Exercises for Geometric Group Theory

Sheet 11

Exercise 1: Let G be a group with a parabolic action on a tree T such that all elements are elliptic. Show that T has a non-empty G-invariant proper subtree.

Exercise 2: Let the notations and hypotheses be as in Theorem 4.6.3. Set

$$R := \left\langle \bigcup \left\{ H_{i,x} \mid i \in I, x \in G \right\} \right\rangle.$$

Show the following statements.

(1) R is the smallest normal subgroup of G that contains the groups $H_{i,x}$ with $i \in I$ and $x \in X_i$.

(2) $H/R \cong F$.

Exercise 3*: Let the notations and hypotheses be as in Theorem 4.6.3. Let A = 1, let $G \not\cong \mathbb{Z}$ and assume that G = B * C implies either B = 1 or C = 1. Show that G is contained in a conjugate of one of the G_i .

Exercise 4: Show that a group G has property (FA) if and only if the following statements hold.

(1) There is no infinite sequence $U_0 < U_1 < \ldots$ of subgroups with

$$\bigcup_{i\in\mathbb{N}}U_i=g;$$

- (2) G is not a proper free product with amalgamation;
- (3) G is no HNN extension.

Exercise 5: Let $\mathbb{G} = (\mathcal{G}, \Gamma, \Lambda)$ be a graph of groups with finite Γ and only finite vertex groups. Show that $\pi_1(\mathbb{G})$ has a free (normal) subgroup of finite index.

(Hint: first, consider the situation that Γ has only 'one' edge and construct an action of the fundamental group on a finite set in order to obtain the normal subgroup.)

Only four of these five exercises are mandatory.

* This is also a written exercise.