
Calculus – 24. Series, Solutions

1. Let f :
�

n → �
m be a linear mapping. Prove that f is differentiable on

�
n and

compute Df(a) for all a ∈ �
n.

Proof. We will show that Df(a) = f is the derivative of f at a. Indeed, since f is

linear we have f(a + h) = f(a) + f(h) and therefore

lim
h→0

‖f(a + h) − f(a) − f(h)‖
‖h‖ = lim

h→0

0

‖h‖ = 0.

This shows that Df(a)(h) = f(h) is the (constant) derivative of f at a.

2. Let I :
�

n × �
n → �

be the inner product I(x, y) = 〈x, y〉.
(a) Find DI(a, b) and I ′(a, b).

(b) If f, g :
� → �

n are differentiable and h :
� → �

is defined by h(t) = 〈f(t), g(t)〉,
show that

h′(t) = 〈f ′(t), g(t)〉 + 〈f(t), g′(t)〉 .

Hint.
�

n × �
n = {(x, y) | x, y ∈ �

n} is the set of pairs (x, y) of vectors of
�

n. It

can be identified with the euclidean space
� 2n. For (b) use (a) and the chain rule.

Solution. (a) We identify
�

n × �
n =

� 2n and write

I(x1, . . . , xn, y1, . . . , yn) =
n
∑

k=1

xkyk.

By Example 7 (a), the Jacobian matrix of I is the gradient of I (since we are in case

m = 1). Since

DiI(x, y) =
∂

∂xi

(

n
∑

k=1

xkyk

)

=
n
∑

k=1

∂xk

∂xi

yk =
n
∑

k=1

δikyk = yi,

Dn+iI(x, y) =
∂

∂yi

(

n
∑

k=1

xkyk

)

=
n
∑

k=1

xk

∂yk

∂yi

=
n
∑

k=1

xkδki = xi,

we obtain the gradient of I at (a, b) to be

I ′(a1, . . . , an, b1, . . . , bn) = (b1, . . . , bn, a1, . . . , an).

The associated linear mapping DI(a, b) is a linear functional on
� 2n and can be

written using the inner product:

DI(a, b)(x, y) = 〈(b, a), (x, y)〉 = 〈b, x〉 + 〈a, y〉 . (1)
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We will give now an alternative proof of (1) using the definition of the derivative

directly. Let (h, k) ∈ � 2n then

ϕ(a,b)(h, k) = I(a + h, b + k) − I(a, b) − DI(a, b)(h, k)

= 〈a + h, b + k〉 − 〈a, b〉 − 〈b, h〉 − 〈a, k〉 = 〈h, k〉 .

Since ‖(h, k)‖2 =
∑

(h2
i + k2

i ) ≥
∑

h2
i = ‖h‖2 we obtain using Cauchy–Schwarz

inequality
∣

∣ϕ(a,b)(h, k)
∣

∣

‖(h, k)‖ =
| 〈h, k〉 |
‖h‖ ≤ ‖h‖ ‖k‖

‖h‖ ≤ ‖k‖ −→
(h,k)→0

0.

This proves (1) directly without using Proposition 5.

(b) Since h(t) = I(f(t), g(t)) the chain rule (Theorem 7) gives

h′(t) = DI(f(t), g(t))◦D(f(t), g(t)).

Since DI(f(t), g(t)) = (g(t), f(t)) by (a) and

D(f(t), g(t)) =

(

f ′(t)

g′(t)

)

is a column vector (see Example 7 (a), case n = 1), we get

h′(t) = (g(t) f(t))

(

f ′(t)

g′(t)

)

= 〈g(t), f ′(t)〉 + 〈f(t), g′(t)〉 .

3. Let v = v(x, y), v ∈ C(
� 2), be given and x = x(r, ϕ) = r cos ϕ, y = y(r, ϕ) = r sin ϕ

for all r, ϕ ∈ �
. Define a new function u(r, ϕ) = v(x, y) = v(r cos ϕ, r sin ϕ).

Compute

urr +
1

r
ur +

1

r2
uϕϕ

in terms of x, y and the partial derivatives of v with respect to x and y.

Solution. We first compute the partial derivatives of x and y with respect to r and

ϕ:

xr = cos ϕ, xϕ = −r sin ϕ, (2)

yr = sin ϕ, yϕ = r cos ϕ, (3)

xrϕ = − sin ϕ, xϕϕ = −r cos ϕ, xrr = 0, (4)

yrϕ = cos ϕ, yϕϕ = −r sin ϕ, yrr = 0. (5)

Using the chain rule we find

ur = vx xr + vy yr,

uϕ = vx xϕ + vy yϕ,

urr = (vxx xr + vxy yr)xr + vxxrr + (vyx xr + vyy yr)yr + vy yrr

= vxx x2
r + 2vxy xryr + vyy y2

r + vx xrr + vy yrr

uϕϕ = vxx x2
ϕ + 2vxy xϕyϕ + vyy y2

ϕ + vx xϕϕ + vy yϕϕ
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Inserting (2) to (5) into the above equations we find

ur = vx cos ϕ + vy sin ϕ,

urr = vxx cos2 ϕ + 2vxy cos ϕ sin ϕ + vyy sin2 ϕ

uϕϕ = vxxr
2 sin2 ϕ − 2vxyr

2 sin ϕ cosϕ + vyyr
2 cos2 ϕ − rvx cos ϕ − rvy sin ϕ

Finally we have

urr +
1

r2
uϕϕ +

1

r
ur = vxx cos2 ϕ + 2vxy cos ϕ sin ϕ + vyy sin2 ϕ+

+ (vxx sin2 ϕ − 2vxy sin ϕ cos ϕ + vyy cos2 ϕ − vx

1

r
cos ϕ − vy

1

r
sin ϕ)

+
1

r
(vx cos ϕ + vy sin ϕ)

= vxx + vyy = ∆(v).

Remark: We have shown that urr + ur

r
+ uϕϕ

r2 is the Laplacian in polar coordinates.

4. (a) Compute the Taylor polynomial of degree 2 of f(x, y) = xy at (2, 1).

(b) Compute the Taylor polynomial of degree 3 of f(x, y) = 1/(1−x− y2) at (0, 0).

Solution. (a) We have

fx = yxy−1, fxx = y(y − 1)xy−2, fxy = xy−1 + yxy−1 log x,

fy = xy log x, fyy = xy(log x)2.

Therefore f(2, 1) = 2 and

fx(2, 1) = 1, fxx(2, 1) = 0, fxy(2, 1) = 1 + log 2,

fy(2, 1) = 2 log 2, fyy(2, 1) = 2(log 2)2.

Thus, the Taylor polynomial of degree 2 of f at (2, 1) is (use the second formula

after the proof of Theorem11 (Taylor’s theorem))

xy = 2+(x−2)+2 log 2(y−1)+(1+log 2)(x−2)(y−1)+(log 2)2(y−1)2 +R3(x, y).

MAPLE gives

> mtaylor(x^y, [x=2,y=1],3 );

2 2

x + 2 (y - 1) ln(2) + (1 + ln(2)) (y - 1) (x - 2) + (y - 1) ln(2)

which is obviously the same.

(b) Instead computing all partial derivatives up to order 3 of f we can use the

geometric series. If |x + y2 | < 1 we have

1

1 − x − y2
=

1

1 − (x + y2)
=

∞
∑

n=0

(x + y2)n

= 1 + (x + y2) + (x + y2)2 + (x + y2)3 + higher terms

= 1 + x + x2 + y2 + x3 + 2xy2 + higher terms.
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MAPLE gives

> mtaylor(1/(1-x-y^2), [x,y],4 );

2 2 3 2

1 + x + y + x + x + 2 x y

5. Compute the equation of the tangent plane to the graph of the function f at point

(x0, y0, f(x0, y0)).

(a) f(x, y) = x3 + y3 − 3xy, (x0, y0) = (2, 1).

(b) f(x, y) =
√

9 − x2 − y2, (x0, y0) = (1, 2).

Solution. By Remark 8.5, the tangent hyperplane (in
�

n+1) to the graph of f(x) at point

(a, f(a)) is

xn+1 − f(a) =
n
∑

i=1

fxi
(a)(xi − ai) = 〈 grad f(a), x − a〉 .

In both questions (a) and (b), n = 2; the hyperplanes in
� 3 are actually planes.

(a) grad f(2, 1) = (3x2 − 3y, 3y2 − 3x)|(2,1) = (9,−3). Hence, the equation of the plane

is (with x3 = z) since f(2, 1) = 3:

z − 3 = 2(x − 2) − 3(y − 1).

(b)

grad f(1, 2) =

(

−x
√

9 − x2 − y2
,

−y
√

9 − x2 − y2

)
∣

∣

∣

∣

∣

(1,2)

=

(

−1

2
,−1

)

.

Since f(1, 2) =
√

9 − 12 − 22 = 2, the equation of the tangent plane through (1, 2, 2) is

z − 2 = −1

2
(x − 1) − (y − 2).
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