Exercises for Geometric Group Theory

Sheet 5

Exercise 1:

- (1) Let $n \in \mathbb{N}$ with $n \geq 2$. Show (without using Theorem 3.4.6) that \mathbb{Z} and \mathbb{Z}^n are not quasi-isometric.
- (2) Is the rank of free groups a quasi-isometry invariant?If yes, prove it. If no, partition N such that this partition induces a quasi-isometry invariant.

Exercise 2: Show the following.

- (1) The relation \sim_{QI} is an equivalence relation on the class of metric spaces.
- (2) Every quasi-isometry has a quasi-inverse.

Exercise 3*: Let Γ and Δ be two locally finite graphs. Prove that every quasiisometry $f: \Gamma \to \Delta$ induces a bijection on the ends of the graphs.

Exercise 4: Let Γ be a **transitive** connected graph, i.e. the automorphism group acts transitively on Γ . Prove the following.

- (1) If Γ has at least three ends, then it has infinitely many ends.
- (2) (not mandatory) If Γ is has infinitely many ends, then it has at least 2^{\aleph_0} many ends.
- (3) (not mandatory) If Γ is locally finite and has infinitely many ends, then it has exactly 2^{\aleph_0} many ends.

Exercise 5: Let G, G', H, H' be finitely generated groups such that $G \sim_{QI} G'$ and $H \sim_{QI} H'$. Prove that G * H is quasi-isometric to G' * H'

Only four of these five exercises are mandatory.

* This is also a written exercise.