Übungen zur Gruppentheorie Blatt 2

Sei G eine Gruppe und sei

$$\Phi(G) := \bigcap \{ M \leq G \mid M \text{ maximale Untergruppe von } G \}$$

die Frattiniuntergruppe von G.

Aufgabe 1*: Sei N ein abelscher minmaler Normalteiler von G. Zeigen Sie, dass N genau dann ein Komplement in G hat, wenn $N \not \leq \Phi(G)$ gilt.

Aufgabe 2: Sei N ein abelscher Normalteiler von G mit $N \cap \Phi(G) = 1$. Zeigen Sie, dass N ein Komplement in G hat.

Aufgabe 3: Seien N_1 und N_2 Normalteiler von G und für i = 1, 2 sei L_i ein Komplement von N_i in G. Zeigen Sie, dass N_1N_2 ein Komplement in G hat, falls $N_2 \leq L_1$ gilt.

Aufgabe 4*: Sei N ein Normalteiler einer Gruppe G, die eine transitive Permutationsgruppe auf einer Menge Ω ist. Sei Σ die Menge der Bahnen von N auf Ω . Zeigen Sie, dass die Operation von G auf Ω eine transitive Operation von G auf Σ induziert.

Aufgabe 5: Sei G eine Frobeniusgruppe mit Frobeniuskomplement H und Frobeniuskern K. Die Ordnung von H sei gerade. Zeigen Sie, dass $Z(H) \neq 1$ gilt.

Nur vier der Aufgaben sind verpflichtend.

* Dies ist auch eine schriftliche Aufgabe.