Exercises for Geometric Group Theory

Sheet 12

Exercise 1: Let $(T, \overline{\cdot}, \prec)$ be a tree set. Show that

$$[t_1, t_2] := \{ t \in T \mid t_1 \prec t \prec t_2 \}$$

is a total order.

Exercise 2: Let $(T, \overline{\cdot}, \prec)$ be a tree set. Show that

$$t_1 \sim t_2 :\leftrightarrow t_1 = t_2 \lor (t_1 \prec \overline{t}_2 \land \neg \exists t \in T \colon t_1 \prec t \prec \overline{t}_2)$$

is an equivalence relation.

Exercise 3: Let $(T, \bar{\cdot}, \prec)$ be a tree set. Show that $(T/\sim, T)$ is a tree.

Exercise 4^{*}: Show that a finitely generated group is accessible if and only if it is the fundamental group of a finite graph of groups whose edge groups are finite and whose vertex groups are finitely generated and have at most one end.

Exercise 5: Let Γ be a hyperbolic graph. Show that there exists $\lambda \geq 0$ such that for all $x, y \in V(\Gamma)$ and every two geodesic x-y paths $x_0 \ldots x_n$ and $y_0 \ldots y_n$ in Γ we have $d(x_i, y_i) \leq \lambda$.

Only four of these five exercises are mandatory.

* This is also a written exercise.