mid v \in V\left(P_{1}\right)\right\}$ and let $v \in V\left(P_{1}\right)$ with $d\left(v, P_{2}\right)=D$. Let u^{\prime} be a vertex on $x P_{1} v$ with $d\left(u^{\prime}, v\right)=2 D$, if possible, and $u^{\prime}=x$ otherwise. Analogously, we choose w^{\prime} on $v P_{1} y$. Note that we have

$$
d(v, x) \geq D \leq d(v, y)
$$

by the choice of v. We choose $u \in V\left(u^{\prime} P_{1} v\right)$ with $d(u, v)=D$ and $w \in V\left(v P_{1} w^{\prime}\right)$ with $d(v, w)=D$. By the choice of D, there exists $a \in V\left(P_{2}\right) \cap B_{D}\left(u^{\prime}\right)$ and $b \in V\left(P_{2}\right) \cap B_{D}\left(w^{\prime}\right)$. Thus, we have $d(a, b) \leq 6 D$ and $d_{P_{2}}(a, b) \leq 6 \gamma D+c$, since P_{2} is a (γ, c)-quasi-geodesic path. Hence, we find a path of length at most $4 D+6 \gamma D+c$ from u to w that lie outside of $B_{D-1}(v)$. Since f is an exponential divergence function, but the length of the path is only linear in D, we obtain the existence of an upper bound λ, depending only on (δ, γ, c) with $D \leq \lambda$. This implies (1).

For the proof of (2), let us suppose that P_{2} contains vertices that lie outside of $B_{\lambda}\left(P_{1}\right)$. Let P^{\prime} be a maximal subpath of P_{2} such that its inner vertices lie outside of $B_{\lambda}\left(P_{1}\right)$. Let u and v be the end vertices of P^{\prime}. We may assume that u lies on $x P_{2} v$. By the choice of P^{\prime} there exists $a, b \in V\left(P_{1}\right)$ with $a \in B_{\lambda}(u)$ and $b \in B_{\lambda}(v)$. By (1) every vertex on $a P_{1} b$ has distance at most λ to some vertex of P_{2}, that lies in $x P_{2} u \cup v P_{2} y$ by the choice of P^{\prime}. In particular, there exists a vertex z on $a P_{1} b$ that has distance at most λ to some vertex z_{1} on $x P_{2} u$ and
distance at most $\lambda+1$ to some vertex z_{2} on $v P_{2} y$. We obtain $d\left(z_{1}, z_{2}\right) \leq 2 \lambda+1$ and hence $d_{P_{2}}\left(z_{1}, z_{2}\right) \leq \gamma(2 \lambda+1)+c$, since P_{2} is a (γ, c)-quasi-geodesic path. Thus, the length of P^{\prime} is bounded by $\gamma(2 \lambda+1)+c$ and we obtain (2) for $\kappa=\lambda+\gamma \lambda+\lceil(\gamma+c) / 2\rceil$.

Lemma 5.1.5. Let Γ and Δ be two graphs, let $\varphi: \Gamma \rightarrow \Delta$ be a (γ, c)-quasiisometric embedding with $\gamma \geq 1$ and $c \geq 0$ and let $P=x_{0} \ldots x_{n}$ be a geodesic path in Γ. Then $\varphi(P)$ induces a $\left(\gamma^{\prime}, c^{\prime}\right)$-quasi-geodesic $x_{0} \varphi-x_{n} \varphi$ path Q in Δ such that every vertex of Q has distance at most a to some vertex of $\varphi(P)$, where $\gamma^{\prime}, c^{\prime}$ and a only depend on γ and c.

Proof. For every $0 \leq i<n$, let Q_{i} be a geodesic path between $\varphi\left(x_{i}\right)$ and $\varphi\left(x_{i+1}\right)$. The union of these paths is a $x_{0} \varphi-x_{n} \varphi$ walk that contains a $x_{0} \varphi-x_{n} \varphi$ path. That this path satisfies our claim is shown in an exercise.

Proposition 5.1.6. Let Γ and Δ be two graphs. If there exists a (γ, c)-quasiisometric embedding $\varphi: \Gamma \rightarrow \Delta$ for some $\gamma \geq 1$ and $c \geq 1$ and if Δ is hyperbolic, then Γ is hyperbolic.

Proof. Let $\left(x_{1}, x_{2}, x_{3} ; P_{1}, P_{2}, P_{3}\right)$ be a geodesic triangle in Γ. Let $y_{i}:=\varphi\left(x_{i}\right)$ for all $i \in\{1,2,3\}$. Then $\varphi\left(P_{i}\right)$ induces a $\left(\gamma^{\prime}, c^{\prime}\right)$-quasi-geodesic $y_{i}-y_{i+1}$ path P_{i}^{\prime} by Lemma 5.1.5, where γ^{\prime} and c^{\prime} only depend on γ and c. Let Q_{i} be geodesic $y_{i}-y_{i+1}$ paths for all $i \in\{1,2,3\}$. Let $x \in V\left(P_{i}\right)$. By Proposition 5.1.4(2) there exists κ, depending only on (δ, γ, c), such that there exists $x^{\prime} \in V\left(Q_{i}\right)$ with $d\left(\varphi(x), x^{\prime}\right) \leq \kappa$. Since Δ is δ-hyperbolic, we find $y^{\prime} \in V\left(Q_{j}\right)$ for some $j \neq i$ with $d\left(x^{\prime}, y^{\prime}\right) \leq \delta$ and $y^{\prime \prime} \in P_{j}^{\prime}$ with $d\left(y^{\prime}, y^{\prime \prime}\right) \leq \kappa$. By Lemma 5.1.5 there exists $y \in V\left(P_{j}\right)$ with $d\left(y^{\prime \prime}, \varphi(y)\right) \leq \gamma+c$. Thus, we have

$$
\frac{1}{\gamma} d(x, y)-\gamma \leq d(\varphi(x), \varphi(y)) \leq 2 \kappa+\delta+\gamma+c
$$

and hence

$$
d(x, y) \leq \gamma(2 \kappa+\delta+\gamma+2 c)
$$

Thus, Γ is δ^{\prime}-hyperbolic for $\delta^{\prime}:=\gamma(2 \kappa+\delta+\gamma+2 c)$.
Corollary 5.1.7. Let Γ and Δ be two quasi-isometric graphs. Then Γ is hyperbolic, if and only if Δ is hyperbolic.

Definition. A finitely generated groups is hyperbolic if one (and hence by Proposition 3.1 .5 and Corollary 5.1 .7 every) of its locally finite Cayley graph is hyperbolic.

Example 5.1.8. (1) Finite groups are hyperbolic.
(2) Free groups are hyperbolic.
(3) The group \mathbb{Z}^{2} is not hyperbolic.

Lemma 5.1.9. Let Γ be a δ-hyperbolic graph and $K=x_{0} e_{0} \ldots x_{n}$ be a closed walk in Γ with $n>4 \delta+4$. Then there exist two vertices x_{i}, x_{j} such that $d\left(x_{i}, x_{j}\right)$ is smaller than the length of each of the two walks $x_{i} e_{i} \ldots x_{j}$ and $x_{j} e_{j} \ldots x_{i}$.

Proof. Let us suppose that the claim does not hold. Then, for all x_{i}, x_{j} we have that either $x_{i} e_{i} \ldots x_{j}$ or $x_{j} e_{j} \ldots x_{i}$ is a walk that belongs to a geodesic path. In particular, K corresponds to a cycle C.

Let $y_{1}, y_{2}, y_{3} \in V(C)$ with

$$
\begin{aligned}
d\left(y_{1}, y_{2}\right) & =\lfloor\ell(C) / 2\rfloor \\
d\left(y_{2}, y_{3}\right) & =\lceil\ell(C) / 4\rceil \text { and } \\
d\left(y_{3}, y_{1}\right) & =\ell(C)-d\left(y_{1}, y_{2}\right)-d\left(y_{2}, y_{3}\right)
\end{aligned}
$$

Let P_{i} be the subpath of C from y_{i} to $y_{i+1} \square^{2}$ that realises this distance. Thus, the paths P_{i} are geodesic paths and $\left(y_{1}, y_{2}, y_{3}, P_{1}, P_{2}, P_{3}\right)$ is a geodesic triangle. By the choice of y_{1} and y_{2} and because of $\ell(C) \geq 4 \delta+4$ there exists a vertex $v \in V\left(P_{1}\right)$ with

$$
d\left(v, y_{1}\right)>\delta<d\left(v, y_{2}\right)
$$

Since Γ is δ-hyperbolic, there exists $w \in V\left(P_{2}\right) \cup V\left(P_{3}\right)$ with $d(v, w) \leq \delta$. This contradicts our assumption $d(v, w)=d_{C}(v, w)$.

Theorem 5.1.10. Hyperbolic groups are finitely presented.
Proof. Let $G=\langle S \mid R\rangle$ be a δ-hyperbolic group, where S is a finite generating set. Let Γ be the Cayley graph of G and S. Every relator corresponds to a closed walk in Γ. If R contains a relator w of length more than $4 \delta+4$, then this corresponds to a closed walk $K=x_{0} e_{0} \ldots x_{n}$ of length more than $4 \delta+4$. By Lemma 5.1.9 there exist vertices x_{i}, x_{j} on K such that $d(x, y)$ is smaller than the lengths of $x_{i} e_{i} \ldots x_{j}$ and $x_{j} e_{j} \ldots x_{i}$. Let $y_{0} f_{0} \ldots y_{m}$ with $y_{0}=x_{i}$ and $y_{m}=x_{j}$ be a shortest walk between x_{i} and x_{j}. Then $x_{i} e_{i} \ldots x_{j} f_{m-1} \ldots f_{0} y_{0}$ and $y_{0} f_{0} \ldots f_{m-1} y_{m} e_{j} \ldots x_{i}$ are closed walks that correspond to words whose concatenation allows elementary reductions such that the resulting word is w. Thus, w lies in the normal subgroup generated by these two words of smaller length. Inductively, we obtain that R is generated as normal subgroup by words of length at most $4 \delta+4$. Since there are only finitely many such words over $S \cup S^{-1}$, we found a finite presentation of G.

5.2 Subgroups of hyperbolic groups

We want to show that infinite hyperbolic groups always contains elements of infinite order.
Definition. Let G be a finitely generated group, S a finite generating set of G and $g \in G$. Then cone of g with respect to S is the set

$$
\operatorname{Cone}_{S}(g):=\left\{h \in G \mid d_{S}(1, g h) \geq d_{S}(1, g)+d_{S}(1, h)\right\}
$$

${ }^{2}$ or to y_{1}, if $i=3$

Example 5.2.1. Let F be a free group of rank $n \in \mathbb{N}$ with free generating set S. Then F has exactly $2 \cdot|S|+1$ cones: besides Cone $_{S}(1)=F$ there are the cones $C^{\text {Cone }}(s)=\left\{s_{1} \ldots s_{n} \mid s_{i} \in S \cup S^{-1}, s_{1} \neq s^{-1}\right\}$ for each $s \in S \cup S^{-1}$.

Obviously, these cones are distinct (s^{-1} is the unique element of $S \cup S^{-1}$ that does not lie in $\left.\operatorname{Cone}_{S}(s)\right)$ and for every word $s_{1} \ldots s_{n}$ over $S \cup S^{-1}$ with $n \geq 2$ we have $\operatorname{Cone}_{S}\left(s_{1} \ldots s_{n}\right)=\operatorname{Cone}_{S}\left(s_{n}\right)$.

Definition. A group is a torsion group if each of its elements is a torsion element.
Proposition 5.2.2. Let G be an finitely generated infinite group that has only finitely many cones with respect to a finite generating set S. Then G is not a torsion group.
Proof. We set

$$
k:=\mid\left\{\text { Cone }_{S}(g) \mid g \in G\right\} \mid .
$$

Since S is finite, the Cayley graph Γ of G and S is locally finite. Thus and since G is infinite, there exists $g \in G$ with $d(1, g)>k$. Let $1=g_{0}, g_{1}, \ldots, g_{m}=g$ be a shortest path in Γ from 1 to g. Because of $m>k$ there exists two vertices $g_{i} \neq g_{j}$ with $i<j$ on this path that have the same cone. We claim that $h:=g_{i}^{-1} g_{j}$ has infinite order. For this, we will show by Induktion that we have

$$
d_{S}\left(1, g_{i} h^{n}\right) \geq d_{S}\left(1, g_{i}\right)+n \cdot d_{S}(1, h)
$$

for all $n \in \mathbb{N}$. The proposition immediately follows, since the previous statement implies that the elements $g_{i} h^{n}$ must be distinct for all $n \in \mathbb{N}$.

For $n=1$, the claim follows directly from the choice of h. So let $n \in \mathbb{N}$ such that the claim holds for n. Then we have $d_{S}\left(1, h^{n}\right)=n \cdot d_{S}(1, h)$ because of

$$
\begin{aligned}
d_{S}\left(1, g_{i}\right)+d_{S}\left(1, h^{n}\right) & \geq d_{S}\left(1, g_{i} h^{n}\right) \\
& \geq d_{S}\left(1, g_{i}\right)+n \cdot d_{S}(1, h) \\
& \geq d_{S}\left(1, g_{i}\right)+d_{S}\left(1, h^{n}\right)
\end{aligned}
$$

Furthermore, we have $h^{n} \in \operatorname{Cone}_{S}\left(g_{i}\right)=\operatorname{Cone}_{S}\left(g_{i} h\right)$. Thus, we obtain

$$
\begin{aligned}
d_{S}\left(1, g_{i} h^{n+1}\right) & =d_{S}\left(1, g_{i} h h^{n}\right) \\
& \geq d_{S}\left(1, g_{i} h\right)+d_{S}\left(1, h^{n}\right) \\
& =d_{S}\left(1, g_{i}\right)+d_{S}(1, h)+n \cdot d_{S}(1, h) \\
& =d_{S}\left(1, g_{i}\right)+(n+1) \cdot d_{S}(1, h)
\end{aligned}
$$

This finishes the induction.
Proposition 5.2.3. Let G be a hyperbolic group with finite generating set S. Then G has only finitely many cones with respect to S.

Proof. For $g \in G$ and $r \in \mathbb{N}$ we define the set

$$
P_{r}^{S}(g):=\left\{h \in B_{r}^{G, S}(1) \mid d_{S}(1, g h) \leq d_{S}(1, g)\right\}
$$

Let Γ be the Cayley-Graph of G and S. By assumption, there exists $\delta \in \mathbb{R}_{\geq 0}$ such that Γ is δ-hyperbolic. Set $r:=2 \delta+1$.

If we can show that the set $P_{r}^{S}(g)$ of each group element $g \in G$ already determines its cone, then the fact that each $P_{r}^{S}(g)$ is a subset of the finite set $B_{r}^{G, S}(1)$ implies that there are only finitely many distinct cones. Thus, we want to show that for all $g, g^{\prime} \in G$ with $P_{r}^{S}(g)=P_{r}^{S}\left(g^{\prime}\right)$ we have Cone ${ }_{S}(g)=$ Cone $_{S}\left(g^{\prime}\right)$.

Let $g, g^{\prime} \in G$ with $P_{r}^{S}(g)=P_{r}^{S}\left(g^{\prime}\right)$ and $h \in$ Cone $_{S}(g)$. By induction on $d_{S}(1, h)$, we show $h \in \operatorname{Cone}_{S}\left(g^{\prime}\right)$.

If $d_{S}(1, h)=0$, then we have $h=1$ and, obviously, we have $h \in \operatorname{Cone}_{S}\left(g^{\prime}\right)$. If $d_{S}(1, h)=1$, then $h \in \operatorname{Cone}_{S}(g)$ implies together with the definitions of cones and of $P_{r}^{S}(g)$ that h does not lie in $P_{r}^{S}(g)=P_{r}^{S}\left(g^{\prime}\right)$. Thus, it must lie in Cone $_{S}\left(g^{\prime}\right)$.

So let $d_{S}(1, h)>1$. Then there exists $s \in S \cup S^{-1}$ and $h^{\prime} \in G$ with $h=h^{\prime} s$ and $d_{S}\left(1, h^{\prime}\right)=d_{S}(1, h)-1$. Since $h \in \operatorname{Cone}_{S}(g)$, we have $h^{\prime} \in C o n e e_{S}(g)$ and $h^{\prime} \in$ Cone $_{S}\left(g^{\prime}\right)$ by induction.

Let us suppose that $h \notin$ Cone $_{S}\left(g^{\prime}\right)$ holds. Then we have

$$
d_{S}\left(1, g^{\prime} h\right)<d_{S}\left(1, g^{\prime}\right)+d_{S}(1, h)
$$

Let $s_{1}, \ldots, s_{n} \in S \cup S^{-1}$ with $s_{1} \ldots s_{n}=g^{\prime} h$ and $n=d_{S}\left(1, g^{\prime} h\right)$. Set $k_{1}:=$ $s_{1} \ldots s_{d_{S}\left(1, g^{\prime}\right)}$ and $k_{2}:=k_{1}^{-1} g^{\prime} h$. Then we have

$$
\begin{aligned}
d_{S}\left(1, g^{\prime} h\right) & =d_{S}\left(1, k_{1}\right)+d_{S}\left(1, k_{2}\right) \text { and } \\
d_{S}\left(1, k_{1}\right) & =d_{S}\left(1, g^{\prime}\right)
\end{aligned}
$$

and, since $h \notin \operatorname{Cone}_{S}\left(g^{\prime}\right)$, we obtain

$$
d_{S}\left(1, k_{2}\right) \leq d_{S}(1, h)-1
$$

We consider the element $h^{\prime \prime}:=g^{\prime-1} k_{1}$. We have

$$
\begin{aligned}
d_{S}\left(1, h^{\prime \prime}\right) & =d_{S}\left(1, g^{\prime-1} k_{1}\right) \\
& =d_{S}\left(g^{\prime}, k_{1}\right) \\
& \leq 2 \delta+1 \\
& \leq r
\end{aligned}
$$

where the second last inequality follows similarly as one of the exercises: the $s_{1} \ldots s_{n}$ define a geodesic path and a different one is defined by g^{\prime} and h^{\prime}. Its end vertices have distance 1 and we can use an argument as in one of the exercises to obtain $d_{S}\left(g^{\prime}, k_{1}\right) \leq 2 \delta+1$. Thus, $h^{\prime \prime}$ lies in $B_{r}^{G, S}(1)$.

Furthermore, we have

$$
d_{S}\left(1, g^{\prime} h^{\prime \prime}\right)=d_{S}\left(1, k_{1}\right)=d_{S}\left(1, g^{\prime}\right)
$$

and hence we obtain $h^{\prime \prime} \in P_{r}^{S}\left(g^{\prime}\right)=P_{r}^{S}(g)$. Because of $h \in$ Cone $_{S}(g)$ we get:

$$
\begin{aligned}
d_{S}(1, g)+d_{S}(1, h) & \leq d_{S}(1, g h) \\
& =d_{S}\left(1, g g^{\prime-1} g^{\prime} h\right) \\
& =d_{S}\left(1, g g^{\prime-1} k_{1} k_{2}\right) \\
& \leq d_{S}\left(1, g h^{\prime \prime}\right)+d_{S}\left(1, k_{2}\right) \\
& \leq d_{S}(1, g)+d_{S}(1, h)-1
\end{aligned}
$$

This contradiction finishes the induction and thus the proposition.
As an immediate corollary of Propositions 5.2 .2 and 5.2 .3 we obtain the following.

Theorem 5.2.4. Infinite hyperbolic groups are no torsion groups.
Next, we want to show that no hyperbolic groups has a subgroup isomorphic to \mathbb{Z}^{2}. Therefore, we first show that every infinite cyclic subgroup of a hyperbolic group is a quasi-isometric embedding of \mathbb{Z}.

Proposition 5.2.5. Let g be an element of infinite order in a hyperbolic group G. Then the function

$$
\psi: \mathbb{Z} \rightarrow G, z \mapsto g^{z}
$$

is a quasi-isometric embedding.
Proof. Let S be a finite generating set of the hyperbolic group G and let Γ be the Cayley graph of G and S. Let $\delta \geq 0$ such that Γ is δ-hyperbolic and set $n:=\left|\left\{g \in G \mid d_{S}(1, g) \leq 4 \delta+1\right\}\right|$. Here, a midpoint of a path is one of its (at most two) central vertices. First, we will show $d_{S}\left(1, g^{n r}\right) \geq r$ for all $r \in \mathbb{N}$. For this, let $r \in \mathbb{N}$ with $r>0$ and $k \in \mathbb{N}$ with

$$
d_{S}\left(1, g^{k}\right)>8 r+4 \delta+1
$$

Let P be a geodesic $1-g^{k}$ path, x a midpoint of P and P_{x} a subpath of P of length $2 r$ such that x is a midpoint of P_{x} as well. Let us show the following.

Claim 1. If $u \in B_{r}(1)$ and $v \in B_{r}\left(g^{k}\right)$, then we have $d_{S}\left(y, P_{x}\right) \leq 4 \delta+1$ for every midpoint y of each geodesic $u-v$ paths P^{\prime}.

Proof of Claim 1. Let $P^{\prime \prime}$ be a geodesic 1-v path. We have

$$
\left|d_{S}\left(1, g^{k}\right)-d_{S}(1, v)\right| \leq r
$$

and

$$
\left|d_{S}\left(1, g^{k}\right)-d_{S}(u, v)\right| \leq 2 r
$$

Thus, the midpoint y of P^{\prime} must have distance more than δ from $B_{r}(1)$ and $B_{r}\left(g^{k}\right)$ and, since Γ is δ-hyperbolic, there exists a vertex z on $P^{\prime \prime}$ with $d_{S}(y, z) \leq \delta$. Since the lengths of P^{\prime} and $P^{\prime \prime}$ differ by at most r, we have
$d_{S}\left(y, z^{\prime}\right) \leq\lceil r / 2\rceil+\delta$, where z^{\prime} is a midpoint of $P^{\prime \prime}$. Analogously, we find a vertex x^{\prime} on P of distance at most δ to z and such that

$$
d\left(x, x^{\prime}\right) \leq 2(\lceil r / 2\rceil+\delta) \leq r+2 \delta+1
$$

The claim follows.

Since $n=\left|B_{4 \delta+1}(1)\right|$, there are most $2 n r$ distinct vertices of distance at most $4 \delta+1$ to P_{x}. Since all g^{i} are distinct and G acts freely on Γ, the image of x under all g^{i} are distinct. At most $2 n r$ of these images have distance at most $4 \delta+1$ to P_{x}. Thus and since $d_{S}\left(1, g^{i}\right)=d_{S}\left(1, g^{-i}\right)$, there exists $f(r) \leq n r$ with $0<f(r)$ such that $g^{f(r)} \notin B_{r}(1)$ and $g^{k+f(r)} \notin B_{r}\left(g^{k}\right)$.

Claim 2. We have $d_{S}\left(1, g^{n R}\right) \geq R$ for all $R \in \mathbb{N}$ with $R>0$.
Proof of Claim 2, Let us suppose that there exists $R \in \mathbb{N}$ with $R>0$ and $d_{S}\left(1, g^{n R}\right)<R$. For every $m \in \mathbb{N}$ with $m>n R$, let $n_{m}, r_{m} \in \mathbb{N}$ such that $m=n_{m} n R+r_{m}$ and $0 \leq r_{m}<n R$. Since n_{m} can be arbitrarily large but there are only finitely many values for r_{m}, there exists for every $\varepsilon>0$ a q_{ε} with $n_{m} \varepsilon>d_{S}\left(1, g^{r_{m}}\right)$ for all m with $n_{m} \geq q_{\varepsilon}$. Let $m \in \mathbb{N}$ such that $n_{m} \geq q_{\varepsilon}$ for $\varepsilon:=R-d_{S}\left(1, g^{n R}\right)$. We obtain

$$
\begin{aligned}
d_{S}\left(1, g^{m}\right) & \leq d_{S}\left(1, g^{n_{m} n R}\right)+d_{S}\left(1, g^{r_{m}}\right) \\
& \leq n_{m} d_{S}\left(1, g^{n R}\right)+d_{S}\left(1, g^{r_{m}}\right) \\
& \leq n_{m}(R-\varepsilon)+d_{S}\left(1, g^{r_{m}}\right) \\
& <n_{m} R .
\end{aligned}
$$

Let $M \in \mathbb{N}$ such that $f(M)>n R$ and $n_{f(M)} \geq q_{\varepsilon}$. Then we have $f(M) \leq n M$ and $d_{S}\left(1, g^{f(M)}\right)>M$ by the choice of $f(M)$. So we obtain

$$
d_{S}\left(1, g^{f(M)}\right)<n_{f(M)} R \leq f(M) / n \leq M
$$

This contradicts the choice of $f(M)$ and proves our claim.
Now we are ready to prove that ψ is a quasi-isometric embedding. For this, let $i, j, m, r_{i j} \in \mathbb{Z}$ with $0 \leq m<n$ and $|i-j|=n r_{i j}+m$ and let $K \in \mathbb{R}_{\geq 0}$ with $d\left(1, g^{m^{\prime}}\right) \leq K$ for all $0 \leq m^{\prime}<n$. Then we have

$$
\begin{aligned}
\frac{1}{n}|i-j|-(n+K) & \leq r_{i j}+m-(m+K) \\
& =r_{i j}-K \\
& \leq d_{S}\left(1, g^{n r_{i j}}\right)-K \\
& \leq d_{S}\left(1, g^{n r_{i j}+m}\right) \\
& =d_{S}\left(1, g^{|i-j|}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d_{S}\left(1, g^{|i-j|}\right) & =d_{S}\left(1, g^{n r_{i j}+m}\right) \\
& \leq d_{S}\left(1, g^{n r_{i j}}\right)+d_{S}\left(1, g^{m}\right) \\
& \leq n r_{i j} d_{S}(1, g)+m d_{S}(1, g) \\
& \leq d_{S}(1, g)\left(n r_{i j}+m\right) \\
& =d_{S}(1, g)|i-j|
\end{aligned}
$$

Choosing $\gamma:=\max \left\{n, d_{S}(1, g)\right\}$ and $c:=n+K$ as constants for the quasiisometric embedding proves the assertion.

Now we will take a closer look at the centralisers of elements of infinite order in hyperbolic groups.

Definition. Let G be a group and let $g \in G$. The centraliser of g is the subgroup

$$
C_{G}(g):=\left.\{h \in G \mid h g=g h\}\right|^{3}
$$

Theorem 5.2.6. Let G be an infinite hyperbolic group and let $g \in G$ be an element of infinite order. Then we have

$$
\left|C_{G}(g):\langle g\rangle\right| \in \mathbb{N}
$$

Proof. Let S be a finite generating set of G and let $\delta \in \mathbb{R}_{\geq 0}$ such that the Cayley graph Γ of G and S is δ-hyperbolic. By Proposition 5.2.5 there exists $\gamma \in \mathbb{R}_{\geq 1}$ and $c \in \mathbb{R}_{\geq 0}$ such that

$$
\mathbb{Z} \rightarrow G, z \mapsto g^{z}
$$

is a (γ, c)-quasi-isometric embedding. Let $h \in C_{G}(g)$. Since the order of g is infinite, there exists $m \in \mathbb{N}$ such that

$$
d_{S}\left(1, g^{m}\right)>2 d_{S}(1, h)+4 \delta+2
$$

We choose geodesic paths

- P_{1} between 1 and g^{m},
- P_{2} between g^{m} and $h g^{m}$,
- P_{3} between $h g^{m}$ and h,
- P_{4} between h and 1 and
- P_{5} between 1 and $h g^{m}$.

[^22]Let x be a midpoint of P_{1}. Then there exists a vertex y on P_{5} of distance at most δ to x, since by the choice of the length of P_{1} every vertex on P_{2} has distance more than δ from x. Analogously, we find a vertex z on P_{3} such that $d_{S}(y, z) \leq \delta$. Thus, we have $d_{S}(x, z) \leq 2 \delta$.

Let κ be the constant of Proposition 5.1.4 20. Then there exists $i, j \in$ $\{0, \ldots, m\}$ such that $d_{S}\left(x, g^{i}\right) \leq \kappa$ and $d_{S}\left(z, h g^{j}\right) \leq \kappa$. We obtain

$$
d_{S}\left(1, h g^{j-i}\right)=d_{S}\left(g^{i}, h g^{j}\right) \leq 2 \kappa+2 \delta
$$

and hence the coset $h\langle g\rangle$ contains a vertex of the ball $B_{2 \kappa+2 \delta}(1)$. Since this holds for all cosets of $\langle g\rangle$ and since this ball is finite, this finishes the proof.

Corollary 5.2.7. No hyperbolic group has a subgroup isomorphic to \mathbb{Z}^{2}.
We note that, in general, it is false that a group cannot be a subgroup of a hyperbolic group just because it is not hyperbolic itself, as Rips has shown the following result.

Theorem 5.2.8 (Rips). There exists a hyperbolic group that has a finitely generated subgroup that is not hyperbolic.

Even stronger, the following was shown.
Theorem 5.2.9 (Brady). There exists a hyperbolic group that has a finitely presented subgroup that is not hyperbolic.

We omit both proofs for these results.

5.3 Hyperbolic boundary

Definition. Let Γ be a hyperbolic graph. A (double) ray R is geodesic if

$$
d_{R}(x, y)=d(x, y)
$$

for all $x, y \in V(R)$. It is quasi-geodesic if there are $\gamma \in \mathbb{R}_{\geq 1}$ and $c \in \mathbb{R}_{\geq 0}$ such that

$$
d_{R}(x, y) \leq \gamma d(x, y)+c
$$

holds for all x, y on R. Two quasi-geodesic rays R_{1}, R_{2} are equivalent if there exists $m \in \mathbb{N}$ such that the ray R_{i} has infinitely many vertices of distance at most m to R_{j} for all $i \neq j \in\{1,2\}$.
Lemma 5.3.1. Let Γ be a δ-hyperbolic graph. If R_{1} and R_{2} are two equivalent quasi-geodesic rays, then there exists $m \in \mathbb{N}$ such that $d\left(x, R_{i}\right) \leq m$ for all $x \in V\left(R_{j}\right)$ with $i \neq j \in\{1,2\}$.
Proof. Let R_{1} and R_{2} be (γ, c)-quasi-geodesic rays. Let m be the constant of the equivalence of the rays R_{1} and R_{2}. Let $x_{1}, x_{2} \in V\left(R_{1}\right)$ and $y_{1}, y_{2} \in V\left(R_{2}\right)$ with $d\left(x_{i}, y_{i}\right) \leq m$ and let P_{i} be a shortest $x_{i}-y_{i}$ path for all $i \in\{1,2\}$. Then $Q:=x_{1} P_{1} y_{1} R_{2} y_{2} P_{2} x_{2}$ is a $(\gamma, c+2 m)$-quasi-geodesic path and there exists
by Proposition 5.1.4 2 a constant κ, depending only on γ, c and m, such that $x_{1} R_{1} x_{2}$ lies completely in the κ-neighbourhood of Q and vice versa. This implies the assertion.

Lemma 5.3.2. Let Γ be a hyperbolic graph. Equivalence of quasi-geodesic rays in Γ is an equivalence relation.

Proof. This follows immediately from Lemma 5.3.1.
Remark 5.3.3. According to Lemma 5.1.5 and Proposition 5.1.4 the definition of the equivalence of quasi-geodesic rays is invariant under quasi-isometries.

Lemma 5.3 .2 and Remark 5.3 .3 lead us to the following definition.
Definition. Let Γ be a hyperbolic graph and let G be a hyperbolic group. The hyperbolic boundary $\partial_{h}(\Gamma)$ of Γ is the set of equivalence classes of the equivalence relation on the quasi-geodesic rays. The hyperbolic boundary of G is the hyperbolic boundary of one of its locally finite Cayley graphs.

We immediately obtain the following.
Proposition 5.3.4. The cardinality of the hyperbolic boundary of hyperbolic groups is a quasi-isometry invariant.

Example 5.3.5. (1) The group \mathbb{Z} has exactly two hyperbolic boundary points.
(2) If F is a free group of finite rank, then $\left|\partial_{h}(F)\right|=e(G)$.

Remark 5.3.6. Let Γ be a locally finite δ-hyperbolic graph.
(1) Similar as in an exercise, where it was shown that every end contains a geodesic ray, we obtain that every hyperbolic boundary points contains a geodesic ray R and that there exists for every vertex x a ray that starts at x and that has a common subrays with R.
(2) Let $R_{1}=x_{0} x_{1} \ldots$ and $R_{2}=y_{0} y_{1} \ldots$ be two geodesic rays that start at the same vertex $x_{0}=y_{0}$ but that are not equivalent (as quasi-geodesic rays). Let η_{i} be the hyperbolic boundary point that contains R_{i}. Then there exists $r \in \mathbb{N}$ with $d\left(x_{r}, y_{r}\right)>2 \delta$ and we have $d\left(x_{r}, R_{2}\right)>\delta$. Since geodesic triangles are δ-thin, there exists for every geodesic triangle with vertices x_{0}, x_{i}, y_{i} for $i>r$ a vertex of the geodesic $x_{i}-y_{i}$ path in $B_{\delta}\left(x_{r}\right)$. Since there are only finitely many vertices in $B_{\delta}\left(x_{r}\right)$, on of them, say z, lies on these $x_{i}-y_{i}$ paths for infinitely many $i>r$. Thus, we find (similar to an exercise) a geodesic double ray with one subray in η_{1} and another subray in η_{2}.
(3) Let R_{1}, R_{2} be two geodesic double rays such that the hyperbolic boundary points defined by R_{1}^{4} are the same as those defined by R_{2}. Then there exists $m \in \mathbb{N}$ such that R_{1} lies in $B_{m}\left(R_{2}\right)$ and R_{2} lies in $B_{m}\left(R_{1}\right)$. If we choose vertices x_{1}, x_{2} on R_{1} of distance at least $2 m+2 \delta$ in Γ and vertices

[^23]y_{1}, y_{2} on R_{2} with $d\left(x_{i}, y_{i}\right) \leq m$, then we can apply the definition of δ-thin geodesic triangles and obtain that for every vertex x on $x_{1} R_{1} x_{2}$ that has distance more than $m+2 \delta$ to each x_{i} there exists a vertex y on $y_{1} R_{2} y_{2}$ with $d(x, y) \leq 2 \delta$. Thus, we may choose $m=2 \delta$.
(4) Let R_{1}, R_{2} be two (γ, c)-quasi-geodesic double rays such that the hyperbolic boundary points defined by R_{1} are the same as those defined by R_{2}. Then there exists $m \in \mathbb{N}$ such that R_{1} lies in $B_{m}\left(R_{2}\right)$ and R_{2} lies in $B_{m}\left(R_{1}\right)$. If we choose vertices x_{1}, x_{2} on R_{1} of distance at least $2 m+2 \delta$ in Γ and vertices y_{1}, y_{2} on R_{2} with $d\left(x_{i}, y_{i}\right) \leq m$, then we can apply Proposition 5.1.4 22 and the definition of δ-thin geodesic triangles and obtain that for every vertex x on $x_{1} R_{1} x_{2}$ that has distance more than $m+2 \delta$ to each x_{i} there exists a vertex y on $y_{1} R_{2} y_{2}$ with $d(x, y) \leq 2 \delta+2 \kappa$, where κ is the constant from Proposition 5.1.4 (2). Thus, we may choose $m=2 \kappa+2 \delta$.

Theorem 5.3.7. Let G be a hyperbolic group. Then we have $\left|\partial_{h}(G)\right| \in\{0,2, \infty\}$.
Proof. If G is finite, then the hyperbolic boundary of G is empty. So let G be infinite. Then G contains an element g of infinite order by Theorem 5.2.4. The quasi-isometric embedding $\psi_{g}: \mathbb{Z} \rightarrow G, z \mapsto g^{z}$ (cf. Proposition 5.2.5) defines a quasi-geodesic double ray $\ldots x_{-1} x_{0} x_{1} \ldots$ by Lemma 5.1.5. Note that it follows from the definition of a quasi-geodesic double ray that the rays $x_{0} x_{1} \ldots$ and $x_{0} x_{-1} \ldots$ are not equivalent. Thus, we have $\left|\partial_{h}(G)\right| \geq 2$.

Let us now assume that $\left|\partial_{h}(G)\right| \geq 3$. We want to show that the hyperbolic boundary is infinite. Let S be a finite generating set of G and let Γ be the Cayley graph of G and S. Let $\delta \geq 0$ such that Γ is δ-hyperbolic. Let us suppose that the hyperbolic boundary is finite. Note that for every two hyperbolic boundary points there exists a geodesic double ray that defines these two hyperbolic boundary points (Remark 5.3.6(2)). Since geodesic triangles are δ thin and because of Remark 5.3.6 (3), there exists a finite subset B of $V(\Gamma)$ such that every geodesic double ray between every two hyperbolic boundary points meets B. Let R be a geodesic double ray. Because of $\left|\partial_{h}(G)\right| \geq 3$, there exists a vertex x on one of the other geodesic double rays that has distance more than $2 \operatorname{diam}(B)+2 \delta$ to R. Since G acts transitively on Γ, there exists $g \in G$ with $x \in g B$. But then $g B$ avoids the geodesic double ray R, which contradicts the choice of B : the hyperbolic boundary is G-invariant and thus $g B$ must meet every geodesic double ray. This contradiction show $\left|\partial_{h}(G)\right|=\infty$ in our remaining case.

Theorem 5.3.8. Let G be a hyperbolic group.
(1) If $\left|\partial_{h}(G)\right|=2$, then G is virtually \mathbb{Z}.
(2) If $\left|\partial_{h}(G)\right|=\infty$, then G has a free subgroup of rank 2 .

Proof. Let G be an infinite hyperbolic group with finite generating set S. In order to prove (1) let $\left|\partial_{h}(G)\right|=2$. Then there exists a geodesic double ray R between the two hyperbolic boundary points of G by Remark 5.3.6 (2) and
by (3) of that remark every geodesic double ray (that has to define the same hyperbolic boundary points) lies in $B_{2 \delta}(R)$. By the transitivity of Γ, there exists no vertex of distance more than 2δ to R. Thus, we have $e(G)=2$ and the claim follows from Theorem 3.4.6,

For the proof of $\sqrt{2}$, we assume $\left|\partial_{h}(G)\right|=\infty$. By Theorem 5.2 .4 there exists $g \in G$ of infinite order. We consider the quasi-isometric embedding of $\langle g\rangle$ in G according to Proposition 5.2.5. By Lemma 5.1.5 the image of that embedding defines a (γ, c)-quasi-geodesic double ray R_{g} and by Remark 5.3.6 there exists a geodesic double ray R that defines the same hyperbolic boundary points. Note that these hyperbolic boundary points are g-invariant. Let g^{+}be the hyperbolic boundary points that contains that subray of R which lies close to the g^{i} with $i \in \mathbb{N}$ and let g^{-}be the second hyperbolic boundary points defined by R.

Let $f \in G$ such that $d(f, R)>2 \delta$. Then $h:=g^{f}$ has infinite order, too, $f^{-1} R$ is a geodesic double ray and $f^{-1} R$ is a (γ, c)-quasi-geodesic double ray. We set $h^{+}:=f^{-1} g^{+}$and $h^{-}:=f^{-1} g^{-5}$ Then there exists a geodesic double ray between every two hyperbolic boundary points of

$$
Y:=\left\{g^{+}, g^{-}, h^{+}, h^{-}\right\}
$$

By the choice of f, we have $|Y| \geq 3$, since not all geodesic rays in $f^{-1} R$ can be equivalent to R by Remark 5.3.6(3). Let us suppose $|Y|=3$. Then there exists $i_{1}, i_{2}, j_{1}, j_{2} \in \mathbb{Z}$ such that $d\left(g^{i_{\ell}}, h^{j_{\ell}}\right) \leq m$ for $\ell \in\{1,2\}$ and m as in the definition of equivalent quasi-geodesic rays and such that $d\left(g^{i_{1}}, g^{i_{2}}\right)$ and $d\left(h^{j_{1}}, h^{j_{2}}\right)$ are arbitrarily large. We obtain

$$
d\left(g^{i_{1}+k\left|i_{1}-i_{2}\right|}, h^{j_{1}+k\left|j_{1}-j_{2}\right|}\right) \leq m
$$

for all $k \in \mathbb{Z}$. But then we have $|Y|=2$, which we had excluded.
By Remark 5.3.6 and since geodesic triangles are δ-thin, there exists $K \in \mathbb{N}$ such that $B_{K}(1)$ meets all (γ, c)-quasi-geodesic double rays between elements of Y and for every other hyperbolic boundary point the geodesic double ray from that point to at most one element of Y are not met by $B_{K}(1)$. Set $B:=B_{2 K}(1)$. We define:

$$
\begin{aligned}
& A_{1}:=\left\{\eta \in \partial_{h}(G) \mid \exists \text { geodesic double ray from } \eta \text { to } g^{+} \text {in } \Gamma \backslash B\right\}, \\
& A_{2}:=\left\{\eta \in \partial_{h}(G) \mid \exists \text { geodesic double ray from } \eta \text { to } g^{-} \text {in } \Gamma \backslash B\right\}, \\
& B_{1}:=\left\{\eta \in \partial_{h}(G) \mid \exists \text { geodesic double ray from } \eta \text { to } h^{+} \text {in } \Gamma \backslash B\right\}, \\
& B_{2}:=\left\{\eta \in \partial_{h}(G) \mid \exists \text { geodesic double ray from } \eta \text { to } h^{-} \text {in } \Gamma \backslash B\right\} .
\end{aligned}
$$

Now let $n \in \mathbb{N}$ such that

$$
d\left(B, g^{n} B\right)>\operatorname{diam}(B)+2 \delta<d\left(B, h^{n} B\right)
$$

and let $\eta \in \partial_{h}(\Gamma) \backslash A_{2}$. Let Q be a geodesic double ray between $g^{n} \eta$ and g^{+}. If this double ray meets B, then it is $\operatorname{diam}(B)$ close to R at that vertex and

[^24]then it must also meet $g^{n} B$ on its further way to g^{+}(say at the vertex x). On the other side, every geodesic double ray P from g^{-}to $g^{n} \eta$ must pass B first and then $g^{n} B$. Since geodesic triangles are δ-thin, there exists a vertex y on Q between $g^{n} \eta$ and B that has distance at most 2δ to $P \cap g^{n} B$. But then, we have
$$
d(x, y) \leq 2 \delta+\operatorname{diam}(B)<d\left(B, g^{n} B\right) \leq d(y, B)+d(B, x) \leq d(x, y)
$$

This contradiction proves $Q \cap B=\emptyset$ and thus $g^{n} \eta \in A_{1}$. Analogously, we obtain the other conditions in order to apply the Ping-Pong-Lemma (Lemma 2.1.12). We then obtain that g^{n} and h^{n} freely generate a free subgroup.

Together with Corollary 3.5 .12 we obtain the following result from Theorem 5.3.8.
Corollary 5.3.9. If a hyperbolic groups is neither finite nor virtually \mathbb{Z}, then it has exponential growth.

5.4 Quasi-convex subgroups

Definition. Let G be a finitely generated group and let H be a subgroup of G. Let Γ be a locally finite Cayley graph of G and some finite generating set S. Let $k>0$. Then H is k-quasi-convex if every geodesic in Γ with end vertices in H lies in the K-neighbourhood of H. It is quasi-convex if it is ℓ-quasi-convex for some $\ell>0$.

We want to show that quasi-convex subgroups of hyperbolic groups are hyperbolic again.

Lemma 5.4.1. Let G be a finitely generated group and let H be a quasi-convex subgroup of G. Then H is finitely generated and the canonical map $H \rightarrow G$ is a quasi-isometric embedding.
Proof. Let Γ be a locally finite Cayley graph and let $k>0$ such that H is k -quasi-convex for that Cayley graph. Let S be the set of all elements of H with distance at most $2 k+1$ to 1 in Γ.

Let $P=x_{0} \ldots x_{n}$ be a geodesic path between 1 and $h \in H$ in Γ. For every x_{i} there exists $y_{i} \in H$ with $d\left(x_{i}, y_{i}\right) \leq k$. Thus, we have $d\left(y_{i}, y_{i+1}\right) \leq 2 k+1$. We may assume $y_{0}=1$ and $y_{n}=h$. Then $y_{0} y_{1} \ldots y_{n}$ is a path in the Cayley graph of H and S, which shows, that S is indeed a generating set of H.

By construction, we have

$$
\frac{1}{2 k+1} d(a, b) \leq d_{S}(a, b) \leq d(a, b)
$$

Thus, the canonical embedding of H into G is a quasi-isometric embedding.
Lemma 5.4.2. Let H be a finitely generated subgroup of a hyperbolic group G. Then H is quasi-convex if and only if the canonical embedding $H \rightarrow G$ is a quasi-isometric embedding.

Proof. If H is quasi-convex in G, then Lemma 5.4.1 implies that the canonical embedding is a quasi-isometric embedding. For the other direction, let us assume that the canonical embedding is a quasi-isometric embedding $\varphi: H \rightarrow G$. Let P be a geodesic path in a Cayley graph Δ of H with respect to some finite generating set S_{H} of H. Then its φ-image defines a quasi-geodesic path Q in a Cayley graph Γ of G and some finite generating set S_{G} of G according to Lemma 5.1.5. So Proposition 5.1.4 implies that there exists a constant κ depending only on the hyperbolicity constant and on the constant for the quasiisometry such that every geodesic in Γ with the same end vertices as Q lies in the κ-neighbourhood of Q. This shows that H is quasi-convex.

Corollary 5.4.3. Every quasi-convex subgroup of a hyperbolic group is hyperbolic.

Proof. Let H be a quasi-convex subgroup of a hyperbolic group G. Then it is finitely generated by Lemma 5.4.1 and the canonical embedding $H \rightarrow G$ is a quasi-isometric embedding. Then Proposition 5.1.6 implies that H is hyperbolic.

Proposition 5.4.4. Let G be either a free product with amalgamation or an HNN extension of finitely generated groups over finite subgroups. Then the factors are quasi-convex in G.

Proof. Obviously, G is finitely generated, too. First, let $G=A *_{C} B$ with C being finite. Let S be a finite generating set of G that consists of the elements of a finite generating sets for A and of one for B. Let Γ be a Cayley graph of G and S. Let P be a geodesic path in Γ whose end vertices lie in A. Let ℓ be the longest distance in Γ between vertices in C. Then every time P leaves A through a coset of C, it must re-enter A through the same coset. (This follows from the existence of normal forms.) So the last vertex before exiting A and the first vertex after entering A have distance at most ℓ. Thus, every vertex of P lies within distance $\ell / 2$ of A.

A similar argument holds in the case of HNN extensions.
Let us now proof a theorem that is an analogue of Theorem 3.4.6 for free groups of arbitrary finite rank.

Theorem 5.4.5. A finitely generated group is quasi-isometric to a free group of finite rank, if and only if it has a finitely generated free group as subgroup of finite index.

Proof. Note that we may assume by Theorem 3.4 .6 that the involved free groups have rank at least 2. The backward implication follows from Corollary 3.2.3. So let us assume that G is a finitely generated group that is quasi-isometric to a finitely generated free group. Since free groups of rank at least 2 have infinitely many ends, the same is true for G and we may apply Theorem4.7.1. Free groups are hyperbolic and so Corollary 5.1.7 implies that G is hyperbolic, too. Since hyperbolic groups are finitely presented (Theorem 5.1.10), they are accessible
by Theorem 4.7.6 and we may write G as free products with amalgamation and HNN extensions over finite subgroups such that the factors have at most one end each (Proposition 4.7.4) or, equivalently, as fundamental group of a finite graph of groups with finite edge groups and whose vertex groups have at most one end. By Proposition 5.4.4 the factors are quasi-convex in G and hence they are hyperbolic by Corollary 5.4.3.

Note that the ends of G correspond to its hyperbolic boundary points: there is a canonical bijection between them. Thus, every vertex group has at most one hyperbolic boundary point and hence by Theorem 5.3.7 none at all. Hence, all vertex groups are finite. So we are currently looking at a finite graph of groups with finite vertex groups (and finite edge groups). By an exercise, we know that the fundamental group has a free subgroup of finite index. Corollary 3.2.4 implies that this free subgroup is finitely generated.

Bibliography

[1] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), 3-47.
[2] G. Baumslag, Topics in Combinatorial Group Theory, Birkäuser Verlag, Basel, 1993.
[3] W. Dicks \& M.J. Dunwoody, Groups acting on graphs Cambridge Stud. Adv. Math., Cambridge University Press, Cambridge, 1989.
[4] P. de la Harpe, Topics in Geometric Group Theory, University of Chicago Press, Chicago, 2000.
[5] C. Löh, Geometric Group Theory. An Introduction, Spinger, Cham, 2017.
[6] R.C. Lyndon \& P.E. Schupp, Combinatorial Group Theory, SpringerVerlag, Berlin-Heidelberg-New York, 1977.
[7] J. Meier, Groups, Graphs and Trees. An introduction to the Geometry of Infinite Groups, Cambridge University Press, Cambridge, 2008.
[8] J.-P. Serre, Trees, Springer-Verlag, Berlin-Heidelberg-New York, 1980.

[^0]: ${ }^{1}$ Reminder: S_{X} is the symmetric group on X.

[^1]: ${ }^{2} \mathrm{~A}$ graph is locally finite if every vertex has finite degree.

[^2]: ${ }^{1}$ The empty word will be denoted by \emptyset.

[^3]: ${ }^{2}$ Reminder: (1) A subgroup U is normal if $U^{g}=U$ for all $g \in G$. (2) Kernels of homomorphisms are normal subgroups.

[^4]: ${ }^{3} \mathrm{HNN}$ stands for the authors of the article in which this extension was treated in depth first: Graham Higman, Bernhard H. Neumann and Hanna Neumann.

[^5]: ${ }^{1}$ Formally, relations are defined only on sets; here we think of their canonical definition for classes.

[^6]: ${ }^{2}$ and hence (by Proposition $\sqrt{3.1 .5}$ for every

[^7]: ${ }^{3} \mathrm{e}$. g. as in the case of planar graphs
 ${ }^{4}$ This will not play a major role for us. It will not be important whether we consider them as geodesic of just quasi-geodesic metric spaces.
 ${ }^{5}$ Note that every $g \in G$ induces an isometry on X.

[^8]: ${ }^{6}$ If $s_{1}^{\varepsilon_{1}} \ldots s_{n}^{\varepsilon_{n}}$ is a word, then we call the word $s_{n}^{-\varepsilon_{n}} \ldots s_{1}^{-\varepsilon_{1}}$ its inverse.

[^9]: ${ }^{7}$ I. e. there is a group acting transitively on Γ.

[^10]: ${ }^{8}$ Proof: Exercise

[^11]: ${ }^{9} \mathrm{~A}$ quasiorder is a reflexive and transitive relation.

[^12]: ${ }^{10}$ Proof: exercise

[^13]: ${ }^{1}$ I. e., there exists a bijection between the edges of Γ / G and the orbits of edges in Γ such that each edge e in Γ / G is incident with those vertices that are the orbits of the incident vertices of any edge f in the image of e. Note that this is independent of the choice of f.

[^14]: ${ }^{2}$ Using the notation $P_{u}^{\mathbb{G}}$ for vertices implies that we directly choose a representative P of the equivalence class and choose u as last vertex of the \mathbb{G}-walk P.

[^15]: ${ }^{3}$ Note that we do not ask for both equalities here.
 ${ }^{4}$ Here, we mean the following: if $s_{1} \ldots s_{n}$ is a relator, then $\varphi\left(\phi\left(s_{1}\right)\right) \ldots \varphi\left(\phi\left(s_{n}\right)\right)=1$ lies in G.

[^16]: ${ }^{5}$ For us, this means that there are precisely two edges ending in v and two edges starting at v.
 ${ }^{6}$ This corresponds in the case of graph exactly the situation G / e. But here, we also have to take case of the involution ${ }^{\top}$, the directions of the edges and their edge groups.

[^17]: ${ }^{7}$ The kernel of the action consists of those elements that fix every vertex and every edge of T.
 ${ }^{8}$ up to its image under the involution

[^18]: ${ }^{9}$ Note that the normal form of \mathbb{G}-walks correspond (by removing the edges in the sequence) reduced forms in the free product G, canonically.
 ${ }^{10}$ For subgroups H, U of a group G, the set $H \backslash G / U$ is the set of double cosets $H g U$ with $g \in G$.

[^19]: ${ }^{11}$ that is an asymmetric, transitive relation

[^20]: ${ }^{12}$ Note that the equivalence relation \cong is invariant under G.
 ${ }^{13}$ This sharpening of the requirements for an element of \mathcal{B}_{m} will not be covered in this lecture.

[^21]: ${ }^{1}$ Strictly speaking, we ask for a divergence function that is equivalent to an exponential function in the sense that (generalised) growth function are equivalent to each other.

[^22]: ${ }^{3}$ It is easy to verify that the centraliser is indeed a subgroup.

[^23]: ${ }^{4}$ These are the hyperbolic boundary points that contain subrays of R_{1}.

[^24]: ${ }^{5}$ This is the canonical extension of the automorphism f from Γ to $\partial_{h}(\Gamma)$: images of equivalent quasi-geodesic rays are equivalent, too, and thereby we can extend every automorphism to the hyperbolic boundary of Γ.

