Calculus – 27. Series, Solutions

In what follows all regions are assumed to be bounded sets.

Try to draw a picture of the set. What kind of quadratic surfaces are involved (hyperboloids, cones, paraboloids).

1. Find the integration set and change the order of integration.

(b)
$$\int_0^3 dx \int_0^{\sqrt{25-x^2}} f(x,y) dy.$$

Solution. (a) The region is

$$D = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x \le 3, x/3 \le y \le 2x\}.$$

It can also be written as follows

$$D = \{(x,y) \in \mathbb{R}^2 \mid \frac{1}{3} \le y \le 1, 1 \le x \le 3y\} \cup \{(x,y) \in \mathbb{R}^2 \mid 1 \le y \le 2, 1 \le x \le 3\} \cup \{(x,y) \ni \mathbb{R}^2 \mid 2 \le y \le 6, \frac{y}{2} \le x \le 3\}.$$

Therefore,

$$I = \int_{1/3}^{1} \left(\int_{1}^{3y} f(x, y) \, dx \right) \, dy + \int_{1}^{2} \left(\int_{1}^{3} f(x, y) \, dx \right) \, dy + \int_{2}^{6} \left(\int_{y/2}^{3} f(x, y) \, dx \right) \, dy.$$

(b) The domain is

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 3, 0 \le y \le \sqrt{25 - x^2}\}\$$

which can also be written as

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 4, 0 \le x \le 3\} \cup \cup \{(x, y) \in \mathbb{R}^2 \mid 4 \le y \le 5, 0 \le x \le \sqrt{25 - y^2}\}$$

Therefore,

$$I = \int_0^4 \left(\int_0^3 f(x, y) \, dx \right) \, dy + \int_4^5 \left(\int_0^{\sqrt{25 - y^2}} f(x, y) \, dx \right) \, dy.$$

1

2. Write $\iint_D f(x, y, z) dx dy dz$ as an iterated integral

- (a) $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 2z, x^2 + y^2 + z^2 \le 3\}.$
- (b) D is bounded by the four planes y = -1, y = 1, z = 0, z = 1 and the surface $x^2 y^2 = 1$.

Solution. (a) First we have to compute the intersection of the two surfaces $x^2 + y^2 = 2z$ and $x^2 + y^2 + z^2 = 3$. Inserting the first equation into the second one gives $z^2 + 2z - 3 = 0$ which is equivalent to z = 1 since $z \ge 0$ in D. The intersection is the circle $x^2 + y^2 = 2$ in the plane z = 1. The domain therefore splits into two parts, a segment of a ball (z > 1) and a segment of a paraboloid $(0 \le z \le 1)$:

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid |x| \le \sqrt{2}, |y| \le \sqrt{2 - x^2}, \frac{x^2 + y^2}{2} \le z \le \sqrt{3 - x^2 - y^2}\}.$$

The iterated integral is

$$\iiint_D f(x, y, z) \, dx dy dz = \int_{-\sqrt{2}}^{\sqrt{2}} \left(\int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \left(\int_{\frac{x^2+y^2}{2}}^{\sqrt{3-x^2-y^2}} f(x, y, z) \, dz \right) \, dy \right) dx.$$

(b) $x^2 - y^2 = 1$ is a hyperbolical cylinder. The region is

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1, -1 \le y \le 1, -\sqrt{1 + y^2} \le x \le \sqrt{1 + y^2} \}.$$

The iterated integral is

$$\iiint\limits_D f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_0^1 \left(\int_{-1}^1 \left(\int_{-\sqrt{1+y^2}}^{\sqrt{1+y^2}} f(x,y,z) \, \mathrm{d}z \right) \, \mathrm{d}y \right) \, \mathrm{d}x.$$

3. Compute the volume of the sets bounded by the following surfaces

(a)
$$z = x^2 + y^2$$
, $y = x^2$, $y = 1$, $z = 0$.

(b)
$$x^2 + y^2 = a^2$$
, $x^2 + y^2 - z^2 = -a^2$.

Solution. (a) The region is

$$D = \{(x, y, z) \mid 0 \le y \le 1, -\sqrt{y} \le x \le \sqrt{y}, 0 \le z \le x^2 + y^2\}.$$

Therefore, the volume is

$$V = \iiint_D dx dy dz = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} dx \int_0^{x^2 + y^2} dz = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} (x^2 + y^2) dx$$
$$= \int_0^1 dy \left[\frac{1}{3} x^3 + y^2 x \right]_{x = -\sqrt{y}}^{x = \sqrt{y}} = \int_0^1 \left(\frac{2}{3} y^{\frac{3}{2}} + 2y^{\frac{5}{2}} \right) dy$$
$$= \frac{4}{15} + \frac{4}{7} = \frac{88}{105}.$$

(b) We use cylinder coordinates to describe the region;

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}, \quad \frac{\partial(x, y, z)}{\partial(r, \varphi, z)} = r.$$

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid |x| \le a, |y| \le \sqrt{a^2 - x^2}, |z| \le \sqrt{x^2 + y^2 + a^2} \}$$
$$E = \{(r, \varphi, z) \in \mathbb{R}^3 \mid 0 \le \varphi \le 2\pi, 0 \le r \le a, |z| \le \sqrt{a^2 + r^2} \}$$

By Theorem 9.7 we have

$$V = \iiint_D dx dy dz = \iiint_E r dr d\varphi dz = \int_0^a r dr \int_0^{2\pi} d\varphi \int_{-\sqrt{a^2 + r^2}}^{\sqrt{a^2 + r^2}} dz$$
$$= 2\pi \int_0^a \sqrt{a^2 + r^2} 2r dr = 2\pi \int_0^{a^2} (a^2 + u)^{\frac{1}{2}} du$$
$$= 2\pi \left[\frac{2}{3} (a^2 + u)^{\frac{3}{2}} \right]_0^{a^2} = \frac{4\pi}{3} \left[\sqrt{8}a^3 - a^3 \right] = \frac{4\pi}{3} a^3 (\sqrt{8} - 1).$$

- 4. (a) If $A \subset [0,1]$ is an open set which contains every rational number in (0,1). Then the boundary of A is $[0,1] \setminus A$.
 - (b) Give an example of such a set A which is not Jordan measurable.

Proof. (a) First proof. By definition, $\partial A = \overline{A} \cap \overline{A^c}$. Since A is open, A^c is closed, hence $\overline{A^c} = A^c = [0,1] \setminus A$. Since $\mathbb Q$ is dense in $\mathbb R$ and $\mathbb Q \cap [0,1] \subset A \subset [0,1]$, the closure of A is the entire interval [0,1]. Hence $\partial A = [0,1] \cap ([0,1] \setminus A) = [0,1] \setminus A$.

Second proof. By the discussion before Theorem 9.5, $[0,1] = A^{\circ} \cup \partial A \cup (A^{\circ})^{\circ}$ where the three sets A° , ∂A , and $(A^{\circ})^{\circ}$ are pairwise disjoint. Since $A = A^{\circ}$ (A is open), it sufficies to show that $(A^{\circ})^{\circ} = \emptyset$. Suppose that $x \in (0,1)$ is an inner point of A° . Then A° contains a whole ε -neighborhood $U_{\varepsilon}(x)$ of x. However, $U_{\varepsilon}(x)$ is an open interval and contains a rational number, say q. Hence $q \in U_{\varepsilon}(x) \subset A^{\circ}$. This contradicts the fact that A contains all rationals in [0,1]. This proves $(A^{\circ})^{\circ}$ is empty; hence $\partial A = A^{\circ}$.

(b) Let (x_n) be a sequence of all rational numbers in (0,1) (see Corollary 6.4). Fix some c with 0 < c < 1 and define

$$A = (0,1) \cap \bigcup_{n \in \mathbb{N}} U_{c/2^{n+1}}(x_n).$$

A is an open subset of (0,1) which contains all rational numbers of (0,1). The length of the interval $U_{c/2^{n+1}}(x_n)$ is $c/2^n$. Hence, the measure (length) of A is at most

$$\sum_{n \in \mathbb{N}} \frac{c}{2^n} = c \left(\frac{1}{2} + \frac{1}{2^2} + \dots \right) = c.$$

It follows that the measure of the complement set $[0,1] \setminus A$ is at least 1-c. In particular, for c < 1, $\partial A = [0,1] \setminus A$ does not have measure 0; A is not Jordan measurable.