Calculus — 24. Series, Solutions

1. Let f: R™ — R™ be a linear mapping. Prove that f is differentiable on R™ and
compute D f(a) for all a € R".

Proof. We will show that Df(a) = f is the derivative of f at a. Indeed, since f is
linear we have f(a+ h) = f(a) + f(h) and therefore

i 1@+ h) = f(a) = f(R)]]
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This shows that Df(a)(h) = f(h) is the (constant) derivative of f at a. n

2. Let I: R® x R — R be the inner product I(z,y) = (x,y).
(a) Find DI(a,b) and I'(a,b).
(b) If f, g: R — R™ are differentiable and h: R — R is defined by h(t) = (f(t), g(t)),
show that

Hint. R" x R" = {(z,y) | z,y € R"} is the set of pairs (x,y) of vectors of R™. It
can be identified with the euclidean space R?". For (b) use (a) and the chain rule.

Solution. (a) We identify R™ x R™ = R*" and write

Iz, Ty Yay ey Yn) = Zxkyk
k=1

By Example 7 (a), the Jacobian matrix of [ is the gradient of I (since we are in case
m = 1). Since
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DiI(z,y) = oz, (Z :ckyk) = Z 8:(,’]: Y = Z OikYr = Yi,
k=1

= k=1
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Dn+i1($7y) = ou. <Z 9%.%) = Zm 8% = Zm%‘ = Xy,
Yi \i= k=1 Yi =

we obtain the gradient of I at (a,b) to be
I'(al,...,an,bl,...,bn) = (bl,...,bn,al,...,an).

The associated linear mapping DI(a,b) is a linear functional on R?" and can be
written using the inner product:

DI(a,b)(z,y) = ((b,a), (z,y)) = (b, 2) + {a,y) . (1)



We will give now an alternative proof of (1) using the definition of the derivative
directly. Let (h, k) € R*" then
Oy (h, k) =1I(a+h,b+k)—I(a,b) — DI(a,b)(h, k)
= <a’+h7b+k> - <a’7b> - <b7h> - <a7k> = <h7k>
Since ||(h, k)||> = S2(h2 4+ k2) > S h2 = ||h||> we obtain using Cauchy-Schwarz
inequality
[Pan k)| [(hk)| _ |IR] ]E]

= < < |kl — 0.
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This proves (1) directly without using Proposition 5.
(b) Since h(t) = I(f(t), g(t)) the chain rule (Theorem 7) gives

W(t) = DI(f(t),g(t))-D(f(t), 9(t)).
Since DI(f(t),9(t)) = (g(t), f(2)) by (a) and

. Let v = v(xz,y), v € C(R?), be given and x = z(r, ) = rcose, y = y(r, ) = rsinyp
for all r, o € R. Define a new function u(r, ¢) = v(z,y) = v(rcos p, rsin p).
Compute
1
Uy + ;ur —+ ﬁ“w
in terms of x, y and the partial derivatives of v with respect to x and y.
Solution. We first compute the partial derivatives of x and y with respect to r and

@:

Ty = COS , T, = —Tsing, (2)
Yy = Sin @, Yp = T COSQ, (3)
Tpp = —SInQ, Tpp = —TCOSQY, Tpp =0, (4)
Yryp = COS ©, Ypp = —Tsing, Y = 0. (5)

Using the chain rule we find

Up = Vgp Ty + Vy Yr,s
Uy = Vg Ty + Vy Yooy
Upy = (Uxx Ty + Umy yr)xr + Vg Lpr + (ny Ty + Uyy yr)yr + Uy yrr
= VUzzg l‘% + Qny TrYr + Uyy ?/3 + Vg Tor + Uy Yrr

_ 2 2
Ugpp = Vgo Ty, + 20y LYy + Uyy Yo + Vo T + Vy Yo



Inserting (2) to (5) into the above equations we find
Uy = Uy COS @ + vy SIN @,
Upp = Upy COS> @ + 20Uz, COS P SIN @ + Uy, sin? %)
_ 2 ;2 2 2 .2 .
Uy = VggT™ SINT O — 205, 7" SIN P COS P + VyyT° COS™ Y — TV, COS Y — TV, Sin @

Finally we have

2 : )
Upp + S Upp + —Up = Vggy COS © + 2Ugy COS P SIN Y + vy, SIN” P+
r r
<2 . 2 1 1 .
+ (Vg SIn”  — 2Ugy SIN P COS P + Vyyyy COS™ Y — V= COS P — Vyy— SIN ©)
r r

1 .

+ — (v cos p + v, sin )
r

= Uyy + Vyy = A(V).

Remark: We have shown that u,, + %= + %42 is the Laplacian in polar coordinates.

. (a) Compute the Taylor polynomial of degree 2 of f(x,y) = z¥ at (2, 1).
(b) Compute the Taylor polynomial of degree 3 of f(z,y) = 1/(1 —z —1y?) at (0,0).
Solution. (a) We have

fr = yxyilu f:B:B = y(y - 1)xy727 fmy = xyil _'_ yxyil IOgSC,
fy =aYlogx, fyy = 2¥(log z)*.

Therefore f(2,1) =2 and
£(2,1) =1, Fra(2,1) =0, Foy(2,1) =1 +1og 2,
f,(2,1) = 2log?2, fuu(2,1) = 2(log 2)°.

Thus, the Taylor polynomial of degree 2 of f at (2,1) is (use the second formula
after the proof of Theorem 11 (Taylor’s theorem))

2V =2+ (z—2)+2log2(y—1)+(1+1og2)(z —2)(y — 1)+ (log 2)*(y — 1)*+ R3(x, y).
MAPLE gives
> mtaylor(x7y, [x=2,y=1],3 );

2 2
x+2(y -1 1In(2) + (1 +1n(2)) (y - 1) (x-2) + (y - 1) 1In(2)
which is obviously the same.

(b) Instead computing all partial derivatives up to order 3 of f we can use the
geometric series. If |z + y?| < 1 we have

1 1 - .
1—9€—y2_1—($+y2)_;0<x+y)

=1+ (x+9%) + (@ +9°)* + (z +y*)® + higher terms
= 142+ 2> +9* + 2° + 22y* + higher terms.



MAPLE gives

> mtaylor(1/(1-x-y~2), [x,y],4 );
2 2 3 2
l1+x+y +x +x +2x7y

5. Compute the equation of the tangent plane to the graph of the function f at point

(5607y07f(560,y0))-
<a> f(x7y> = x?, =+ y3 - S'Tya ('r07y0> = (27 1)

(b) f(x,y) =V 9 — a2 _y27 <x07y0> = (172)

Solution. By Remark 8.5, the tangent hyperplane (in R"!) to the graph of f(z) at point
(a, f(a)) is

Tnir = f(@) = 3 fou(@) (i = a;) = (grad f(a), @ — a).

In both questions (a) and (b), n = 2; the hyperplanes in R? are actually planes.
(a) grad f(2,1) = (32% — 3y, 3y* — 3)| 5,y = (9, —3). Hence, the equation of the plane
is (with 3 = z) since f(2,1) = 3:

z—3=2(x—-2)—-3(@y—1).

(b)

grad f(1,2) = (

. L )
\/9—x2—y27 \/9—1:2—y2 1.2)

Since f(1,2) = /9 — 12 — 22 = 2/ the equation of the tangent plane through (1,2, 2) is

2—2:—%(:5—1)—(3/—2).



