Übungen zur Graphentheorie

Blatt 9

Aufgabe 1*: Für natürliche Zahlen $0 < s \le t \le n$ sei z(n, s, t) die größtmögliche Anzahl an Kanten eines bipartiten Graphen, dessen Partitionsmengen beide genau n Ecken enthalten und der keinen $K_{s,t}$ enthält. Zeigen Sie

$$2 \operatorname{ex}(n, K_{s,t}) \le z(n, s, t) \le \operatorname{ex}(2n, K_{s,t}).$$

Aufgabe 2: Sei G ein bipartiter Graph mit Eckenpartition $\{A, B\}$, der keinen $K_{s,t}$ enthält. Zeigen Sie

$$\sum_{x \in A} \binom{d(x)}{t} \le (s-1) \binom{|B|}{t}.$$

Aufgabe 3*: Bestimmen Sie, für welche Bäume T es eine Funktion $f_T : \mathbb{N} \to \mathbb{N}$ gibt, sodass jeder Graph mit Durchschnittsgrad mindestens $f_T(k)$ und chromatischer Zahl höchstens k, einen zu T isomorphen induzierten Teilgraphen enthält.

Aufgabe 4: Sei $k \in \mathbb{N}$ und G ein Graph mit $d(G) \geq 2k$. Zeigen Sie, dass G einen Minor mit Minimalgrad mindestens k und höchstens 2k Ecken besitzt.

Aufgabe 5⁺: (2 Punkte) Geben Sie einen direkten Beweis, ohne Umweg über den Durchschnittsgrad, dass es für jede natürliche Zahl r ein $k_r \in \mathbb{N}$ gibt, sodass jeder Graph mit chromatischer Zahl mindestens k_r einen K^r als Minor enthält.