Exercises for Geometric Group Theory

Sheet 3

Exercise 1*:

1. How many elements does the group

$$\langle x, y, z \mid xyx^{-1} = y^2, yxy^{-1} = x^2, xzy = z^{-1} \rangle$$

have?

2. Prove that $D_{\infty} := \langle s, t \mid t^2, tst^{-1}s \rangle$ is the isometry group of \mathbb{Z} with the standard metric.

(The isometry group is the set of distance-preserving bijections on \mathbb{Z} .)

Exercise 2: Let A and G be groups and let $\varphi: A \to G$ be a group monomorphism. Determine the free product with amalgamation $G *_A A$ for the monomorphisms φ and id_A .

Exercise 3: Let F be a free group with free generating set $\{a, b\}$ and let $N := \langle a^i b^{-i} \mid i \in \mathbb{Z} \rangle$. Prove the following statements.

- (1) The set $\{a^i b^{-i} \mid i \in \mathbb{Z} \setminus \{0\}\}$ is a free generating set of the free group N.
- (2) N is a normal subgroup of F.
- (3) $F/N \cong \langle a, b \mid a = b \rangle$.

Exercise 4: Let F be a free group of rank at least 2. Show that F has a free subgroup of finite rank at least n for every $n \in \mathbb{N}$.

Exercise 5: Let $G = \langle S | R \rangle$, where $S = \{a, b, c_0, c_1, \ldots\}$ and

$$R = \{a^4, b^3, c_0^{-1}bc_0a^{-2}, c_1^{-1}c_0c_1b^{-1}, c_2^{-1}c_1c_2c_0^{-1}, c_3^{-1}c_2c_3c_1^{-1}, \ldots\}$$

Prove the following statements.

(1) $G \cong C_2$.

(2) Every finite presentation $\langle S' | R' \rangle$ with finite $S' \subseteq S$ and $R' \subseteq R$ defines a group of order either 3 or 4 or an infinite group.

Only four of these five exercises are mandatory.

* This is also a written exercise.