Exercises for Geometric Group Theory Sheet 6

Exercise 1: Let Γ be a locally finite graph. Prove one of the following.

- (1) If Γ is infinite, then it contains an end.
- (2) Every end contains a **geodesic** ray, i.e. a ray all of whose subpaths are geodesic.

Exercise 2: Let G be a finitely generated group and let S be a finite generating set of G. Show the following.

(1) For all $r, r' \in \mathbb{N}$ we have

$$\beta_{G,S}(r+r') \le \beta_{G,S}(r) \cdot \beta_{G,S}(r').$$

(2) Let F be a free group with free generating set S. For all $r \in \mathbb{N}$ we have

$$\beta_{G,S} \le \beta_{F,S}.$$

Exercise 3: Prove the following.

- (1) Domination of (generalised) growth functions is a quasiorder.
- (2) Equivalence of (generalised) growth functions is an equivalence relation.

Exercise 4*:

- (1) Show that \mathbb{Z}^n has polynomial growth for all $n \in \mathbb{N}$.
- (2) Show that finitely generated free groups have exponential growth.

Exercise 5: Let G be a finitely generated infinite group with the following properties.

- (1) $G \sim_{QI} G \times G$
- (2) G does not have exponential growth.

Show that G has intermediate growth.

Only four of these five exercises are mandatory.

* This is also a written exercise.

due: 29th November 2022